1
|
Hu L, Luo Y, Yang J, Cheng C. Botanical Flavonoids: Efficacy, Absorption, Metabolism and Advanced Pharmaceutical Technology for Improving Bioavailability. Molecules 2025; 30:1184. [PMID: 40076406 PMCID: PMC11902153 DOI: 10.3390/molecules30051184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Flavonoids represent a class of natural plant secondary metabolites with multiple activities including antioxidant, antitumor, anti-inflammatory, and antimicrobial properties. However, due to their structural characteristics, they often exhibit low bioavailability in vivo. In this review, we focus on the in vivo study of flavonoids, particularly the effects of gut microbiome on flavonoids, including common modifications such as methylation, acetylation, and dehydroxylation, etc. These modifications aim to change the structural characteristics of the original substances to enhance absorption and bioavailability. In order to improve the bioavailability of flavonoids, we discuss two feasible methods, namely dosage form modification and chemical modification, and hope that these approaches will offer new insights into the application of flavonoids for human health. In this article, we also introduce the types, plant sources, and efficacy of flavonoids. In conclusion, this is a comprehensive review on how to improve the bioavailability of flavonoids.
Collapse
Affiliation(s)
- Lei Hu
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (L.H.); (Y.L.); (J.Y.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Yiqing Luo
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (L.H.); (Y.L.); (J.Y.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Jiaxin Yang
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (L.H.); (Y.L.); (J.Y.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Chunsong Cheng
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (L.H.); (Y.L.); (J.Y.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| |
Collapse
|
2
|
Zhao C, Wu S, Wang H. Medicinal Plant Extracts Targeting UV-Induced Skin Damage: Molecular Mechanisms and Therapeutic Potential. Int J Mol Sci 2025; 26:2278. [PMID: 40076896 PMCID: PMC11899789 DOI: 10.3390/ijms26052278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
The depletion of the ozone layer has intensified ultraviolet (UV) radiation exposure, leading to oxidative stress, DNA damage, inflammation, photoaging, and skin cancer. Medicinal plants, widely used in Traditional Herbal Medicine (THM), particularly in Traditional Chinese Medicine (TCM), have demonstrated significant therapeutic potential due to their well-characterized active compounds and established photoprotective effects. This review systematically evaluates 18 medicinal plants selected based on their traditional use in skin-related conditions and emerging evidence supporting their efficacy against UV-induced skin damage. Their bioactive components exert antioxidant, anti-inflammatory, DNA repair, and depigmentation effects by modulating key signaling pathways, including Nrf2/ARE-, MAPK/AP-1-, PI3K/Akt-, and MITF/TYR-related melanogenesis pathways. Moreover, novel drug delivery systems, such as exosomes, hydrogels, and nanoemulsions, have significantly enhanced the stability, bioavailability, and skin penetration of these compounds. However, challenges remain in standardizing plant-derived formulations, elucidating complex synergistic mechanisms, and translating preclinical findings into clinical applications. Future interdisciplinary research and technological advancements will be essential to harness the full therapeutic potential of medicinal plants for UV-induced skin damage prevention and treatment.
Collapse
Affiliation(s)
- Chunhui Zhao
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (C.Z.); (S.W.)
| | - Shiying Wu
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (C.Z.); (S.W.)
| | - Hao Wang
- Lamprey Research Center, School of Life Sciences, Liaoning Normal University, Dalian 116081, China
| |
Collapse
|
3
|
Hernández AR, Sepulveda L, Hata Y, Castellanos L, Björklund S, Ruzgas T, Aragón M. Algae extract-based nanoemulsions for photoprotection against UVB radiation: an electrical impedance spectroscopy study. Sci Rep 2025; 15:1911. [PMID: 39809826 PMCID: PMC11733019 DOI: 10.1038/s41598-025-85604-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
Skin cancer is one of the most common types of cancer worldwide, with exposure to UVB radiation being a significant risk factor for its development. To prevent skin cancer, continuous research efforts have focused on finding suitable photoprotective ingredients from natural sources that are also environmentally friendly. This study aimed to develop oil-in-water photoprotective nanoemulsions containing marine macroalgae extract. A Box-Behnken experimental design was used to identify the most promising formulation composition, resulting in optimal physical properties. These properties, including droplet size, polydispersity index (PDI), and zeta potential, were evaluated using dynamic light scattering (DLS). To assess the photoprotection capacity of the formulations, electrical impedance spectroscopy (EIS) was employed to evaluate alterations in the electrical characteristics of excised pig skin membranes placed in Franz cells equipped with a 4-electrode set-up. The final composition of the nanoemulsion was caprylic/capric triglycerides 4%, Macrogolglycerol ricinoleate 30%, and algae extract 1%. The nanoemulsions had an average droplet size of 128.5 ± 8.6 nm, a PDI of 0.25 ± 0.06, and a zeta potential of 45.14 ± 0.02 mV. Compared to the control group, the photoprotective capacity of the oil-in-water nanoemulsions was statistically significant. Specifically, only a 15% reduction in the skin membrane electrical resistance following UVB exposure was observed when the formulation containing algae extract was used, whereas a 50% reduction was observed for the vehicle. In conclusion, this work demonstrates that the developed nanoemulsions based on natural ingredients show promising protective capacity against UVB exposure of the skin.
Collapse
Affiliation(s)
- Aura Rocío Hernández
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06, Malmö, Sweden.
- Biofilms Research Center for Biointerfaces, Malmö University, 205 06, Malmö, Sweden.
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Cra. 30 N° 45-03, Bogotá D.C., Colombia.
| | - Lady Sepulveda
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Cra. 30 N° 45-03, Bogotá D.C., Colombia
| | - Yoshie Hata
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Cra. 30 N° 45-03, Bogotá D.C., Colombia
- Instituto de Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Cra. 30 N° 45-03, Bogotá D.C., Colombia
| | - Leonardo Castellanos
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Cra. 30 N° 45-03, Bogotá D.C., Colombia
| | - Sebastian Björklund
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06, Malmö, Sweden
- Biofilms Research Center for Biointerfaces, Malmö University, 205 06, Malmö, Sweden
| | - Tautgirdas Ruzgas
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06, Malmö, Sweden
- Biofilms Research Center for Biointerfaces, Malmö University, 205 06, Malmö, Sweden
| | - Marcela Aragón
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Cra. 30 N° 45-03, Bogotá D.C., Colombia
| |
Collapse
|
4
|
Miranda JA, da Cruz YF, Girão ÍC, de Souza FJJ, de Oliveira WN, Alencar ÉDN, Amaral-Machado L, do Egito EST. Beyond Traditional Sunscreens: A Review of Liposomal-Based Systems for Photoprotection. Pharmaceutics 2024; 16:661. [PMID: 38794323 PMCID: PMC11125201 DOI: 10.3390/pharmaceutics16050661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Sunscreen products are essential for shielding the skin from ultraviolet (UV) radiation, a leading cause of skin cancer. While existing products serve this purpose, there is a growing need to enhance their efficacy while minimizing potential systemic absorption of UV filters and associated toxicological risks. Liposomal-based formulations have emerged as a promising approach to address these challenges and develop advanced photoprotective products. These vesicular systems offer versatility in carrying both hydrophilic and lipophilic UV filters, enabling the creation of broad-spectrum sunscreens. Moreover, their composition based on phospholipids, resembling that of the stratum corneum, facilitates adherence to the skin's surface layers, thereby improving photoprotective efficacy. The research discussed in this review underscores the significant advantages of liposomes in photoprotection, including their ability to limit the systemic absorption of UV filters, enhance formulation stability, and augment photoprotective effects. However, despite these benefits, there remains a notable gap between the potential of liposomal systems and their utilization in sunscreen development. Consequently, this review emphasizes the importance of leveraging liposomes and related vesicular systems as innovative tools for crafting novel and more efficient photoprotective formulations.
Collapse
Affiliation(s)
- Júlio Abreu Miranda
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil; (J.A.M.); (F.J.J.d.S.); (W.N.d.O.); (E.S.T.d.E.)
| | - Yasmin Ferreira da Cruz
- Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil; (Y.F.d.C.); (Í.C.G.)
| | - Ícaro Chaves Girão
- Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil; (Y.F.d.C.); (Í.C.G.)
| | - Fabia Julliana Jorge de Souza
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil; (J.A.M.); (F.J.J.d.S.); (W.N.d.O.); (E.S.T.d.E.)
| | - Wógenes Nunes de Oliveira
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil; (J.A.M.); (F.J.J.d.S.); (W.N.d.O.); (E.S.T.d.E.)
| | - Éverton do Nascimento Alencar
- Laboratory of Micro and Nanostructured Systems (LaSMiNano), College of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil;
| | - Lucas Amaral-Machado
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Eryvaldo Sócrates Tabosa do Egito
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil; (J.A.M.); (F.J.J.d.S.); (W.N.d.O.); (E.S.T.d.E.)
- Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil; (Y.F.d.C.); (Í.C.G.)
| |
Collapse
|
5
|
Gu H, Liu X, Chen P, Shi M, Chen L, Li X. Topical treatment of tea saponin stabilized silybin nanocrystal gel reduced oxidative stress in UV-induced skin damage. Biochem Biophys Res Commun 2023; 660:82-87. [PMID: 37075642 DOI: 10.1016/j.bbrc.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 04/21/2023]
Abstract
UV-induced peroxidation is a significant factor in skin damage. Some natural products have been utilized to protect the skin. However, most of them suffer from issues such as poor bioavailability. A promising strategy is to prepare them as safe and convenient gels. In this study, we constructed Silybin Nanocrystal Gel (SIL-NG). Tea saponin, a spatial stabilizer that we have previously reported, was used to prepare SIL-NS and subsequently combined with xanthan gum to prepare SIL-NG with an excellent safety profile. This nanogel with a natural stabilizer has a suitable ductility and shows a good safety profile in vitro and in vivo. In L929 cells, SIL-NG was able to reduce H2O2-induced ROS levels. In addition, SIL-NG exhibited better antioxidant activity compared to SIL-NS. SIL-NG was able to reduce UVB irradiation-induced oxidative damage in mice, significantly increase SOD activity, and reduce MDA levels. In conclusion, our work gives a new perspective on the treatment of UV skin damage using natural ingredients.
Collapse
Affiliation(s)
- Huan Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ping Chen
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Mingyi Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liping Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
6
|
Hussain Z, Thu HE, Khan S, Sohail M, Sarfraz RM, Mahmood A, Abourehab MA. Phytonanomedicines, a state-of-the-art strategy for targeted delivery of anti-inflammatory phytochemicals: A review of improved pharmacokinetic profile and therapeutic efficacy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
7
|
Li L, He M, Fang C, Zhang Y, Wang Y, Song X, Zou Y, Jia R, Liang X, Yin L, Lv C, Wan H, Zhao X, Yin Z. Preparation, characterization, ex vivo transdermal properties and skin irritation evaluation of 1,8-cineole nanoemulsion gel. Int J Pharm 2022; 624:121982. [DOI: 10.1016/j.ijpharm.2022.121982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
|
8
|
Jiang L, Wang F, Du M, Xie C, Xie X, Zhang H, Meng X, Li A, Deng T. Encapsulation of catechin into nano-cyclodextrin-metal-organic frameworks: Preparation, characterization, and evaluation of storage stability and bioavailability. Food Chem 2022; 394:133553. [PMID: 35753258 DOI: 10.1016/j.foodchem.2022.133553] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/22/2022] [Accepted: 06/19/2022] [Indexed: 11/04/2022]
Abstract
This study, nanoscale α-, β-, γ-cyclodextrin (CD)-metal-organic frameworks (MOFs) were successfully prepared using solvothermal assisted ultrasound method. CD-MOFs were used as nanocarriers to encapsulate catechin (CA), and their encapsulation capacities were evaluated. Encapsulation capacities of CD-MOFs to incorporate CA followed the order: β-CD-MOFs > γ-CD-MOFs > α-CD-MOFs. CA/CD-MOFs were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). DSC and SEM results provided evidence for the formation of CA/CD-MOFs. XRD results indicated the new solid crystalline phases formed in CA/CD-MOFs complex. Results of FT-IR showed that CA was combined with CD-MOFs through hydrogen bonding and van der Waals forces. Current research demonstrated that encapsulation of CA within CD-MOFs provided it against light, oxygen and temperature. Moreover, encapsulation by CD-MOFs improved storage stability and bioavailability of CA. Thus, these CA/CD-MOFs have potential to be used as nutritional supplements and functional foods.
Collapse
Affiliation(s)
- Longwei Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Fenghui Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mengyu Du
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Cancan Xie
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Xie
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Huajiang Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xiangyi Meng
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Anqi Li
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Tianyi Deng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Roy A, Nishchaya K, Rai VK. Nanoemulsion-based dosage forms for the transdermal drug delivery applications: A review of recent advances. Expert Opin Drug Deliv 2022; 19:303-319. [PMID: 35196938 DOI: 10.1080/17425247.2022.2045944] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Nanoemulsion-based drug delivery approaches have witnessed massive acceptance over the years and acquired a significant foothold owing to their tremendous benefits over the others. It has widely been used for transdermal delivery of hydrophobic and hydrophilic drugs with solubility, lipophilicity, and bioavailability issues. AREAS COVERED The review highlights the recent advancements and applications of transdermal nanoemulsions. Their utilities and characteristics, clinical pertinence showcasing intellectual properties and advancements, potential in treating disorders accompanying liquid, semisolid, and solid dosage forms, the ability to modulate a drug's physicochemical properties, and regulatory status are thoroughly summarized. EXPERT OPINION Despite tremendous therapeutic utilities and extensive investigations, this field of transdermal nanoemulsion-based technologies yet tackles several challenges such as optimum use of surfactant mixtures, economic burden due to high energy consumption during production, lack of concrete regulatory requirement, etc. Provided with the concrete guidelines on the safe use of surfactants, stability, use of scalable and economical methods, and the use of NE as a transdermal system would solve the purpose best as nanoemulsion shows remarkable improvement in drug release profiles and bioavailability of many drugs. Nevertheless, a better understanding of nanoemulsion technology holds a promising outlook and would land more opportunities and better delivery outcomes.
Collapse
Affiliation(s)
- Ankita Roy
- Department of Pharmacy, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Kumar Nishchaya
- Department of Pharmacy, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Vineet Kumar Rai
- Department of Pharmacy, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
10
|
Teja PK, Mithiya J, Kate AS, Bairwa K, Chauthe SK. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153890. [PMID: 35026510 DOI: 10.1016/j.phymed.2021.153890] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/14/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Herbal Nano Medicines (HNMs) are nano-sized medicine containing herbal drugs as extracts, enriched fractions or biomarker constituents. HNMs have certain advantages because of their increased bioavailability and reduced toxicities. There are very few literature reports that address the common challenges of herbal nanoformulations, such as selecting the type/class of nanoformulation for an extract or a phytochemical, selection and optimisation of preparation method and physicochemical parameters. Although researchers have shown more interest in this field in the last decade, there is still an urgent need for systematic analysis of HNMs. PURPOSE This review aims to provide the recent advancement in various herbal nanomedicines like polymeric herbal nanoparticles, solid lipid nanoparticles, phytosomes, nano-micelles, self-nano emulsifying drug delivery system, nanofibers, liposomes, dendrimers, ethosomes, nanoemulsion, nanosuspension, and carbon nanotube; their evaluation parameters, challenges, and opportunities. Additionally, regulatory aspects and future perspectives of herbal nanomedicines are also being covered to some extent. METHODS The scientific data provided in this review article are retrieved by a thorough analysis of numerous research and review articles, textbooks, and patents searched using the electronic search tools like Sci-Finder, ScienceDirect, PubMed, Elsevier, Google Scholar, ACS, Medline Plus and Web of Science. RESULTS In this review, the authors suggested the suitability of nanoformulation for a particular type of extracts or enriched fraction of phytoconstituents based on their solubility and permeability profile (similar to the BCS class of drugs). This review focuses on different strategies for optimising preparation methods for various HNMs to ensure reproducibility in context with all the physicochemical parameters like particle size, surface area, zeta potential, polydispersity index, entrapment efficiency, drug loading, and drug release, along with the consistent therapeutic index. CONCLUSION A combination of herbal medicine with nanotechnology can be an essential tool for the advancement of herbal medicine research with enhanced bioavailability and fewer toxicities. Despite the challenges related to traditional medicine's safe and effective use, there is huge scope for nanotechnology-based herbal medicines. Overall, it is well stabilized that herbal nanomedicines are safer, have higher bioavailability, and have enhanced therapeutic value than conventional herbal and synthetic drugs.
Collapse
Affiliation(s)
- Parusu Kavya Teja
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Jinal Mithiya
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Abhijeet S Kate
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Khemraj Bairwa
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India..
| | - Siddheshwar K Chauthe
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India..
| |
Collapse
|
11
|
Rivera-Yañez CR, Ruiz-Hurtado PA, Mendoza-Ramos MI, Reyes-Reali J, García-Romo GS, Pozo-Molina G, Reséndiz-Albor AA, Nieto-Yañez O, Méndez-Cruz AR, Méndez-Catalá CF, Rivera-Yañez N. Flavonoids Present in Propolis in the Battle against Photoaging and Psoriasis. Antioxidants (Basel) 2021; 10:antiox10122014. [PMID: 34943117 PMCID: PMC8698766 DOI: 10.3390/antiox10122014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
The skin is the main external organ. It protects against different types of potentially harmful agents, such as pathogens, or physical factors, such as radiation. Skin disorders are very diverse, and some of them lack adequate and accessible treatment. The photoaging of the skin is a problem of great relevance since it is related to the development of cancer, while psoriasis is a chronic inflammatory disease that causes scaly skin lesions and deterioration of the lifestyle of people affected. These diseases affect the patient's health and quality of life, so alternatives have been sought that improve the treatment for these diseases. This review focuses on describing the properties and benefits of flavonoids from propolis against these diseases. The information collected shows that the antioxidant and anti-inflammatory properties of flavonoids play a crucial role in the control and regulation of the cellular and biochemical alterations caused by these diseases; moreover, flavones, flavonols, flavanones, flavan-3-ols, and isoflavones contained in different worldwide propolis samples are the types of flavonoids usually evaluated in both diseases. Therefore, the research carried out in the area of dermatology with bioactive compounds of different origins is of great relevance to developing preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Claudia Rebeca Rivera-Yañez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico;
| | - Porfirio Alonso Ruiz-Hurtado
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, IPN, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero 07738, Mexico;
| | - María Isabel Mendoza-Ramos
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Julia Reyes-Reali
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Gina Stella García-Romo
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Glustein Pozo-Molina
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Aldo Arturo Reséndiz-Albor
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Salvador Díaz Mirón y Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Mexico City 11340, Mexico;
| | - Oscar Nieto-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
| | - Adolfo René Méndez-Cruz
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Claudia Fabiola Méndez-Catalá
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Correspondence: (C.F.M.-C.); (N.R.-Y.); Tel.: +52-5522-476-721 (N.R.-Y.)
| | - Nelly Rivera-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Correspondence: (C.F.M.-C.); (N.R.-Y.); Tel.: +52-5522-476-721 (N.R.-Y.)
| |
Collapse
|
12
|
El-Zaafarany GM, Nasr M. Insightful exploring of advanced nanocarriers for the topical/transdermal treatment of skin diseases. Pharm Dev Technol 2021; 26:1136-1157. [PMID: 34751091 DOI: 10.1080/10837450.2021.2004606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Dermatological products constitute a big segment of the pharmaceutical market. From conventional products to more advanced ones, a wide variety of dosage forms have been developed till current date. A representative of the advanced delivery means is carrier-based systems, which can load large number of drugs for treatment of dermatological diseases, or simply for cosmeceutical purposes. To make them more favorable for topical delivery, further incorporation of these carriers in a topical vehicle, such as gels or creams is made. Therefore in this review article, an overview is compiled of the most commonly encountered novel carrier based topical delivery systems; namely lipid based (nanoemulsions, microemulsions, solid lipid nanoparticles [SLNs] and nanostructured lipid carriers [NLCs]), and vesicular carriers (non-deformable, such as liposomes, niosomes, emulsomes and cerosomes, and deformable, such as transfersomes, ethosomes, transethosomes, and penetration enhancer vesicles), with special emphasis on those loaded in a secondary gel vehicle. A special focus was made on the commonly encountered dermatological diseases, such as bacterial and fungal infections, psoriasis, dermatitis, eczema, vitiligo, oxidative damage, aging, alopecia, and skin cancer.
Collapse
Affiliation(s)
- Ghada M El-Zaafarany
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
13
|
Improved skin permeability and whitening effect of catechin-loaded transfersomes through topical delivery. Int J Pharm 2021; 607:121030. [PMID: 34438007 DOI: 10.1016/j.ijpharm.2021.121030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022]
Abstract
The aim of the study was to prepare catechin-loaded transfersomes to enhance drug permeability through topical administration for the skin protection against ultraviolet radiation induced photo-damage. The results showed that the catechin-loaded transfersomes were monodispersed with polydispersity index (PDI) < 0.2, <200 nm in particle size and with high encapsulation efficiency (E.E.%) greater than 85%. The in vitro skin permeation test indicated that the catechin-loaded transfersomes enhanced the skin permeability by 85% compared to the catechin aqueous solution. Similarly, the in-vivo skin whitening study demonstrated that F5 transfersome formulation was effective in tyrosinase inhibition and had good biocompatibility to the guinea pig skin. Finally, the stability study showed that both physicochemical properties and E.E.% of the F5 transferosome formulation were fairly stable after 3 months storage. Therefore, topical administration of catechin-loaded transfersomes could be considered as a potential strategy for the treatment of UV-induced oxidative damage to the skin.
Collapse
|
14
|
Das S, Langbang L, Haque M, Belwal VK, Aguan K, Singha Roy A. Biocompatible silver nanoparticles: An investigation into their protein binding efficacies, anti-bacterial effects and cell cytotoxicity studies. J Pharm Anal 2021; 11:422-434. [PMID: 34513118 PMCID: PMC8424387 DOI: 10.1016/j.jpha.2020.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
Green synthesis of silver nanoparticles (AgNPs) has garnered tremendous interest as conventional methods include the use and production of toxic chemicals, products, by-products and reagents. In this regard, the synthesis of AgNPs using green tea (GT) extract and two of its components, (-)-epigallocatechin gallate (EGCG) and (+)-catechin (Ct) as capping/stabilizing agents, is reported. The synthesized AgNPs showed antibacterial activity against the bacterial strains Staphylococcus aureus and Escherichia coli, along with anticancer activity against HeLa cells. After administering nanoparticles to the body, they come in contact with proteins and results in the formation of a protein corona; hence we studied the interactions of these biocompatible AgNPs with hen egg white lysozyme (HEWL) as a carrier protein. Static quenching mechanism was accountable for the quenching of HEWL fluorescence by the AgNPs. The binding constant (K b) was found to be higher for EGCG-AgNPs ((2.309 ± 0.018) × 104 M-1) than for GT-AgNPs and Ct-AgNPs towards HEWL. EGCG-AgNPs increased the polarity near the binding site while Ct-AgNPs caused the opposite effect, but GT-AgNPs had no such observable effects. Circular dichroism studies indicated that the AgNPs had no such appreciable impact on the secondary structure of HEWL. The key findings of this research included the synthesis of AgNPs using GT extract and its constituent polyphenols, and showed significant antibacterial, anticancer and protein-binding properties. The -OH groups of the polyphenols drive the in situ capping/stabilization of the AgNPs during synthesis, which might offer new opportunities having implications for nanomedicine and nanodiagnostics.
Collapse
Affiliation(s)
- Sourav Das
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, India
| | - Leader Langbang
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, 793022, India
| | - Mahabul Haque
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, India
| | - Vinay Kumar Belwal
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Kripamoy Aguan
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, 793022, India
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, India
| |
Collapse
|
15
|
Enhanced permeability and photoprotective potential of optimized p-coumaric acid-phospholipid complex loaded gel against UVA mediated oxidative stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 221:112246. [PMID: 34243023 DOI: 10.1016/j.jphotobiol.2021.112246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 01/14/2023]
Abstract
Photo-oxidative skin damage is mainly caused by the UV-A radiation of the sun. Synthetic sunscreens used to counter this acts mostly on the superficial skin layer and possess serious side effects. P-coumaric acid (PCA) is a UV-A protective plant phenolic having quick diffusion and distribution in superficial skin layers limiting its application as herbal sunscreen. The present study was designed to formulate an optimized phospholipid complex of PCA (PCAPC) through response surface methodology to enhance its skin permeation to deeper skin layers providing protection against photo-oxidative stress. PCAPC was characterized by FT-IR, DTA, PXRD, TEM, zeta potential etc. PCAPC was then incorporated into a gel formulation (PCAPC-GE) to facilitate its transdermal delivery. Physicochemical properties of the gel were assessed by pH, homogeneity, rheology, spreadability etc. In-vitro SPF and UVA-PF of the gel was evaluated and compared with conventional gel (PCA-GE). Ex-vivo skin permeation flux, permeability coefficient, skin deposition and dermatokinetic analysis were carried out to measure the rate and level of skin permeation. This was accompanied by in-vivo evaluation of PCAPC-GE and PCA-GE in the experimental rat model by measuring the various oxidative stress markers such as superoxide dismutase, catalase etc. PCAPC-GE provided high SPF and UVA-PF value compared to PCA-GE. The physicochemical parameters were suitable for transdermal application. PCAPC-GE enhanced the permeation rate of PCA by almost 6 fold compared to PCA-GE. Besides, a significant reduction of UV-A induced oxidative stress biomarkers were observed for PCAPC-GE. Thus, the PCAPC-GE may be an effective alternative of synthetic sunscreens due to its enhanced permeation and protection against UVA-induced oxidative stress.
Collapse
|
16
|
Kyriakoudi A, Spanidi E, Mourtzinos I, Gardikis K. Innovative Delivery Systems Loaded with Plant Bioactive Ingredients: Formulation Approaches and Applications. PLANTS (BASEL, SWITZERLAND) 2021; 10:1238. [PMID: 34207139 PMCID: PMC8234206 DOI: 10.3390/plants10061238] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
Plants constitute a rich source of diverse classes of valuable phytochemicals (e.g., phenolic acids, flavonoids, carotenoids, alkaloids) with proven biological activity (e.g., antioxidant, anti-inflammatory, antimicrobial, etc.). However, factors such as low stability, poor solubility and bioavailability limit their food, cosmetics and pharmaceutical applications. In this regard, a wide range of delivery systems have been developed to increase the stability of plant-derived bioactive compounds upon processing, storage or under gastrointestinal digestion conditions, to enhance their solubility, to mask undesirable flavors as well as to efficiently deliver them to the target tissues where they can exert their biological activity and promote human health. In the present review, the latest advances regarding the design of innovative delivery systems for pure plant bioactive compounds, extracts or essential oils, in order to overcome the above-mentioned challenges, are presented. Moreover, a broad spectrum of applications along with future trends are critically discussed.
Collapse
Affiliation(s)
- Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | - Eleni Spanidi
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece;
| | - Ioannis Mourtzinos
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | | |
Collapse
|
17
|
Sabaghi M, Hoseyni SZ, Tavasoli S, Mozafari MR, Katouzian I. Strategies of confining green tea catechin compounds in nano-biopolymeric matrices: A review. Colloids Surf B Biointerfaces 2021; 204:111781. [PMID: 33930733 DOI: 10.1016/j.colsurfb.2021.111781] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 02/08/2023]
Abstract
Catechins are polyphenolic compounds which abundantly occur in the plants, especially tea leaves. They are widely used in nutraceutical and pharmaceutical formulations due to their capability of lowering the risk of developing various diseases. Nevertheless, low stability, loss of antioxidant and antimicrobial activities hinder the direct application of catechins in food formulations. To surmount this pervasive challenge, bioactive ingredients should be entrapped in a biopolymeric matrix. Thus, nanoencapsulation technology would be an appropriate strategy to improve the stability of these bioactive compounds and to protect them against degradation. Among different types of nanocarriers, biopolymer-based nanovehicles has captured a lot of attention in both industry and academia due to their safety and biocompatibility. This revision enlarges upon the various types of biopolymeric nanostructures used for accommodation of catechins, namely nanogels, nanotubes, nanofibers, nanoemulsions and nanoparticles. Last but not least, the applications of the entrapped catechins in the food industry are highlighted.
Collapse
Affiliation(s)
- Moslem Sabaghi
- Department of Food Science and Technology, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran; Nano-encapsulation in the Food, Nutraceutical, and Pharmaceutical Industries Group (NFNPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyedeh Zahra Hoseyni
- Department of Food Science and Technology, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran
| | - Sedighe Tavasoli
- Department of Food Science and Technology, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), 8054 Monash University LPO, Clayton, Victoria, 3168, Australia
| | - Iman Katouzian
- Department of Food Science and Technology, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran; Nano-encapsulation in the Food, Nutraceutical, and Pharmaceutical Industries Group (NFNPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Australasian Nanoscience and Nanotechnology Initiative (ANNI), 8054 Monash University LPO, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
18
|
Fornasier M, Pireddu R, Del Giudice A, Sinico C, Nylander T, Schillén K, Galantini L, Murgia S. Tuning lipid structure by bile salts: Hexosomes for topical administration of catechin. Colloids Surf B Biointerfaces 2021; 199:111564. [DOI: 10.1016/j.colsurfb.2021.111564] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/24/2020] [Accepted: 01/03/2021] [Indexed: 12/21/2022]
|
19
|
Skarupova D, Vostalova J, Rajnochova Svobodova A. Ultraviolet A protective potential of plant extracts and phytochemicals. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 164:1-22. [PMID: 32188958 DOI: 10.5507/bp.2020.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/04/2020] [Indexed: 12/25/2022] Open
Abstract
Chronic exposure to solar radiation is related to an increased incidence of various skin disorders, including premature skin aging and melanoma and non-melanoma skin cancers. Ultraviolet (UV) photons in particular are responsible for skin damage. Solar UV photons mainly belong to UVA wavebands, however UVA radiation has been mostly ignored for a long time. At the cellular level, UVA photons mainly provoke indirect oxidative damage to biomolecules via the massive generation of unstable and highly reactive compounds. Human skin has several effective mechanisms that forestall, repair and eliminate damage caused by solar radiation. Regardless, some damage persists and can accumulate with chronic exposure. Therefore, conscious protection against solar radiation (UVB+UVA) is necessary. Besides traditional types of photoprotection such as sunscreen use, new strategies are being searched for and developed. One very popular protective strategy is the application of phytochemicals as active ingredients of photoprotection preparations instead of synthetic chemicals. Phytochemicals usually possess additional biological activities besides absorbing the energy of photons, and those properties (e.g. antioxidant, anti-inflammatory) magnify the protective potential of phytochemicals and extracts. Therefore, compounds of natural origin are in the interest of researchers as well as developers. In this review, only studies on UVA protection with well-documented experimental conditions are summarized. This article includes 17 well standardized plant extracts (Camellia sinensis (L.) Kuntze, Silybum marianum L. Gaertn., Punica granatum L., Polypodium aureum L., Vaccinium myrtillus L., Lonicera caerulea L., Thymus vulgaris L., Opuntia ficus-indica (L.) Mill., Morinda citrifolia L., Aloe vera (L.) Burm.f., Oenothera paradoxa Hudziok, Galinsoga parviflora Cav., Galinsoga quadriradiata Ruiz et Pavón, Hippophae rhamnoides L., Cola acuminata Schott & Endl., Theobroma cacao L. and Amaranthus cruentus L.) and 26 phytochemicals.
Collapse
Affiliation(s)
- Denisa Skarupova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Jitka Vostalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Alena Rajnochova Svobodova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| |
Collapse
|
20
|
Leite CB, Coelho JM, Ferreira-Nunes R, Gelfuso GM, Durigan JL, Azevedo RB, Muehlmann LA, Sousa MH. Phonophoretic application of a glucosamine and chondroitin nanoemulsion for treatment of knee chondropathies. Nanomedicine (Lond) 2020; 15:647-659. [PMID: 32118508 DOI: 10.2217/nnm-2019-0317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study was performed to assess the effect of the phonophoretic application of a nanoemulsion incorporating glucosamine and chondroitin sulfate (NANO-CG) associated with kinesiotherapy on the reduction of pain and stiffness in knee chondropathy. Materials & methods: NANO-CG was tested in vitro and in vivo prior to being applied in a randomized and controlled clinical trial. Results: Cell viability and hen's egg test-chorionallantonic membrane tests indicated the NANO-CG is safe for topical application. Permeation tests showed NANO-CG enhances drug permeation through the skin. There was no statistical significance between treated groups in this preliminary study, however, pain reduction and complete recovery of articular cartilage were observed in some patients treated with NANO-CG. Conclusion: We demonstrate that NANO-CG may be a promising candidate for the therapy of knee chondropathy.
Collapse
Affiliation(s)
- Cláudia Bs Leite
- Green Nanotechnology Group, Faculty of Ceilandia, University of Brasilia, Brasilia, DF 72220-900, Brazil
| | - Janaina M Coelho
- Laboratory of Nanoscience & Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia, DF 72220-900, Brazil.,Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Ricardo Ferreira-Nunes
- Laboratory of Food, Drugs & Cosmetics (LTMAC), University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drugs & Cosmetics (LTMAC), University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - João Lq Durigan
- Rehabilitation Sciences Graduation Program, University of Brasilia, Brasilia, DF 72220-900, Brazil
| | - Ricardo B Azevedo
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Luis A Muehlmann
- Laboratory of Nanoscience & Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia, DF 72220-900, Brazil
| | - Marcelo H Sousa
- Green Nanotechnology Group, Faculty of Ceilandia, University of Brasilia, Brasilia, DF 72220-900, Brazil
| |
Collapse
|
21
|
Li Q, Chen P, Li Y, Li B, Liu S. Construction of cellulose-based Pickering stabilizer as a novel interfacial antioxidant: A bioinspired oxygen protection strategy. Carbohydr Polym 2019; 229:115395. [PMID: 31826411 DOI: 10.1016/j.carbpol.2019.115395] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 11/28/2022]
Abstract
Oxygen protection/isolation is imperative to prevent the lipid oxidation since oxygen molecule is an ultimate quencher in photon conversion process. Inspired by the structural buildup of seeds from oil crops, a sustainable solid particle stabilizer with novel antioxidant activity was prepared by using cellulose and polyphenol. In this work, bacterial cellulose (BC) nanofibrils modified by tea polyphenols (TPs) was prepared and used as Pickering emulsifier for the O/W emulsion. BC nanofibirls exhibited excellent adsorption capacity up to 55 μg/mg, and the adsorption kinetics between BC and TPs were further investigated. After modification, the interfacial diffusion rate constant of BC was significantly increased to from 0.43 to 1.21 mN m-1 s-0.5. Moreover, the obtained O/W interfacial modulus of the dilatational elasticity was increased from 58 to 130 mN/m. Furthermore, the emulsions exhibited excellent free-radical scavenging activity at oil-water interface, suggesting a potential application in usage to extend the lifespan of the food containing polyunsaturated fats.
Collapse
Affiliation(s)
- Qi Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Pan Chen
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden; Beijing Engineering Research Center of Cellulose and its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China.
| | - Yan Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shilin Liu
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
22
|
Harwansh RK, Deshmukh R, Rahman MA. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Liu Y, Ying D, Sanguansri L, Cai Y, Le X. Adsorption of catechin onto cellulose and its mechanism study: Kinetic models, characterization and molecular simulation. Food Res Int 2018; 112:225-232. [DOI: 10.1016/j.foodres.2018.06.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/17/2018] [Accepted: 06/20/2018] [Indexed: 12/17/2022]
|
24
|
Cai ZY, Li XM, Liang JP, Xiang LP, Wang KR, Shi YL, Yang R, Shi M, Ye JH, Lu JL, Zheng XQ, Liang YR. Bioavailability of Tea Catechins and Its Improvement. Molecules 2018; 23:molecules23092346. [PMID: 30217074 PMCID: PMC6225109 DOI: 10.3390/molecules23092346] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/02/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023] Open
Abstract
Many in vitro studies have shown that tea catechins had vevarious health beneficial effects. However, inconsistent results between in vitro and in vivo studies or between laboratory tests and epidemical studies are observed. Low bioavailability of tea catechins was an important factor leading to these inconsistencies. Research advances in bioavailability studies involving absorption and metabolic biotransformation of tea catechins were reviewed in the present paper. Related techniques for improving their bioavailability such as nanostructure-based drug delivery system, molecular modification, and co-administration of catechins with other bioactives were also discussed.
Collapse
Affiliation(s)
- Zhuo-Yu Cai
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Xu-Min Li
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Jin-Pei Liang
- Intellectual Property Office of Lanshan District, Rizhao 543003, China.
| | - Li-Ping Xiang
- National Tea and Tea Product Quality Supervision and Inspection Center (Guizhou), Zunyi 563100, China.
| | - Kai-Rong Wang
- Ningbo Extension Station of Forestry & Speciality Technology, Ningbo 315012, China.
| | - Yun-Long Shi
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Rui Yang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Meng Shi
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
25
|
Ferreira-Nunes R, Silva SMMD, Souza PEND, Magalhães PDO, Cunha-Filho M, Gratieri T, Gelfuso GM. Incorporation of Eugenia dysenterica extract in microemulsions preserves stability, antioxidant effect and provides enhanced cutaneous permeation. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Ferreira-Nunes R, Gratieri T, Gelfuso GM, Cunha-Filho M. Mixture design applied in compatibility studies of catechin and lipid compounds. J Pharm Biomed Anal 2018; 149:612-617. [DOI: 10.1016/j.jpba.2017.11.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022]
|
27
|
Microemulsion formulation design and evaluation for hydrophobic compound: Catechin topical application. Colloids Surf B Biointerfaces 2018; 161:121-128. [DOI: 10.1016/j.colsurfb.2017.10.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/22/2017] [Accepted: 10/04/2017] [Indexed: 11/24/2022]
|
28
|
Hong L, Zhou CL, Chen FP, Han D, Wang CY, Li JX, Chi Z, Liu CG. Development of a carboxymethyl chitosan functionalized nanoemulsion formulation for increasing aqueous solubility, stability and skin permeability of astaxanthin using low-energy method. J Microencapsul 2017; 34:707-721. [PMID: 29141479 DOI: 10.1080/02652048.2017.1373154] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this research, firstly astaxanthin (ASX)-loaded nanoemulsions (NEs) were produced using a convenient low-energy emulsion phase inversion method. The optimised ASX-NEs were prepared in the presence of Cremophor® EL and Labrafil® M 1944 CS, with a surfactant-to-oil ratio of 4:6. The ASX-NE droplets were spherical with a mean droplet diameter below 100 nm and a small negative surface charge. The system was stable without alteration of mean droplet diameter for three months. Then, the ASX-NE was functionalised with carboxymethyl chitosan (CMCS) through direct CMCS (0.02%) incorporation during the preparation process. The ASX chemical stability and skin permeability increased in the following order: ASX solution control < ASX-NE < CMCS-ASX-NE. Cell viability assays on L929 cells revealed low cytotoxicity of blank NE, ASX-NE and CMCS-ASX-NE in the range from 5 to 500 μg mL-1. In conclusion, the CMCS-ASX-NE might be a promising delivery vehicle in dermal and transdermal products.
Collapse
Affiliation(s)
- Liang Hong
- a College of Marine Life Science , Ocean University of China , Qingdao , People's Republic of China
| | - Chuan-Li Zhou
- b Department of Spine Surgery , Affiliated Hospital of Qingdao University , Qingdao , People's Republic of China
| | - Feng-Ping Chen
- a College of Marine Life Science , Ocean University of China , Qingdao , People's Republic of China
| | - Dan Han
- a College of Marine Life Science , Ocean University of China , Qingdao , People's Republic of China
| | - Chun-Yuan Wang
- a College of Marine Life Science , Ocean University of China , Qingdao , People's Republic of China
| | - Jia-Xin Li
- a College of Marine Life Science , Ocean University of China , Qingdao , People's Republic of China
| | - Zhe Chi
- a College of Marine Life Science , Ocean University of China , Qingdao , People's Republic of China
| | - Chen-Guang Liu
- a College of Marine Life Science , Ocean University of China , Qingdao , People's Republic of China
| |
Collapse
|
29
|
Nanoemulsion as a novel carrier system for improvement of betulinic acid oral bioavailability and hepatoprotective activity. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.04.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Martinez RM, Pinho-Ribeiro FA, Vale DL, Steffen VS, Vicentini FT, Vignoli JA, Baracat MM, Georgetti SR, Verri WA, Casagrande R. Trans-chalcone added in topical formulation inhibits skin inflammation and oxidative stress in a model of ultraviolet B radiation skin damage in hairless mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 171:139-146. [DOI: 10.1016/j.jphotobiol.2017.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/29/2017] [Accepted: 05/01/2017] [Indexed: 12/12/2022]
|
31
|
Pastoriza S, Mesías M, Cabrera C, Rufián-Henares JA. Healthy properties of green and white teas: an update. Food Funct 2017. [DOI: 10.1039/c7fo00611j] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Green tea has been consumed for centuries in Japan, China and Morocco.
Collapse
Affiliation(s)
- S. Pastoriza
- Departamento de Nutrición y Bromatología
- Facultad de Farmacia
- Campus de Cartuja S/N
- 18071
- Universidad de Granada
| | - M. Mesías
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC)
- Madrid
- Spain
| | - C. Cabrera
- Departamento de Nutrición y Bromatología
- Facultad de Farmacia
- Campus de Cartuja S/N
- 18071
- Universidad de Granada
| | - J. A. Rufián-Henares
- Departamento de Nutrición y Bromatología
- Facultad de Farmacia
- Campus de Cartuja S/N
- 18071
- Universidad de Granada
| |
Collapse
|