1
|
Singh A, Tanwar M, Singh TP, Sharma S, Sharma P. An escape from ESKAPE pathogens: A comprehensive review on current and emerging therapeutics against antibiotic resistance. Int J Biol Macromol 2024; 279:135253. [PMID: 39244118 DOI: 10.1016/j.ijbiomac.2024.135253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The rise of antimicrobial resistance has positioned ESKAPE pathogens as a serious global health threat, primarily due to the limitations and frequent failures of current treatment options. This growing risk has spurred the scientific community to seek innovative antibiotic therapies and improved oversight strategies. This review aims to provide a comprehensive overview of the origins and resistance mechanisms of ESKAPE pathogens, while also exploring next-generation treatment strategies for these infections. In addition, it will address both traditional and novel approaches to combating antibiotic resistance, offering insights into potential new therapeutic avenues. Emerging research underscores the urgency of developing new antimicrobial agents and strategies to overcome resistance, highlighting the need for novel drug classes and combination therapies. Advances in genomic technologies and a deeper understanding of microbial pathogenesis are crucial in identifying effective treatments. Integrating precision medicine and personalized approaches could enhance therapeutic efficacy. The review also emphasizes the importance of global collaboration in surveillance and stewardship, as well as policy reforms, enhanced diagnostic tools, and public awareness initiatives, to address resistance on a worldwide scale.
Collapse
Affiliation(s)
- Anamika Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mansi Tanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - T P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
2
|
Mendonça I, Silva D, Conde T, Maurício T, Cardoso H, Pereira H, Bartolomeu M, Vieira C, Domingues MR, Almeida A. Insight into the efficiency of microalgae' lipidic extracts as photosensitizers for Antimicrobial Photodynamic Therapy against Staphylococcus aureus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:112997. [PMID: 39137701 DOI: 10.1016/j.jphotobiol.2024.112997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
Antibacterial resistance causes around 1.27 million deaths annually around the globe and has been recognized as a top 3 priority health threat. Antimicrobial photodynamic therapy (aPDT) is considered a promising alternative to conventional antibiotic treatments. Algal lipid extracts have shown antibacterial effects when used as photosensitizers (PSs) in aPDT. In this work we assessed the photodynamic efficiency of lipidic extracts of microalgae belonging to different phyla (Bacillariophyta, Chlorophyta, Cyanobacteria, Haptophyta, Ochrophyta and Rhodophyta). All the extracts (at 1 mg mL-1) demonstrated a reduction of Staphylococcus aureus >3 log10 (CFU mL-1), exhibiting bactericidal activity. Bacillariophyta and Haptophyta extracts were the top-performing phyla against S. aureus, achieving a reduction >6 log10 (CFU mL-1) with light doses of 60 J cm-2 (Bacillariophyta) and 90 J cm-2 (Haptophyta). The photodynamic properties of the Bacillariophyta Phaeodactylum tricornutum and the Haptophyta Tisochrysis lutea, the best effective microalgae lipid extracts, were also assessed at lower concentrations (75 μg mL-1, 7.5 μg mL-1, and 3.75 μg mL-1), reaching, in general, inactivation rates higher than those obtained with the widely used PSs, such as Methylene Blue and Chlorine e6, at lower concentration and light dose. The presence of chlorophyll c, which can absorb a greater amount of energy than chlorophylls a and b; rich content of polyunsaturated fatty acids (PUFAs) and fucoxanthin, which can also produce ROS, e.g. singlet oxygen (1O2), when photo-energized; a lack of photoprotective carotenoids such as β-carotene, and low content of tocopherol, were associated with the algal extracts with higher antimicrobial activity against S. aureus. The bactericidal activity exhibited by the extracts seems to result from the photooxidation of microalgae PUFAs by the 1O2 and/or other ROS produced by irradiated chlorophylls/carotenoids, which eventually led to bacterial lipid peroxidation and cell death, but further studies are needed to confirm this hypothesis. These results revealed the potential of an unexplored source of natural photosensitizers (microalgae lipid extracts) that can be used as PSs in aPDT as an alternative to conventional antibiotic treatments, and even to conventional PSs, to combat antibacterial resistance.
Collapse
Affiliation(s)
- Inês Mendonça
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Daniela Silva
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tiago Conde
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tatiana Maurício
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Helena Cardoso
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal
| | - Hugo Pereira
- GreenColab - Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria Bartolomeu
- Universidade Católica Portuguesa, Faculty of Dental Medicine (FMD), Center for Interdisciplinary Research in Health (CIIS), 3504-505 Viseu, Portugal
| | - Cátia Vieira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - M Rosário Domingues
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Adelaide Almeida
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Szymczak K, Woźniak-Pawlikowska A, Burzyńska N, Król M, Zhang L, Nakonieczna J, Grinholc M. Decrease of ESKAPE virulence with a cationic heme-mimetic gallium porphyrin photosensitizer: The Trojan horse strategy that could help address antimicrobial resistance. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 256:112928. [PMID: 38723545 DOI: 10.1016/j.jphotobiol.2024.112928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Emerging antibiotic resistance among bacterial pathogens has forced an urgent need for alternative non-antibiotic strategies development that could combat drug resistant-associated infections. Suppression of virulence of ESKAPE pathogens' by targeting multiple virulence traits provides a promising approach. OBJECTIVES Here we propose an iron-blocking antibacterial therapy based on a cationic heme-mimetic gallium porphyrin (GaCHP), which antibacterial efficacy could be further enhanced by photodynamic inactivation. METHODS We used gallium heme mimetic porphyrin (GaCHP) excited with light to significantly reduce microbial viability and suppress both the expression and biological activity of several virulence traits of both Gram-positive and Gram-negative ESKAPE representatives, i.e., S. aureus and P. aeruginosa. Moreover, further improvement of the proposed strategy by combining it with routinely used antimicrobials to resensitize the microbes to antibiotics and provide enhanced bactericidal efficacy was investigated. RESULTS The proposed strategy led to substantial inactivation of critical priority pathogens and has been evidenced to suppress the expression and biological activity of multiple virulence factors in S. aureus and P. aeruginosa. Finally, the combination of GaCHP phototreatment and antibiotics resulted in promising strategy to overcome antibiotic resistance of the studied microbes and to enhance disinfection of drug resistant pathogens. CONCLUSION Lastly, considering high safety aspects of the proposed treatment toward host cells, i.e., lack of mutagenicity, no dark toxicity and mild phototoxicity, we describe an efficient alternative that simultaneously suppresses the functionality of multiple virulence factors in ESKAPE pathogens.
Collapse
Affiliation(s)
- Klaudia Szymczak
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Agata Woźniak-Pawlikowska
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Natalia Burzyńska
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Magdalena Król
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Joanna Nakonieczna
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland.
| | - Mariusz Grinholc
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland.
| |
Collapse
|
4
|
Yu Q, Wang C, Zhang X, Chen H, Wu MX, Lu M. Photochemical Strategies toward Precision Targeting against Multidrug-Resistant Bacterial Infections. ACS NANO 2024; 18:14085-14122. [PMID: 38775446 DOI: 10.1021/acsnano.3c12714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Infectious diseases pose a serious threat and a substantial economic burden on global human and public health security, especially with the frequent emergence of multidrug-resistant (MDR) bacteria in clinical settings. In response to this urgent need, various photobased anti-infectious therapies have been reported lately. This Review explores and discusses several photochemical targeted antibacterial therapeutic strategies for addressing bacterial infections regardless of their antibiotic susceptibility. In contrast to conventional photobased therapies, these approaches facilitate precise targeting of pathogenic bacteria and/or infectious microenvironments, effectively minimizing toxicity to mammalian cells and surrounding healthy tissues. The highlighted therapies include photodynamic therapy, photocatalytic therapy, photothermal therapy, endogenous pigments-based photobleaching therapy, and polyphenols-based photo-oxidation therapy. This comprehensive exploration aims to offer updated information to facilitate the development of effective, convenient, safe, and alternative strategies to counter the growing threat of MDR bacteria in the future.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chenxi Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Haoyi Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, Massachusetts 02114, United States
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
5
|
Surur AK, de Oliveira AB, De Annunzio SR, Ferrisse TM, Fontana CR. Bacterial resistance to antimicrobial photodynamic therapy: A critical update. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112905. [PMID: 38703452 DOI: 10.1016/j.jphotobiol.2024.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
Bacterial antibiotic resistance is one of the most significant challenges for public health. The increase in bacterial resistance, mainly due to microorganisms harmful to health, and the need to search for alternative treatments to contain infections that cannot be treated by conventional antibiotic therapy has been aroused. An alternative widely studied in recent decades is antimicrobial photodynamic therapy (aPDT), a treatment that can eliminate microorganisms through oxidative stress. Although this therapy has shown satisfactory results in infection control, it is still controversial in the scientific community whether bacteria manage to develop resistance after successive applications of aPDT. Thus, this work provides an overview of the articles that performed successive aPDT applications in models using bacteria published since 2010, focusing on sublethal dose cycles, highlighting the main PSs tested, and addressing the possible mechanisms for developing tolerance or resistance to aPDT, such as efflux pumps, biofilm formation, OxyR and SoxRS systems, catalase and superoxide dismutase enzymes and quorum sensing.
Collapse
Affiliation(s)
- Amanda Koberstain Surur
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| | - Analú Barros de Oliveira
- São Paulo State University (UNESP), School of Dentistry, Department of Dental Materials and Prosthodontics, Araraquara, São Paulo, Brazil.
| | - Sarah Raquel De Annunzio
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| | - Túlio Morandin Ferrisse
- São Paulo State University (UNESP), School of Dentistry, Department of Dental Materials and Prosthodontics, Araraquara, São Paulo, Brazil.
| | - Carla Raquel Fontana
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| |
Collapse
|
6
|
Losantos R, Prampolini G, Monari A. A Portrait of the Chromophore as a Young System-Quantum-Derived Force Field Unraveling Solvent Reorganization upon Optical Excitation of Cyclocurcumin Derivatives. Molecules 2024; 29:1752. [PMID: 38675572 PMCID: PMC11052401 DOI: 10.3390/molecules29081752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The study of fast non-equilibrium solvent relaxation in organic chromophores is still challenging for molecular modeling and simulation approaches, and is often overlooked, even in the case of non-adiabatic dynamics simulations. Yet, especially in the case of photoswitches, the interaction with the environment can strongly modulate the photophysical outcomes. To unravel such a delicate interplay, in the present contribution we resorted to a mixed quantum-classical approach, based on quantum mechanically derived force fields. The main task is to rationalize the solvent reorganization pathways in chromophores derived from cyclocurcumin, which are suitable for light-activated chemotherapy to destabilize cellular lipid membranes. The accurate and reliable decryption delivered by the quantum-derived force fields points to important differences in the solvent's reorganization, in terms of both structure and time scale evolution.
Collapse
Affiliation(s)
- Raúl Losantos
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain
- ITODYS, Université Paris Cité and CNRS, F-75006 Paris, France
| | - Giacomo Prampolini
- Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), Area della Ricerca, Via G. Moruzzi 1, I-56124 Pisa, Italy;
| | - Antonio Monari
- ITODYS, Université Paris Cité and CNRS, F-75006 Paris, France
| |
Collapse
|
7
|
Marasini S, Craig JP, Dean SJ, Leanse LG. Managing Corneal Infections: Out with the old, in with the new? Antibiotics (Basel) 2023; 12:1334. [PMID: 37627753 PMCID: PMC10451842 DOI: 10.3390/antibiotics12081334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
There have been multiple reports of eye infections caused by antibiotic-resistant bacteria, with increasing evidence of ineffective treatment outcomes from existing therapies. With respect to corneal infections, the most commonly used antibiotics (fluoroquinolones, aminoglycosides, and cephalosporines) are demonstrating reduced efficacy against bacterial keratitis isolates. While traditional methods are losing efficacy, several novel technologies are under investigation, including light-based anti-infective technology with or without chemical substrates, phage therapy, and probiotics. Many of these methods show non-selective antimicrobial activity with potential development as broad-spectrum antimicrobial agents. Multiple preclinical studies and a limited number of clinical case studies have confirmed the efficacy of some of these novel methods. However, given the rapid evolution of corneal infections, their treatment requires rapid institution to limit the impact on vision and prevent complications such as scarring and corneal perforation. Given their rapid effects on microbial viability, light-based technologies seem particularly promising in this regard.
Collapse
Affiliation(s)
- Sanjay Marasini
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland 1142, New Zealand; (S.M.); (J.P.C.); (S.J.D.)
| | - Jennifer P. Craig
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland 1142, New Zealand; (S.M.); (J.P.C.); (S.J.D.)
| | - Simon J. Dean
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland 1142, New Zealand; (S.M.); (J.P.C.); (S.J.D.)
| | - Leon G. Leanse
- Health and Sports Sciences Hub, Europa Point Campus, University of Gibraltar, Gibraltar GX11 1AA, Gibraltar
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
8
|
Hu H, Li R, Huang P, Mo Z, Xu Q, Hu T, Yao S, Dai X, Xu Z. BSA-coated β-FeOOH nanoparticles efficiently deliver the photosensitizer chlorin e6 for synergistic anticancer PDT/CDT. Colloids Surf B Biointerfaces 2023; 222:113117. [PMID: 36586238 DOI: 10.1016/j.colsurfb.2022.113117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Photodynamic therapy (PDT) has many exceptional advantages in cancer treatment, such as minor trauma, low toxicity side effects, and strong adaptability, effectively overcoming some obstacles of traditional therapy and providing more revolutionary opportunities for curing cancer. Chlorin e6 (Ce6) exhibits excellent singlet oxygen generation and conversion efficiency under near-infrared laser irradiation and is a promising PDT photosensitizer. However, its hydrophobicity, short half-life and lack of tumor specificity limit its in vivo anticancer application. Therefore, this work has designed and prepared a multifunctional nanoplatform, Ce6/FeOOH@BSA, to efficiently deliver Ce6. Nanoparticles exhibit excellent dispersion and stability in deionized water, PBS and DMEM, and the blood half-life is 3.98 ± 0.31 h. The nanoplatform demonstrates effective tumor targeting and accumulation, overcoming the obstacles of the biological application of Ce6. Iron ions can exert a chemodynamic therapy (CDT) effect by reacting with overexpressed H2O2 in the tumor to generate toxic hydroxyl radicals (·OH). Moreover, FeOOH nanoparticles effectively promote glutathione (GSH) consumption in tumor cells, which is conducive to accumulating reactive oxygen species (ROS). In brief, Ce6/FeOOH@BSA nanoparticles realize the targeted delivery of Ce6 and mediate synergistic PDT/CDT against tumors, broadening the biomedical application of nanomaterials.
Collapse
Affiliation(s)
- Han Hu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Ruiqi Li
- Department of Oncology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, Hubei, China
| | - Piao Huang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zhimin Mo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Qi Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Tao Hu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Shijie Yao
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xiaofang Dai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
9
|
Sarker MAR, Ahn YH. Photodynamic inactivation of multidrug-resistant bacteria in wastewater effluent using green phytochemicals as a natural photosensitizer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:120015. [PMID: 36007787 DOI: 10.1016/j.envpol.2022.120015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The control of multidrug-resistant bacteria (MDRB) is a great challenge in the 21st century. Photodynamic treatment (PDT) is one of the promising approaches to control MDRB. In the process, powerful oxidants such as reactive oxygen species (ROS) are produced, which cause cytotoxic damage and cell death of bacteria. This study examined a new and environment-friendly strategy for the photodynamic inactivation of two MDRB (Escherichia coli and Staphylococcus aureus) and total coliform (TC) in wastewater effluent using two phytochemicals, pyrogallol (PGL) and terpinolene (TPN), along with white and blue light-emitting diode (LED) light. Fourier-transform infrared spectroscopy (FTIR) of the phytochemicals confirmed the presence of different phenolic and aromatic compounds, which can enhance the generation of ROS alongside inactivating the bacterial cells. In the PDT process, white LED light was more active in controlling MDRB than blue LED light. After 80 min irradiation with white LED light (17 mW/cm2), the MDRB bacteria were eradicated completely at a minimum inhibitory concentration (MIC) dose (0.156 mg/mL for E. coli and 0.078 mg/mL for S. aureus) of PGL. In addition, light intensity was an important parameter in photodynamic disinfection. The TC in the secondary effluent was inactivated completely by both phytochemicals after 60 min of exposure to white LED light with an intensity of 80 mW/cm2. The photosensitizing activity of phytochemicals was analyzed by a bactericidal and imidazole-RNO assay. These assays showed that PGL contributed to the generation of •OH radicals, whereas TPN produced 1O2 in the PDT process. Transmission electron microscopy (TEM) confirmed bacterial cell disruption after treatment. Overall, PDT using the phytochemicals as PS is a sustainable approach to control the MDRB and TC in wastewater successfully.
Collapse
Affiliation(s)
- M A R Sarker
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea; Department of Agricultural Construction and Environmental Engineering, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
10
|
Yasin G, Nasr M, Abdel Gaber SA, Hüttenberger D, Fadel M. Response surface methodological approach for optimization of photodynamic therapy of onychomycosis using chlorin e6 loaded nail penetration enhancer vesicles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 232:112461. [PMID: 35551052 DOI: 10.1016/j.jphotobiol.2022.112461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/07/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobial photodynamic inactivation (aPDI) has a tremendous potential as an alternative therapeutic modality to conventional antifungals in treatment of onychomycosis, yet the nail barrier properties and the deep-seated nature of fungi within the nails remain challenging. Therefore, the aim of this study was to prepare, optimize, and characterize Chorin e6 (Ce6) nail penetration enhancer containing vesicles (Ce6-nPEVs) and evaluate their photodynamic mediated effect against Trichophyton rubrum (T.rubrum); the main causative agent of onychomycosis. Optimization of the particle size and encapsulation efficiency of nPEVs was performed using a four-factor two-level full factorial design. The transungual delivery potential of the selected formulation was assessed in comparison with the free drug. The photodynamic treatment conditions for T.rubrum aPDI by free Ce6 was optimized using response surface methodology based on Box-Behnken design, and the aPDI effect of the selected Ce6-nPEVs was evaluated versus the free Ce6 at the optimized condition. Results showed that formulations exhibited high encapsulation efficiency for Ce6 ranging from 79.4 to 98%, particle sizes ranging from 225 to 859 nm, positive zeta potential values ranging from +30 to +70 mV, and viscosity ranging from 1.26 to 3.43 cP. The predominant parameters for maximizing the encapsulation efficiency and minimizing the particle size of Ce6-nPEVs were identified. The selected formulation showed 1.8-folds higher nail hydration and 2.3 folds improvement in percentage of Ce6 up-taken by nails compared to the free drug. Results of the microbiological study confirmed the reliability and adequacy of the Box-Behnken model, and delineated Ce6 concentration and incubation time as the significant model terms. Free Ce6 and Ce6-nPEVs showed an equipotent in vitro fungicidal effect on T.rubrum at the optimized conditions, however Ce6-nPEVs is expected to show a differential effect at the in vivo level where the advantage of the enhanced nail penetration feature will be demonstrated.
Collapse
Affiliation(s)
- Ghada Yasin
- Pharmaceutical Nano-Technology Laboratory, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara A Abdel Gaber
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | | - Maha Fadel
- Pharmaceutical Nano-Technology Laboratory, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo, Egypt.
| |
Collapse
|
11
|
Matafonova G, Batoev V. Dual-wavelength light radiation for synergistic water disinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151233. [PMID: 34715208 DOI: 10.1016/j.scitotenv.2021.151233] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Development of the narrow-band mercury-free light sources, such as light emitting diodes (LEDs) and excilamps, has stimulated research on inactivation of pathogenic microorganisms by dual-wavelength light radiation. To date, dual-wavelength light radiation has emerged as an advanced tool for enhancing microbial inactivation in water in view of potential synergistic effect. This is the first review that aims at elucidating its mechanisms under dual-wavelength light exposure and surveying a body of related literature in terms of yes-or-no synergy. We have proposed three key inactivation mechanisms, which function in the estimated spectrum ranges I (190-254 nm), II (250-320 nm) and III (300-405 nm) and provide a synergistic effect when combined. These mechanisms involve proteins damage and DNA repair suppression (I), direct and indirect DNA damage (II) and generation of reactive oxygen species (ROS) by endogenous photosensitizers (III), such as porphyrins and flavins. A synergy under dual-wavelength light irradiation simultaneously or sequentially occurs if coupling two wavelengths of different ranges (I + II, I + III, II + III) in order to trigger different inactivation mechanisms. Recent advances of dual-wavelength light strategy in photodynamic therapy could be applied for water disinfection. They bring opportunities for applying the sources of near-UV and visible radiation and making the disinfection processes more energy- and cost-effective. From this standpoint, the synergistically efficient dual-wavelength combinations II + III and the combinations within the extended to 700 nm range III (near-UV + VIS) appear to be promising for developing novel advanced oxidation processes for disinfection of real turbid waters.
Collapse
Affiliation(s)
- Galina Matafonova
- Laboratory of Engineering Ecology, Baikal Institute of Nature Management, Siberian Branch of Russian Academy of Sciences, Ulan-Ude, Russia.
| | - Valeriy Batoev
- Laboratory of Engineering Ecology, Baikal Institute of Nature Management, Siberian Branch of Russian Academy of Sciences, Ulan-Ude, Russia
| |
Collapse
|
12
|
de Paiva ADCM, Ferreira MDC, da Fonseca ADS. Photodynamic therapy for treatment of bacterial keratitis. Photodiagnosis Photodyn Ther 2022; 37:102717. [PMID: 35021106 DOI: 10.1016/j.pdpdt.2022.102717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 12/22/2022]
Abstract
Microbial keratitis is the main cause of corneal opacification and the fourth leading cause of blindness worldwide, with bacteria the major infectious agent. Recently, bacterial keratitis has become a serious threat due to routine use of antibiotics leading to selection of resistant and multidrug-resistant bacteria strains. New approaches for treatment of bacterial keratitis are necessary to outcome the increasing antibiotic resistance. Antimicrobial photodynamic therapy is based on three agents: photosensitizer, oxygen, and light radiation. This therapy has been successful for treatment of infections in different tissues and organs as well as against different type of infectious agents and no resistance development. Also, new photosensitizers are being developed that has increased the spectrum of therapeutic protocols for treatment of a number of infectious diseases. Thus, antimicrobial photodynamic therapy has an extraordinary potential for treatment of those bacterial keratitis cases that actually are not solved by traditional antibiotic therapy.
Collapse
Affiliation(s)
- Alexandre de Carvalho Mendes de Paiva
- Hospital Universitário Gaffrée e Guinle, Universidade Federal do Estado do Rio de Janeiro, Rua Mariz e Barros, 775, Maracanã, Rio de Janeiro 20270002, Brazil
| | - Michelle da Costa Ferreira
- Faculdade de Odontologia, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 157, Vila Isabel, Rio de Janeiro 20551030, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro 20211040, Brazil; Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87 fundos, 4º andar, Vila Isabel, Rio de Janeiro 20551030, Brazil; Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Avenida Alberto Torres, 111, Teresópolis, Rio de Janeiro 25964004, Brazil.
| |
Collapse
|
13
|
Souza BMN, Pinto JG, Pereira AHC, Miñán AG, Ferreira-Strixino J. Efficiency of Antimicrobial Photodynamic Therapy with Photodithazine ® on MSSA and MRSA Strains. Antibiotics (Basel) 2021; 10:antibiotics10070869. [PMID: 34356790 PMCID: PMC8300773 DOI: 10.3390/antibiotics10070869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Staphylococccus aureus is a ubiquitous and opportunistic bacteria associated with high mortality rates. Antimicrobial photodynamic therapy (aPDT) is based on the application of a light source and a photosensitizer that can interact with molecular oxygen, forming Reactive Oxygen Species (ROS) that result in bacterial inactivation. This study aimed to analyze, in vitro, the action of aPDT with Photodithazine® (PDZ) in methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) strains. The strains were incubated with PDZ at 25, 50, 75, and 100 mg/L for 15 min and irradiated with fluences of 25, 50, and 100 J/cm2. The internalization of PDZ was evaluated by confocal microscopy, the bacterial growth by counting the number of colony-forming units, as well as the bacterial metabolic activity post-aPDT and the production of ROS. In both strains, the photosensitizer was internalized; the production of ROS increased when the aPDT was applied; there was a bacterial reduction compared to the control at all the evaluated fluences and concentrations; and, in most parameters, it was obtained complete inactivation with significant difference (p < 0.05). The implementation of aPDT with PDZ in clinical strains of S. aureus has resulted in its complete inactivation, including the MRSA strains.
Collapse
Affiliation(s)
- Beatriz Müller Nunes Souza
- Laboratory of Photobiology Applied to Health, Research and Development Institute, University of Vale do Paraíba, Urbanova 2911, Brazil; (B.M.N.S.); (J.G.P.); (A.H.C.P.)
| | - Juliana Guerra Pinto
- Laboratory of Photobiology Applied to Health, Research and Development Institute, University of Vale do Paraíba, Urbanova 2911, Brazil; (B.M.N.S.); (J.G.P.); (A.H.C.P.)
| | - André Henrique Correia Pereira
- Laboratory of Photobiology Applied to Health, Research and Development Institute, University of Vale do Paraíba, Urbanova 2911, Brazil; (B.M.N.S.); (J.G.P.); (A.H.C.P.)
| | - Alejandro Guillermo Miñán
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina;
| | - Juliana Ferreira-Strixino
- Laboratory of Photobiology Applied to Health, Research and Development Institute, University of Vale do Paraíba, Urbanova 2911, Brazil; (B.M.N.S.); (J.G.P.); (A.H.C.P.)
- Correspondence:
| |
Collapse
|
14
|
Rapacka-Zdończyk A, Woźniak A, Michalska K, Pierański M, Ogonowska P, Grinholc M, Nakonieczna J. Factors Determining the Susceptibility of Bacteria to Antibacterial Photodynamic Inactivation. Front Med (Lausanne) 2021; 8:642609. [PMID: 34055830 PMCID: PMC8149737 DOI: 10.3389/fmed.2021.642609] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/12/2021] [Indexed: 01/23/2023] Open
Abstract
Photodynamic inactivation of microorganisms (aPDI) is an excellent method to destroy antibiotic-resistant microbial isolates. The use of an exogenous photosensitizer or irradiation of microbial cells already equipped with endogenous photosensitizers makes aPDI a convenient tool for treating the infections whenever technical light delivery is possible. Currently, aPDI research carried out on a vast repertoire of depending on the photosensitizer used, the target microorganism, and the light delivery system shows efficacy mostly on in vitro models. The search for mechanisms underlying different responses to photodynamic inactivation of microorganisms is an essential issue in aPDI because one niche (e.g., infection site in a human body) may have bacterial subpopulations that will exhibit different susceptibility. Rapidly growing bacteria are probably more susceptible to aPDI than persister cells. Some subpopulations can produce more antioxidant enzymes or have better performance due to efficient efflux pumps. The ultimate goal was and still is to identify and characterize molecular features that drive the efficacy of antimicrobial photodynamic inactivation. To this end, we examined several genetic and biochemical characteristics, including the presence of individual genetic elements, protein activity, cell membrane content and its physical properties, the localization of the photosensitizer, with the result that some of them are important and others do not appear to play a crucial role in the process of aPDI. In the review, we would like to provide an overview of the factors studied so far in our group and others that contributed to the aPDI process at the cellular level. We want to challenge the question, is there a general pattern of molecular characterization of aPDI effectiveness? Or is it more likely that a photosensitizer-specific pattern of molecular characteristics of aPDI efficacy will occur?
Collapse
Affiliation(s)
| | - Agata Woźniak
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Klaudia Michalska
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Pierański
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Patrycja Ogonowska
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Nakonieczna
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
15
|
Pérez C, Zúñiga T, Palavecino CE. Photodynamic therapy for treatment of Staphylococcus aureus infections. Photodiagnosis Photodyn Ther 2021; 34:102285. [PMID: 33836278 DOI: 10.1016/j.pdpdt.2021.102285] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/10/2021] [Accepted: 04/02/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Staphylococcus aureus is a Gram-positive spherical bacterium that commonly causes various infections which can range from superficial to life-threatening. Hospital strains of S. aureus are often resistant to antibiotics, which has made their treatment difficult in recent decades. Other therapeutic alternatives have been postulated to overcome the drawbacks of antibiotic multi-resistance. Of these, photodynamic therapy (PDT) is a promising approach to address the notable shortage of new active antibiotics against multidrug-resistant S. aureus. PDT combines the use of a photosensitizer agent, light, and oxygen to eradicate pathogenic microorganisms. Through a systematic analysis of published results, this work aims to verify the usefulness of applying PDT in treating multidrug-resistant S.aureus infections. METHODS This review was based on a bibliographic search in various databases and the analysis of relevant publications. RESULTS There is currently a large body of evidence demonstrating the efficacy of photodynamic therapy in eliminating S.aureus strains. Both biofilm-producing strains, as well as multidrug-resistant strains. CONCLUSION We conclude that there is sufficient scientific evidence that PDT is a useful adjunct to traditional antibiotic therapy for treating S. aureus infections. Clinical application through appropriate trials should be introduced to further define optimal treatment protocols, safety and efficay.
Collapse
Affiliation(s)
- Camila Pérez
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile.
| | - Tania Zúñiga
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile.
| | - Christian Erick Palavecino
- Laboratorio de Microbiología Celular, Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, 8330546, Santiago, Chile.
| |
Collapse
|
16
|
Shi L, Muthukumar V, Stachon T, Latta L, Elhawy MI, Gunaratnam G, Orosz E, Seitz B, Kiderlen AF, Bischoff M, Szentmáry N. The Effect of Anti-Amoebic Agents and Ce6-PDT on Acanthamoeba castellanii Trophozoites and Cysts, In Vitro. Transl Vis Sci Technol 2020; 9:29. [PMID: 33262903 PMCID: PMC7691790 DOI: 10.1167/tvst.9.12.29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose The purpose of this study was to analyze the concentration-dependent effects of biguanides (polyhexamethylene biguanide [PHMB], chlorhexidine [CH]); diamidines (hexamidine-diisethionate [HD], propamidine-isethionate [PD], dibromopropamidine-diisethionate [DD]); natamycin (NM); miltefosine (MF); povidone iodine (PVPI), and chlorin e6 PDT on Acanthamoeba trophozoites and cysts, in vitro. Methods Strain 1BU was cultured in peptone-yeast extract-glucose medium. Trophozoites or cysts were cultured in PYG medium containing each agent at 100%, 50%, and 25% of maximum concentration for 2 hours. The percentage of dead trophozoites was determined using a non-radioactive cytotoxicity assay and trypan blue staining. Treated cysts were also maintained on non-nutrient agar Escherichia coli (E. coli) plates and observed for 3 weeks. Results All tested drugs displayed significant cytotoxic effects on 1BU cells based on the biochemical and staining-based viability assays tested. On non-nutrient agar E. coli plates, neither trophozoites nor freshly formed cysts were observed after PHMB, PD, NM, and PVPI treatment, respectively, within 3 weeks. However, CH-, HD-, DD-, and MF-treated cysts could excyst, multiply, and encyst again. Conclusions The off-label drugs PHMB, PD, NM, and PVPI are under in vitro conditions more effective against strain 1BU than CH, HD, DD, and MF. Our findings also suggest that the non-nutrient agar E. coli plate assay should be considered as method of choice for the in vitro analysis of the treatment efficacy of anti-amoebic agents. Translational Relevance Ophthalmologists may optimize the treatment regime against Acanthamoeba keratitis by pre-testing the in vitro susceptibilities of the Acanthamoeba strain against drugs of interest with the non-nutrient E. coli agar plate assay.
Collapse
Affiliation(s)
- Lei Shi
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany.,Department of Ophthalmology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Vithusan Muthukumar
- Institute for Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany
| | - Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany
| | - Lorenz Latta
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany
| | - Mohamed Ibrahem Elhawy
- Institute for Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany
| | - Gubesh Gunaratnam
- Institute for Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany
| | - Erika Orosz
- Department of Parasitology, National Public Health Center, Budapest, Hungary
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany
| | | | - Markus Bischoff
- Institute for Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany
| | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany.,Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
17
|
Photodynamic effect of novel hexa-iodinated quinono-cyanine dye on Staphylococcus aureus. Photodiagnosis Photodyn Ther 2020; 31:101866. [PMID: 32534248 DOI: 10.1016/j.pdpdt.2020.101866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/26/2020] [Accepted: 06/05/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) is a Gram-positive bacteria and major human pathogen which can cause a wide variety of serious infections when it enters the bloodstream or internal tissues. Antimicrobial photodynamic therapy (APDT) utilizing a light-activated dye (photosensitizer) is a powerful method for in vitro and in vivo eradication of S. aureus and other pathogenic bacteria. However, the development of highly efficient, long-wavelength photosensitizers showing high phototoxicity to pathogens and low dark toxicity is still challenging. AIM To develop a highly efficient, long-wavelength photosensitizer for photodynamic inactivation of S. aureus. METHOD Synthesis of the new photosensitizer, hexa-iodinated quinono-cyanine dye IQCy and investigation of the dark and light-induced toxicity of this dye compared to known photosensitizers Chlorin e6 (Ce6) and HITC towards S. aureus. RESULTS When exposed to 14.9 J/cm2 white LED light, 0.5 μM of IQCy, Ce6 and HITC inactivate, respectively, 99 %, 40 % and 30 % of S. aureus and at 0.05 μM and 27.9 J/cm2 - 71 %, 18 % and 9%, which is much better compared to Ce6 and HITC. IQCy exhibits no dark toxicity at least at 10 μM dye concentration. CONCLUSIONS IQCy demonstrates a more pronounced photodynamic inactivation of S. aureus as compared to Ce6 and HITC and can be employed for the eradication of these bacteria at lower concentration and reduced light dose.
Collapse
|
18
|
Dharmaratne P, Sapugahawatte DN, Wang B, Chan CL, Lau KM, Lau CB, Fung KP, Ng DK, Ip M. Contemporary approaches and future perspectives of antibacterial photodynamic therapy (aPDT) against methicillin-resistant Staphylococcus aureus (MRSA): A systematic review. Eur J Med Chem 2020; 200:112341. [PMID: 32505848 DOI: 10.1016/j.ejmech.2020.112341] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 11/19/2022]
Abstract
The high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) causing skin and soft tissue infections in both the community and healthcare settings challenges the limited options of effective antibiotics and motivates the search for alternative therapeutic solutions, such as antibacterial photodynamic therapy (aPDT). While many publications have described the promising anti-bacterial activities of PDT in vitro, its applications in vivo and in the clinic have been very limited. This limited availability may in part be due to variabilities in the selected photosensitizing agents (PS), the variable testing conditions used to examine anti-bacterial activities and their effectiveness in treating MRSA infections. We thus sought to systematically review and examine the evidence from existing studies on aPDT associated with MRSA and to critically appraise its current state of development and areas to be addressed in future studies. In 2018, we developed and registered a review protocol in the International Prospective Register of Systematic Reviews (PROSPERO) with registration No: CRD42018086736. Three bibliographical databases were consulted (PUBMED, MEDLINE, and EMBASE), and a total of 113 studies were included in this systematic review based on our eligibility criteria. Many variables, such as the use of a wide range of solvents, pre-irradiation times, irradiation times, light sources and light doses, have been used in the methods reported by researchers, which significantly affect the inter-study comparability and results. On another note, new approaches of linking immunoglobulin G (IgG), antibodies, efflux pump inhibitors, and bacteriophages with photosensitizers (PSs) and the incorporation of PSs into nano-scale delivery systems exert a direct effect on improving aPDT. Enhanced activities have also been achieved by optimizing the physicochemical properties of the PSs, such as the introduction of highly lipophilic, poly-cationic and site-specific modifications of the compounds. However, few in vivo studies (n = 17) have been conducted to translate aPDT into preclinical studies. We anticipate that further standardization of the experimental conditions and assessing the efficacy in vivo would allow this technology to be further applied in preclinical trials, so that aPDT would develop to become a sustainable, alternative therapeutic option against MRSA infection in the future.
Collapse
Affiliation(s)
- Priyanga Dharmaratne
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China.
| | | | - Baiyan Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China.
| | - Chung Lap Chan
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, China.
| | - Kit-Man Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, China.
| | - Clara Bs Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, China.
| | - Kwok Pui Fung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China; CUHK-Zhejiang University Joint Laboratory on Natural Products and Toxicology Research, China.
| | - Dennis Kp Ng
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Hong Kong (SAR), China
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
19
|
Ma Y, Wang C, Li Y, Li J, Wan Q, Chen J, Tay FR, Niu L. Considerations and Caveats in Combating ESKAPE Pathogens against Nosocomial Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901872. [PMID: 31921562 PMCID: PMC6947519 DOI: 10.1002/advs.201901872] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/04/2019] [Indexed: 05/19/2023]
Abstract
ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are among the most common opportunistic pathogens in nosocomial infections. ESKAPE pathogens distinguish themselves from normal ones by developing a high level of antibiotic resistance that involves multiple mechanisms. Contemporary therapeutic strategies which are potential options in combating ESKAPE bacteria need further investigation. Herein, a broad overview of the antimicrobial research on ESKAPE pathogens over the past five years is provided with prospective clinical applications.
Collapse
Affiliation(s)
- Yu‐Xuan Ma
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Chen‐Yu Wang
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Yuan‐Yuan Li
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Jing Li
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Qian‐Qian Wan
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Ji‐Hua Chen
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Franklin R. Tay
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
- The Graduate SchoolAugusta University1430, John Wesley Gilbert DriveAugustaGA30912‐1129USA
| | - Li‐Na Niu
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
- The Graduate SchoolAugusta University1430, John Wesley Gilbert DriveAugustaGA30912‐1129USA
| |
Collapse
|
20
|
da Silva Souza Campanholi K, Jaski JM, da Silva Junior RC, Zanqui AB, Lazarin-Bidóia D, da Silva CM, da Silva EA, Hioka N, Nakamura CV, Cardozo-Filho L, Caetano W. Photodamage on Staphylococcus aureus by natural extract from Tetragonia tetragonoides (Pall.) Kuntze: Clean method of extraction, characterization and photophysical studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 203:111763. [PMID: 31931382 DOI: 10.1016/j.jphotobiol.2019.111763] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 01/05/2023]
Abstract
Photodynamic therapy (PDT) is a clinical modality that allows the destruction of tumor cells and microorganisms by reactive oxygen species, formed by the combination of photosensitizer (PS), molecular oxygen and adequate wavelength light. This research, through a clean methodology that involves pressurized liquids extraction (PLE), obtained a highly antimicrobial extract of Tetragonia tetragonoides, which rich in chlorophylls as photosensitizers. The Chlorophylls-based extract (Cbe-PLE) presented pharmacological safety, through the maintenance of cellular viability. In addition, Cbe-PLE showed great efficacy against Staphylococcus aureus, with severe dose-dependent damage to the cell wall of the pathogen. The obtained product has a high potential for the development of photostimulated phytotherapic formulations for clinical applications in localized infections, as a complementary therapeutic alternative to antibiotics.
Collapse
Affiliation(s)
| | - Jonas Marcelo Jaski
- Department of Agronomy, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | | | - Ana Beatriz Zanqui
- Department of Chemical Engineering, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | | | | | - Edson Antonio da Silva
- State University of Western Paraná, 645 Faculdade Street, 85903-000, Toledo, Paraná, Brazil
| | - Noboru Hioka
- Department of Chemistry, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | - Celso Vataru Nakamura
- Department of Microbiology, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | - Lucio Cardozo-Filho
- Department of Chemical Engineering, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| |
Collapse
|
21
|
Aroso RT, Calvete MJ, Pucelik B, Dubin G, Arnaut LG, Pereira MM, Dąbrowski JM. Photoinactivation of microorganisms with sub-micromolar concentrations of imidazolium metallophthalocyanine salts. Eur J Med Chem 2019; 184:111740. [DOI: 10.1016/j.ejmech.2019.111740] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022]
|
22
|
Marazzi M, Gattuso H, Giussani A, Zhang H, Navarrete-Miguel M, Chipot C, Cai W, Roca-Sanjuán D, Dehez F, Monari A. Induced Night Vision by Singlet-Oxygen-Mediated Activation of Rhodopsin. J Phys Chem Lett 2019; 10:7133-7140. [PMID: 31652065 DOI: 10.1021/acs.jpclett.9b02911] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In humans, vision is limited to a small fraction of the whole electromagnetic spectrum. One possible strategy for enhancing vision in deep-red or poor-light conditions consists of recruiting chlorophyll derivatives in the rod photoreceptor cells of the eye, as suggested in the case of some deep-sea fish. Here, we employ all-atom molecular simulations and high-level quantum chemistry calculations to rationalize how chlorin e6 (Ce6), widely used in photodynamic therapy although accompanied by enhanced visual sensitivity, mediates vision in the dark, shining light on a fascinating but largely unknown molecular mechanism. First, we identify persistent interaction sites between Ce6 and the extracellular loops of rhodopsin, the transmembrane photoreceptor protein responsible for the first steps in vision. Triggered by Ce6 deep-red light absorption, the retinal within rhodopsin can be isomerized thus starting the visual phototransduction cascade. Our data largely exclude previously hypothesized energy-transfer mechanisms while clearly lending credence to a retinal isomerization indirectly triggered by singlet oxygen, proposing an alternative mechanism to rationalize photosensitizer-mediated night vision.
Collapse
Affiliation(s)
- Marco Marazzi
- LPCT , UMR 7019, Université de Lorraine and CNRS, F-54000 Vandoeuvre-lès-Nancy , France
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering , Universidad de Alcalá, Ctra , Madrid-Barcelona Km. 33,600 , E-28805 Alcalá de Henares ( Madrid ), Spain
- Chemical Research Institute "Andrés M. del Río" (IQAR) , Universidad de Alcalá , E-28871 Alcalá de Henares ( Madrid ), Spain
| | - Hugo Gattuso
- LPCT , UMR 7019, Université de Lorraine and CNRS, F-54000 Vandoeuvre-lès-Nancy , France
| | - Angelo Giussani
- Institut de Ciència Molecular , Universitat de València , P.O. Box 22085 València , Spain
| | - Hong Zhang
- LPCT , UMR 7019, Université de Lorraine and CNRS, F-54000 Vandoeuvre-lès-Nancy , France
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
| | | | - Christophe Chipot
- LPCT , UMR 7019, Université de Lorraine and CNRS, F-54000 Vandoeuvre-lès-Nancy , France
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign , F-54000 Vandoeuvre-lès-Nancy , France
- Department of Physics , University of Illinois at Urbana-Champaign , 1110 West Green Street , Urbana , Illinois 61801 , United States
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
| | - Daniel Roca-Sanjuán
- Institut de Ciència Molecular , Universitat de València , P.O. Box 22085 València , Spain
| | - François Dehez
- LPCT , UMR 7019, Université de Lorraine and CNRS, F-54000 Vandoeuvre-lès-Nancy , France
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign , F-54000 Vandoeuvre-lès-Nancy , France
| | - Antonio Monari
- LPCT , UMR 7019, Université de Lorraine and CNRS, F-54000 Vandoeuvre-lès-Nancy , France
| |
Collapse
|
23
|
Khot MI, Downey CL, Armstrong G, Svavarsdottir HS, Jarral F, Andrew H, Jayne DG. The role of ABCG2 in modulating responses to anti-cancer photodynamic therapy. Photodiagnosis Photodyn Ther 2019; 29:101579. [PMID: 31639455 DOI: 10.1016/j.pdpdt.2019.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/03/2019] [Accepted: 10/11/2019] [Indexed: 01/10/2023]
Abstract
The ATP-binding cassette (ABC) superfamily G member 2 (ABCG2) transmembrane protein transporter is known for conferring resistance to treatment in cancers. Photodynamic therapy (PDT) is a promising anti-cancer method involving the use of light-activated photosensitisers to precisely induce oxidative stress and cell death in cancers. ABCG2 can efflux photosensitisers from out of cells, reducing the capacity of PDT and limiting the efficacy of treatment. Many studies have attempted to elucidate the relationship between the expression of ABCG2 in cancers, its effect on the cellular retention of photosensitisers and its impact on PDT. This review looks at the studies which investigate the effect of ABCG2 on a range of different photosensitisers in different pre-clinical models of cancer. This work also evaluates the approaches that are being investigated to address the role of ABCG2 in PDT with an outlook on potential clinical validation.
Collapse
Affiliation(s)
- M Ibrahim Khot
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK.
| | - Candice L Downey
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| | - Gemma Armstrong
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| | | | - Fazain Jarral
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| | - Helen Andrew
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| | - David G Jayne
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| |
Collapse
|
24
|
Kałas W, Wysokińska E, Przybyło M, Langner M, Ulatowska-Jarża A, Biały D, Wawrzyńska M, Zioło E, Gil W, Trzeciak AM, Podbielska H, Kopaczyńska M. Photoactive Liposomal Formulation of PVP-Conjugated Chlorin e6 for Photodynamic Reduction of Atherosclerotic Plaque. Int J Mol Sci 2019; 20:ijms20163852. [PMID: 31394775 PMCID: PMC6721124 DOI: 10.3390/ijms20163852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/24/2019] [Accepted: 08/03/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Liposomes serve as delivery systems for biologically active compounds. Existing technologies inefficiently encapsulate large hydrophilic macromolecules, such as PVP-conjugated chlorin e6 (Photolon). This photoactive drug has been widely tested for therapeutic applications, including photodynamic reduction of atherosclerotic plaque. Methods: A novel formulation of Photolon was produced using “gel hydration technology”. Its pharmacokinetics was tested in Sus scrofa f. domestica. Its cellular uptake, cytotoxicity, and ability to induce a phototoxic reaction were demonstrated in J774A.1, RAW264.7 macrophages, and vascular smooth muscle (T/G HA-VSMC) as well as in vascular endothelial (HUVEC) cells. Results: Developed liposomes had an average diameter of 124.7 ± 0.6 nm (polydispersity index (PDI) = 0.055) and contained >80% of Photolon). The half-life of formulation in S. scrofa was 20 min with area under the curve (AUC) equal to 14.7. The formulation was noncytotoxic in vitro and was rapidly (10 min) and efficiently accumulated by macrophages, but not T/G HA-VSMC or HUVEC. The accumulated quantity of photosensitizer was sufficient for induction of phototoxicity in J774A.1, but not in T/G HA-VSMC. Conclusions: Due to the excellent physical and pharmacokinetic properties and selectivity for macrophages, the novel liposomal formulation of Photolon is a promising therapeutic candidate for use in arteriosclerosis treatment when targeting macrophages but not accompanying vascular tissue is critical for effective and safe therapy.
Collapse
Affiliation(s)
- Wojciech Kałas
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, PAS, R. Weigla 12, 53-114 Wrocław, Poland.
| | - Edyta Wysokińska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, PAS, R. Weigla 12, 53-114 Wrocław, Poland
| | - Magdalena Przybyło
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| | - Marek Langner
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| | - Agnieszka Ulatowska-Jarża
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| | - Dariusz Biały
- Department and Clinic of Cardiology, Borowska 213, 50-556 Wrocław, Poland
| | - Magdalena Wawrzyńska
- Department of Emergency Medical Service, Wroclaw Medical University, Parkowa 34, 51-616 Wrocław, Poland
| | - Ewa Zioło
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, PAS, R. Weigla 12, 53-114 Wrocław, Poland
| | - Wojciech Gil
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-383 Wrocław, Poland
| | - Anna M Trzeciak
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-383 Wrocław, Poland
| | - Halina Podbielska
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| | - Marta Kopaczyńska
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
25
|
Calixto GMF, de Annunzio SR, Victorelli FD, Frade ML, Ferreira PS, Chorilli M, Fontana CR. Chitosan-Based Drug Delivery Systems for Optimization of Photodynamic Therapy: a Review. AAPS PharmSciTech 2019; 20:253. [PMID: 31309346 DOI: 10.1208/s12249-019-1407-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/26/2019] [Indexed: 02/08/2023] Open
Abstract
Drug delivery systems (DDS) can be designed to enrich the pharmacological and therapeutic properties of several drugs. Many of the initial obstacles that impeded the clinical applications of conventional DDS have been overcome with nanotechnology-based DDS, especially those formed by chitosan (CS). CS is a linear polysaccharide obtained by the deacetylation of chitin, which has potential properties such as biocompatibility, hydrophilicity, biodegradability, non-toxicity, high bioavailability, simplicity of modification, aqueous solubility, and excellent chemical resistance. Furthermore, CS can prepare several DDS as films, gels, nanoparticles, and microparticles to improve delivery of drugs, such as photosensitizers (PS). Thus, CS-based DDS are broadly investigated for photodynamic therapy (PDT) of cancer and fungal and bacterial diseases. In PDT, a PS is activated by light of a specific wavelength, which provokes selective damage to the target tissue and its surrounding vasculature, but most PS have low water solubility and cutaneous photosensitivity impairing the clinical use of PDT. Based on this, the application of nanotechnology using chitosan-based DDS in PDT may offer great possibilities in the treatment of diseases. Therefore, this review presents numerous applications of chitosan-based DDS in order to improve the PDT for cancer and fungal and bacterial diseases.
Collapse
|
26
|
Porphyrinoid photosensitizers mediated photodynamic inactivation against bacteria. Eur J Med Chem 2019; 175:72-106. [PMID: 31096157 DOI: 10.1016/j.ejmech.2019.04.057] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/27/2018] [Accepted: 04/19/2019] [Indexed: 12/28/2022]
Abstract
The multi-drug resistant bacteria have become a serious problem complicating therapies to such a degree that often the term "post-antibiotic era" is applied to describe the situation. The infections with methicillin-resistant S. aureus, vancomycin-resistant E. faecium, third generation cephalosporin-resistant E. coli, third generation cephalosporin-resistant K. pneumoniae and carbapenem-resistant P. aeruginosa have become commonplace. Thus, the new strategies of infection treatment have been searched for, and one of the approaches is based on photodynamic antimicrobial chemotherapy. Photodynamic protocols require the interaction of photosensitizer, molecular oxygen and light. The aim of this review is to provide a comprehensive overview of photodynamic antimicrobial chemotherapy by porphyrinoid photosensitizers. In the first part of the review information on the mechanism of photodynamic action and the mechanism of the bacteria resistance to the photodynamic technique were described. In the second one, it was described porphyrinoids photosensitizers like: porphyrins, chlorins and phthalocyanines useable in photodynamic bacteria inactivation.
Collapse
|
27
|
Gualdesi MS, Aiassa V, Vara J, Alvarez Igarzabal CI, Ortiz CS. Development and evaluation of novel nanophotosensitizers as photoantimicrobial agents against Staphylococcus aureus. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:303-309. [PMID: 30423712 DOI: 10.1016/j.msec.2018.09.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 08/14/2018] [Accepted: 09/12/2018] [Indexed: 12/17/2022]
Abstract
The main aim of the present study was to synthetize polyacrylamide nanoparticles and to use them as photosensitizer carriers. The new monobrominated derivatives (monobrominated neutral red and monobrominated azure B) were the photosensitizers used for antimicrobial photodynamic therapy. They were loaded into the nanocarriers and their antibacterial and oxidative activities were evaluated. The polyacrylamide nanoparticles were evaluated and prepared by inverse microemulsion polymerization. The nanoparticles obtained were characterized by size, polydispersity index, and zeta potential analysis. The Dynamic Light Scattering indicated that the diameter of the particle (z-average) was optimal, with an acceptable polydispersity index. The antibacterial activity of the polyacrylamide nanoparticles loaded with photosensitizers was evaluated against Staphylococcus aureus. Both photosensitizers loaded into the nanoparticles showed great potential as antibacterial agents since they suppressed the bacterial growth. The maximum percentage of growth reduction was 35.5% (>2 Log CFU/mL), with the monobrominated azure B loaded into the nanocarrier with 2 hydroxyethyl methacrylate against methicillin resistant S. aureus. The improved physicochemical and photophysical properties of these photosensitizers were accompanied by a significant increase in the photoantimicrobial action, in conventional-sensitive and-methicillin resistant S. aureus. The results obtained clearly suggest that polyacrylamide nanoparticles loaded with photosensitizers have great potential for further application in antimicrobial photodynamic therapy.
Collapse
Affiliation(s)
- M S Gualdesi
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - V Aiassa
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - J Vara
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - C I Alvarez Igarzabal
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, IPQA-CONICET, Argentina
| | - C S Ortiz
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina.
| |
Collapse
|
28
|
Sobotta L, Ziental D, Sniechowska J, Dlugaszewska J, Potrzebowski MJ. Lipid vesicle-loaded meso-substituted chlorins of high in vitro antimicrobial photodynamic activity. Photochem Photobiol Sci 2018; 18:213-223. [PMID: 30427035 DOI: 10.1039/c8pp00258d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic inactivation potential against bacteria of four chlorin derivatives with phenyl or fluorophenyl substituents was evaluated. The quantum yield values of singlet oxygen formation were in the range of 0.16-0.86. Compounds were characterized by high quantum yields of fluorescence (0.15-0.44) and moderate photostability in DMF solutions. Irradiation of chlorins in DMSO resulted in their phototransformation and then photodecomposition. Photodynamic inactivation of bacteria was performed after the compounds had been loaded into lipid vesicles. The following log reductions of growth values were obtained: Enterococcus faecalis >5.44; Staphylococcus aureus 2.74-5.34; Escherichia coli 0.01-2.14. No activity of meso-substituted chlorins was noticed against Pseudomonas aeruginosa and fungi Candida albicans and Trichophyton mentagrophytes.
Collapse
Affiliation(s)
- Lukasz Sobotta
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Daniel Ziental
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Justyna Sniechowska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Jolanta Dlugaszewska
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznan, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
29
|
Photodynamic therapy as an alternative to antibiotic therapy for the treatment of infected leg ulcers. Photodiagnosis Photodyn Ther 2018; 23:132-143. [DOI: 10.1016/j.pdpdt.2018.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/25/2018] [Accepted: 05/02/2018] [Indexed: 12/29/2022]
|
30
|
Marazzi M, Gattuso H, Monari A, Assfeld X. Steady-State Linear and Non-linear Optical Spectroscopy of Organic Chromophores and Bio-macromolecules. Front Chem 2018; 6:86. [PMID: 29666792 PMCID: PMC5891624 DOI: 10.3389/fchem.2018.00086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/12/2018] [Indexed: 01/05/2023] Open
Abstract
Bio-macromolecules as DNA, lipid membranes and (poly)peptides are essential compounds at the core of biological systems. The development of techniques and methodologies for their characterization is therefore necessary and of utmost interest, even though difficulties can be experienced due to their intrinsic complex nature. Among these methods, spectroscopies, relying on optical properties are especially important to determine their macromolecular structures and behaviors, as well as the possible interactions and reactivity with external dyes—often drugs or pollutants—that can (photo)sensitize the bio-macromolecule leading to eventual chemical modifications, thus damages. In this review, we will focus on the theoretical simulation of electronic spectroscopies of bio-macromolecules, considering their secondary structure and including their interaction with different kind of (photo)sensitizers. Namely, absorption, emission and electronic circular dichroism (CD) spectra are calculated and compared with the available experimental data. Non-linear properties will be also taken into account by two-photon absorption, a highly promising technique (i) to enhance absorption in the red and infra-red windows and (ii) to enhance spatial resolution. Methodologically, the implications of using implicit and explicit solvent, coupled to quantum and thermal samplings of the phase space, will be addressed. Especially, hybrid quantum mechanics/molecular mechanics (QM/MM) methods are explored for a comparison with solely QM methods, in order to address the necessity to consider an accurate description of environmental effects on spectroscopic properties of biological systems.
Collapse
Affiliation(s)
- Marco Marazzi
- Laboratoire de Physique et Chimie Théoriques, Université de Lorraine-Nancy, UMR 7019, Vandoeuvre-lés-Nancy, France.,Laboratoire de Physique et Chimie Théoriques, Centre National de la Recherche Scientifique, UMR 7019, Vandoeuvre-lès-Nancy, France.,Departamento de Química, Centro de Investigacíon en Síntesis Química (CISQ), Universidad de La Rioja, Logroño, Spain
| | - Hugo Gattuso
- Laboratoire de Physique et Chimie Théoriques, Université de Lorraine-Nancy, UMR 7019, Vandoeuvre-lés-Nancy, France.,Laboratoire de Physique et Chimie Théoriques, Centre National de la Recherche Scientifique, UMR 7019, Vandoeuvre-lès-Nancy, France
| | - Antonio Monari
- Laboratoire de Physique et Chimie Théoriques, Université de Lorraine-Nancy, UMR 7019, Vandoeuvre-lés-Nancy, France.,Laboratoire de Physique et Chimie Théoriques, Centre National de la Recherche Scientifique, UMR 7019, Vandoeuvre-lès-Nancy, France
| | - Xavier Assfeld
- Laboratoire de Physique et Chimie Théoriques, Université de Lorraine-Nancy, UMR 7019, Vandoeuvre-lés-Nancy, France.,Laboratoire de Physique et Chimie Théoriques, Centre National de la Recherche Scientifique, UMR 7019, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
31
|
Abdel Gaber SA, Müller P, Zimmermann W, Hüttenberger D, Wittig R, Abdel Kader MH, Stepp H. ABCG2-mediated suppression of chlorin e6 accumulation and photodynamic therapy efficiency in glioblastoma cell lines can be reversed by KO143. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 178:182-191. [DOI: 10.1016/j.jphotobiol.2017.10.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 12/21/2022]
|
32
|
Kielmann M, Prior C, Senge MO. Porphyrins in troubled times: a spotlight on porphyrins and their metal complexes for explosives testing and CBRN defense. NEW J CHEM 2018. [DOI: 10.1039/c7nj04679k] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A critical perspective on (metallo)porphyrins in security-related applications: the past, present and future of explosives detection, CBRN defense, and beyond.
Collapse
Affiliation(s)
- Marc Kielmann
- School of Chemistry
- SFI Tetrapyrrole Laboratory
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- The University of Dublin
| | - Caroline Prior
- School of Chemistry
- SFI Tetrapyrrole Laboratory
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- The University of Dublin
| | - Mathias O. Senge
- Medicinal Chemistry
- Trinity Translational Medicine Institute
- Trinity Centre for Health Sciences
- Trinity College Dublin
- The University of Dublin
| |
Collapse
|
33
|
Biofilm formation by Candida albicans is inhibited by photodynamic antimicrobial chemotherapy (PACT), using chlorin e6: increase in both ROS production and membrane permeability. Lasers Med Sci 2017; 33:647-653. [DOI: 10.1007/s10103-017-2344-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/29/2017] [Indexed: 01/30/2023]
|
34
|
Sengul O, Boydas EB, Pastore M, Sharmouk W, Gros PC, Catak S, Monari A. Probing optical properties of thiophene derivatives for two-photon absorption. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2094-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Wu MF, Deichelbohrer M, Tschernig T, Laschke MW, Szentmáry N, Hüttenberger D, Foth HJ, Seitz B, Bischoff M. Chlorin e6 mediated photodynamic inactivation for multidrug resistant Pseudomonas aeruginosa keratitis in mice in vivo. Sci Rep 2017; 7:44537. [PMID: 28295043 PMCID: PMC5353637 DOI: 10.1038/srep44537] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
Following corneal epithelium scratches, mouse corneas were infected with the multidrug resistant (MDR) P. aeruginosa strain PA54. 24 hours later, 0% (for control group), 0.01%, 0.05% or 0.1% Chlorin e6 (Ce6), a second generation photosensitizer derived from chlorophyll, was combined with red light, for photodynamic inactivation (PDI). 1 hour or 2 days later, entire mouse eyes were enucleated and homogenized for counting colony forming units (CFU) of P. aeruginosa. For comparison, 0.1% Ce6 mediated PDI was started at 12 hours post infection, and 0.005% methylene blue mediated PDI 24 hours post infection. Clinical scores of corneal manifestation were recorded daily. Compared to the control, CFU 1 hour after PDI started 24 hours post infection in the 0.01% Ce6 and 0.05% Ce6 groups were significantly lower (more than one log10 reduction), the CFU 2 days post PDI higher in the 0.1% Ce6 group, clinical score lower in the 0.1% Ce6 group at 1 day post PDI. These findings suggest that PDI with Ce6 and red light has a transient efficacy in killing MDR-PA in vivo, and repetitive PDI treatments are required to fully resolve the infection. Before its clinical application, the paradoxical bacterial regrowth post PDI has to be further studied.
Collapse
Affiliation(s)
- Ming-Feng Wu
- Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany.,Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mona Deichelbohrer
- Institute for Anatomy and Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Thomas Tschernig
- Institute for Anatomy and Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical &Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Nóra Szentmáry
- Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany.,Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | | | - Hans-Jochen Foth
- Department of Physics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Markus Bischoff
- Institute for Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
36
|
Gattuso H, Monari A, Marazzi M. Photophysics of chlorin e6: from one- and two-photon absorption to fluorescence and phosphorescence. RSC Adv 2017. [DOI: 10.1039/c6ra28616j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Linear and non-linear optical properties of a known photosensitizer producing singlet oxygen, chlorin e6, have been studied, including dynamics effects.
Collapse
Affiliation(s)
- Hugo Gattuso
- Université de Lorraine – Nancy
- Theory-Modeling-Simulation SRSMC
- Vandoeuvre-les-Nancy
- France
- CNRS
| | - Antonio Monari
- Université de Lorraine – Nancy
- Theory-Modeling-Simulation SRSMC
- Vandoeuvre-les-Nancy
- France
- CNRS
| | - Marco Marazzi
- Université de Lorraine – Nancy
- Theory-Modeling-Simulation SRSMC
- Vandoeuvre-les-Nancy
- France
- CNRS
| |
Collapse
|
37
|
Skwor TA, Klemm S, Zhang H, Schardt B, Blaszczyk S, Bork MA. Photodynamic inactivation of methicillin-resistant Staphylococcus aureus and Escherichia coli: A metalloporphyrin comparison. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 165:51-57. [DOI: 10.1016/j.jphotobiol.2016.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 12/18/2022]
|