1
|
Sahadevan M, Subramanian K, Sundaram M. Quantum mechanical approaches and molecular docking studies of platinum based anticancer drugs Satraplatin and picoplatin structures. Biochem Biophys Res Commun 2024; 739:150969. [PMID: 39536409 DOI: 10.1016/j.bbrc.2024.150969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/02/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The structures of the anticancer drug compounds satraplatin and picoplatin are optimized, and theoretical studies done by Density Functional Theory (DFT) to investigate the optical properties, global chemical descriptors, and band gap were calculated using the obtained Frontier molecular orbital values. The theoretically obtained data of the platinum drugs found to possess low energy gap values and low chemical hardness with high chemical softness describe that the compounds are chemically stable and most reactive. Using the molecular docking process, the binding mechanisms of the satraplatin and picoplatin drugs with cancer DNA structures were studied, and the results were analyzed. For the two drug compounds examined, satraplatin has shown the least binding energies at -5.06kcal/mol compared to picoplatin at -2.69 kcal/mol, and conformations with root mean square deviation (RMSD) values by DNA structures are less than or equal to 2.00 Å in targeting the specific DNA target residues of the reference bound ligand. The grid box was generated using the selective grid parameters using the Autodock 4.2 program. The drug molecules found to have the least binding energy value with the lowest inhibition constant implicate the good docking score towards the DNA structure by the docking studies. DFT studies also show good structural properties and chemical reactivity. From the obtained results, satraplatin and picoplatin were found to have good chemical descriptors and good binding affinity and are best suited for biological molecular targets.
Collapse
Affiliation(s)
- Madhavi Sahadevan
- PG and Research Department of Physics, Thiru Vi Ka Government Arts College Affiliated to Bharathidasan University, Thiruvarur, 610 003, Tamil Nadu, India; Jaya Sakthi Engineering College, st. mary's Nagar, Thiruninravur, 602024, Chennai, Tamil Nadu, India
| | - Karunagaran Subramanian
- Central Institute of Plastic Engineering and Technology, Guindy, 600032, Chennai, Tamil Nadu, India
| | - Mullainathan Sundaram
- PG and Research Department of Physics, Thiru Vi Ka Government Arts College Affiliated to Bharathidasan University, Thiruvarur, 610 003, Tamil Nadu, India.
| |
Collapse
|
2
|
Mrunalini B, Dev A, Kushwaha AC, Sardoiwala MN, Karmakar S. Encapsulation of 4-oxo- N-(4-hydroxyphenyl) retinamide in human serum albumin nanoparticles promotes EZH2 degradation in preclinical neuroblastoma models. NANOSCALE 2024; 16:16075-16088. [PMID: 39087878 DOI: 10.1039/d4nr00642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Neuroblastoma is the most prevalent and aggressive solid tumor that develops extracranially in children between the ages of 0-14 years, which accounts for 8-10% of all childhood malignancies and ∼15% of pediatric cancer-related mortality. The polycomb repressive complex 2 (PRC2) protein, EZH2, is overexpressed in neuroblastoma and mediates histone H3 methylation at lysine 27 (K27) positions through its methyl transferase activity and is a potential epigenetic silencer of many tumor suppressor genes in cancer. Phosphorylation of EZH2 decreases its stability and leads to proteasomal degradation. The 4-oxo-N-(4-hydroxyphenyl) retinamide (4O4HPR) promotes EZH2 degradation via activation of PKC-δ, but its limited solubility and physiological instability limit its application. In the current study, the encapsulation of 4O4HPR in Human Serum Albumin Nanoparticles (HSANPs) enhanced the solubility and physiological stability of the nanoformulation, leading to improved therapeutic efficacy through G2-M cell cycle arrest, depolarization of mitochondrial membrane potential, generation of reactive oxygen species and caspase 3 mediated apoptosis activation. The molecular mechanistic approach of 4O4HPR loaded HSANPs has activated caspase 3, which further cleaves PKC-δ into two fragments wherein the cleaved fragment of PKC-δ possesses the kinase activity that phosphorylates EZH2 and decreases the protein stability leading to its further ubiquitination in SH-SY5Y cells. Co-immunoprecipitation experiments revealed the direct interaction between PKC-δ and EZH2 phosphorylation, followed by ubiquitination. Moreover, 4O4HPR loaded HSANPs demonstrated improved in vivo biodistribution, greater dispersibility, and biocompatibility and exhibited enhanced protein instability and degradation of EZH2 in the neuroblastoma xenograft mouse model.
Collapse
Affiliation(s)
- Boddu Mrunalini
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India.
| | - Atul Dev
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India.
| | | | | | - Surajit Karmakar
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India.
| |
Collapse
|
3
|
Bisaria I, Chauhan C, Muthu SA, Parvez S, Ahmad B. The effect of chrysin binding on the conformational dynamics and unfolding pathway of human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124332. [PMID: 38676982 DOI: 10.1016/j.saa.2024.124332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Studies on the interactions between ligands and proteins provide insights into how a possible medication alters the structures and activities of the target or carrier proteins. The natural flavonoid aglycone Chrysin (CHR) has demonstrated anti-inflammatory, antioxidant, antiapoptotic, neuroprotective, and antineoplastic effects, both in vitro and in vivo. In this work, we investigated the impact of CHR binding on the as-yet-unexplored conformation, dynamics, and unfolding mechanism of human serum albumin (HSA). We determined CHR binding to HSA domain-II with the association constant (Ka) of 2.70 ± 0.21 × 105 M-1. The urea-induced sequential unfolding mechanism of HSA was used to elucidate the debatable binding location of CHR. CHR binding induced both secondary and tertiary structural alterations in the protein as studied by far-UV circular dichroism and intrinsic fluorescence spectroscopy. Red edge excitation shift (REES) indicated a decrease in conformational dynamics of the protein on the complex formation. This suggested an ordered compact and spatial arrangement of the CHR-boundmolecule. The binding of CHR was found to significantly modulate the urea-induced unfolding pathway of HSA. Urea-induced unfolding pathway of HSA became a two-state process (N-U) from a three-state process (N-I-U). The interaction of CHR is found to increase the thermal stability of the protein by ∼4 °C. This study focuses on the fundamental sciences and demonstrates how prospective medication compounds can alter the dynamics and stability of protein structure.
Collapse
Affiliation(s)
- Ishita Bisaria
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Chanchal Chauhan
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India; Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi 110062, India
| | - Shivani A Muthu
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India; Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi 110062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Basir Ahmad
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
4
|
Ferraro G, Lyčková T, Massai L, Štarha P, Messori L, Merlino A. Picoplatin binding to proteins: X-ray structures and mass spectrometry data on the adducts with lysozyme and ribonuclease A. Dalton Trans 2024; 53:8535-8540. [PMID: 38727007 DOI: 10.1039/d4dt00773e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The reactivity of the anticancer drug picoplatin (cis-amminedichlorido(2-methylpyridine)platinum(II) complex) with the model proteins hen egg white lysozyme (HEWL) and bovine pancreatic ribonuclease (RNase A) was investigated by electrospray ionisation mass spectrometry (ESI MS) and X-ray crystallography. The data were compared with those previously obtained for the adducts of these proteins with cisplatin, carboplatin and oxaliplatin under the same experimental conditions. ESI-MS data show binding of Pt to both proteins, with fragments retaining the 2-methylpyridine ligand and, possibly, a chloride ion. X-ray crystallography identifies different binding sites on the two proteins, highlighting a different behaviour of picoplatin in the absence or presence of dimethyl sulfoxide (DMSO). Metal-containing fragments bind to HEWL close to the side chains of His15, Asp18, Asp119 and both Lys1 and Glu7, whereas they bind to RNase A on the side chain of His12, Met29, His48, Asp53, Met79, His105 and His119. The data suggest that the presence of DMSO favours the loss of 2-methylpyridine and alters the ability of the Pt compound to bind to the two proteins. With both proteins, picoplatin appears to behave similarly to cisplatin and carboplatin when dissolved in DMSO, whereas it behaves more like oxaliplatin in the absence of the coordinating solvent. This study provides important insights into the pharmacological profile of picoplatin and supports the conclusion that coordinating solvents should not be used to evaluate the biological activities of Pt-based drugs.
Collapse
Affiliation(s)
- Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso universitario di Monte Sant'Angelo, via Cinthia, 21, 80126, Naples, Italy.
| | - Tereza Lyčková
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Lara Massai
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia, 3-13, 50019, Sesto Fiorentino, Florence, Italy
| | - Pavel Štarha
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia, 3-13, 50019, Sesto Fiorentino, Florence, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso universitario di Monte Sant'Angelo, via Cinthia, 21, 80126, Naples, Italy.
| |
Collapse
|
5
|
Yang Y, Wang P, Ji Z, Xu X, Zhang H, Wang Y. Polysaccharide‑platinum complexes for cancer theranostics. Carbohydr Polym 2023; 315:120997. [PMID: 37230639 DOI: 10.1016/j.carbpol.2023.120997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Platinum anticancer drugs have been explored and developed in recent years to reduce systematic toxicities and resist drug resistance. Polysaccharides derived from nature have abundant structures as well as pharmacological activities. The review provides insights on the design, synthesis, characterization and associating therapeutic application of platinum complexes with polysaccharides that are classified by electronic charge. The complexes give birth to multifunctional properties with enhanced drug accumulation, improved tumor selectivity and achieved synergistic antitumor effect in cancer therapy. Several techniques developing polysaccharides-based carriers newly are also discussed. Moreover, the lasted immunoregulatory activities of innate immune reactions triggered by polysaccharides are summarized. Finally, we discuss the current shortcomings and outline potential strategies for improving platinum-based personalized cancer treatment. Using platinum-polysaccharides complexes for improving the immunotherapy efficiency represents a promising framework in future.
Collapse
Affiliation(s)
- Yunxia Yang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China; Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource, Yancheng Teachers University, Yancheng 224007, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng 224007, China.
| | - Pengge Wang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Zengrui Ji
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China.
| | - Hongmei Zhang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Yanqing Wang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China.
| |
Collapse
|
6
|
Merlino A. Metallodrug binding to serum albumin: Lessons from biophysical and structural studies. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Bera M, Das M, Dolai M, Laha S, Islam MM, Samanta BC, Das A, Choudhuri I, Bhattacharyya N, Maity T. DNA/Protein Binding and Apoptotic-Induced Anticancer Property of a First Time Reported Quercetin-Iron(III) Complex Having a Secondary Anionic Residue: A Combined Experimental and Theoretical Approach. ACS OMEGA 2023; 8:636-647. [PMID: 36643564 PMCID: PMC9835804 DOI: 10.1021/acsomega.2c05790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
A new quercetin-based iron(III) cationic complex [Fe(Qr)Cl(H2O)(MeO)] (complex 1) is created in the current study by condensation of quercetin with ferric chloride in the presence of Et3N. Comprehensive spectroscopic analysis and conductometric measurement are used to pinpoint complex 1. The generated complex's +3-oxidation state has been verified by electron paramagnetic resonance (EPR) research. Density functional theory analysis was used to structurally optimize the structure of complex 1. Before biomedical use, a variety of biophysical studies are implemented to evaluate the binding capacity of complex 1 with DNA and human serum albumin (HSA) protein. The findings of the electronic titration between complex 1 and DNA, as well as the stunning fall in the fluorescence intensities of the HSA and EtBr-DNA/DAPI-DNA domain after complex 1 is gradually added, give us confidence that complex 1 has a strong affinity for both macromolecules. It is interesting to note that the displacement experiment confirms partial intercalation as well as the groove binding mechanism of the title complex with DNA. The time-dependent fluorescence analysis indicates that after interaction with complex 1, HSA will exhibit static quenching. The thermodynamic parameter values in the HSA-complex 1 interaction provide evidence for the hydrophobicity-induced pathway leading to spontaneous protein-complex 1 interaction. The two macromolecules' configurations are verified to be preserved when they are associated with complex 1, and this is done via circular dichroism spectral titration. The molecular docking investigation, which is a theoretical experiment, provides complete support for the experimental findings. The potential of the investigated complex to be an anticancer drug has been examined by employing the MTT assay technique, which is carried out on HeLa cancer cell lines and HEK-293 normal cell lines. The MTT assay results validate the ability of complex 1 to display significant anticancer properties. Finally, by using the AO/PI staining approach, the apoptotic-induced cell-killing mechanism as well as the detection of cell morphological changes has been confirmed.
Collapse
Affiliation(s)
- Manjushree Bera
- Department
of Nutrition, Prabhat Kumar College, Contai, Purba Medinipur, Contai721404, India
| | - Manik Das
- Department
of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur, Contai721404, India
| | - Malay Dolai
- Department
of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur, Contai721404, India
| | - Soumik Laha
- IICB,
Kolkata, Kolkata, 700032West Bengal, India
| | - Md Maidul Islam
- Department
of Chemistry, Aliah University, Kolkata700064, India
| | - Bidhan Chandra Samanta
- Department
of Chemistry, Mugberia Gangadhar Mahavidyalaya, Purba Medinipur, Contai721425, India
| | - Arindam Das
- Department
of Chemistry, Jadavpur University, Kolkata700032, India
| | | | | | - Tithi Maity
- Department
of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur, Contai721404, India
| |
Collapse
|
8
|
Tinku, Prajapati AK, Choudhary S. Understanding the partitioning of polyamines in micelles and delivery to the carrier protein: Thermodynamic approach. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Interactions of isoorientin and its Semi-synthetic analogs with human serum albumin. Bioorg Chem 2021; 116:105319. [PMID: 34488124 DOI: 10.1016/j.bioorg.2021.105319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/21/2021] [Accepted: 08/29/2021] [Indexed: 12/29/2022]
Abstract
Isoorientin is a C-glycosyl flavone with a wide range of health beneficial effects and inhibits glycogen synthase kinase 3β (GSK-3β) potentially against Alzheimer's disease. Its semi-synthetic derivatives have greater potency than isoorientin. The present study was aimed to determine the mechanism of interactions of isoorientin and its derivatives with human serum albumin (HSA) using multi-spectroscopic, microscale thermophoresis (MST) and computational studies. Spectra of steady-state fluorescence, UV-Vis, and time-resolved fluorescence indicated that isoorientin and its derivatives quenched the intrinsic fluorescence of HSA through a static quenching process. Isoorientin and its derivatives had a moderate affinity with HSA (Ka 7.7-14.9 × 104 M-1). The binding process was accompanied by an exothermic phenomenon, ΔG° of HSA-isoorientin and its derivatives systems were calculated as from -29.51 kJ mol-1 to -27.87 kJ mol-1. Displacement experiments with site-specific markers revealed that isoorientin and its derivatives bind to HSA at site II (subdomain IIIA) only. A reduction in the α-helical content of HSA-isoorientin and its derivatives complex was observed, because the conformational changes was structurally perturbed by the hydrophilic groups of the compounds. Further molecular modeling studies confirmed that the binding of isoorientin and its derivatives to the site II via hydrophobic interaction. The MST results confirmed the interactions between HSA and the compounds of interest. The esterase-like assay studies indicated that isoorientin and its derivatives shared the same binding site in HSA, and their induced structural changes of HSA may have been caused by partial unfolding of HSA. This work helps to understand transport, distribution, bioactivity, and design of flavonoid-based GSK-3β inhibitors.
Collapse
|
10
|
Gan N, Sun Q, Suo Z, Zhang S, Zhao L, Xiang H, Wang W, Li Z, Liao X, Li H. How hydrophilic group affects drug-protein binding modes: Differences in interaction between sirtuins inhibitors Tenovin-1/Tenovin-6 and human serum albumin. J Pharm Biomed Anal 2021; 201:114121. [PMID: 34020341 DOI: 10.1016/j.jpba.2021.114121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 01/28/2023]
Abstract
Introduction of hydrophilic groups can improve the solubility of leading drugs but inevitably affect their interaction with proteins. This study selected sirtuin inhibitors Tenovin-1 (T1) and Tenovin-6 (T6) as drug models to determine differences in binding mode to human serum albumin (HSA). T1 and T6 quenched the endogenous fluorescence of HSA via static quenching mechanism. Introduction of hydrophilic groups greatly reduced the binding constant, i.e., from 1.302 × 104 L mol-1 for the HSA-T6 system to 0.128 × 104 L mol-1 for the HSA-T1 system. HSA-T1 system was mainly driven by electrostatic interactions while that of HSA-T6 system was hydrophobic interaction and both systems were spontaneous reactions. Site marker experiments and molecular docking indicated that both systems mainly bound to the hydrophobic site I of HSA. Molecular dynamics (MD) simulation analysis further revealed that Tyr148, Tyr150 and Arg257 residues played a key role in this recognition process for both systems. In particular, T6 maintained additional several hydrogen bonds with the surrounding residues. T1 had almost no effect on the esterase-like activity of HSA, but T6 inhibited the hydrolysis of p-NPA. Furthermore, differential scanning calorimetry (VP-DSC), circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy confirmed that HSA in the T6 system undergone a more significant conformational transition than that in the T1 system.
Collapse
Affiliation(s)
- Na Gan
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Qiaomei Sun
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Zili Suo
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Shuangshuang Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Ludan Zhao
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Hongzhao Xiang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Wenjing Wang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Zhiqiang Li
- R&D Center, China Tobacco Yunnan Industrial Co., Ltd., No. 367, Hongjin Road, Kunming, 650000, China
| | - Xiaoxiang Liao
- R&D Center, China Tobacco Yunnan Industrial Co., Ltd., No. 367, Hongjin Road, Kunming, 650000, China
| | - Hui Li
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
11
|
Zhang H, Deng H, Wang Y. Comprehensive investigations about the binding interaction of acesulfame with human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 237:118410. [PMID: 32361316 DOI: 10.1016/j.saa.2020.118410] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
In this work, the binding interaction of an artificial sweetener, acesulfame (ACS) with human serum albumin (HSA) are investigated at the molecular level by using spectral methods and molecular modeling. ACS has the ability to induce static quenching of the intrinsic fluorescence of HSA by a complex formed between HSA and ACS through weak multi-noncovalent forces including hydrophobic, hydrogen bond and van der Waals forces. ACS enters subdomain IIA of HSA to induce the tertiary structure changes of HSA and decreased the hydrophobicity of protein. In addition, ACS binding does not obviously alter the secondary structure of HSA. This study is hoped to provide some crucial information for further investigations of the biosafety of sweetener.
Collapse
Affiliation(s)
- Hongmei Zhang
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Hao Deng
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Yanqing Wang
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China.
| |
Collapse
|
12
|
Anticancer platinum(II) complexes bearing N-heterocycle rings. Bioorg Med Chem Lett 2019; 29:1257-1263. [DOI: 10.1016/j.bmcl.2019.03.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 01/21/2023]
|
13
|
Zhang H, Zhang T, Wang Y. Mechanistic understanding and binding analysis of two-dimensional MoS 2 nanosheets with human serum albumin by the biochemical and biophysical approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 211:18-25. [PMID: 30502580 DOI: 10.1016/j.saa.2018.11.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
With the advent of molybdenum disulfide nanosheets (MoS2 NSs) for biological applications, their complex interactions with human serum albumin (HSA) need to be understood in great detail for the molecular mechanisms of protein structure and activity. It was observed that MoS2 NSs quench the intrinsic fluorescence of HSA as a consequence of ground-state complex formation by the electron transfer, van der Waals, and hydrophobic forces. The presence of MoS2 NSs partly altered the conformation of HSA and destroyed the binding domain of HSA with bilirubin. In addition, MoS2 NSs can decrease the rate of the formation of beta sheet structures of HSA, reduce the non-enzymatic glycosylation, and increase the esterase-like activity of HSA. We hope that the present study will be helpful to understand the fundamental interactions of the two-dimensional materials with various biomacromolecules in human blood.
Collapse
Affiliation(s)
- Hongmei Zhang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224007, People's Republic of China; School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Tingting Zhang
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Yanqing Wang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224007, People's Republic of China; School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China.
| |
Collapse
|
14
|
Wang BL, Zhou KL, Lou YY, Pan DQ, Kou SB, Lin ZY, Shi JH. Assessment on the binding affinity between ritonavir with model transport protein: a combined multi-spectroscopic approaches with computer simulation. J Biomol Struct Dyn 2019; 38:744-755. [DOI: 10.1080/07391102.2019.1587515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Bao-Li Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Kai-Li Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yan-Yue Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Dong-Qi Pan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Song-Bo Kou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhen-Yi Lin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jie-Hua Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
15
|
Ronzetti M, Baljinnyam B, Yasgar A, Simeonov A. Testing for drug-human serum albumin binding using fluorescent probes and other methods. Expert Opin Drug Discov 2018; 13:1005-1014. [PMID: 30320522 PMCID: PMC11369766 DOI: 10.1080/17460441.2018.1534824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Drug plasma protein binding remains highly relevant to research and drug development, making the assessment and profiling of compound affinity to plasma proteins essential to drug discovery efforts. Although there are a number of fully-characterized methods, they lack the throughput to handle large numbers of compounds. As the evaluation of adsorption, distribution, metabolism, and excretion is addressed earlier in the drug development timeline, the need for higher-throughput methods has grown. Areas Covered: This review will highlight recent developments on methods for profiling drug plasma binding, with an emphasis on fluorescent probes and emerging high-throughput methodologies. Expert Opinion: There have been a number of high-throughput assays developed in recent years to meet the scaled up demands for compound profiling. Ultimately, the selection of assay technology relies on a number of factors, such as capabilities of the laboratory and the breadth and amount of data required. Fluorescent probe displacement assays are highly flexible and amenable to high-throughput screening, easily scaling up to handle large compound libraries. Recent developments in fluorescence technologies, such as homogenous time-resolved fluorescence and probes utilizing the aggregation-induced emission effect, have improved the sensitivity of these assays. Other technologies, such as microscale thermophoresis and quantitative structure-activity relationship modeling, are gaining popularity as alternative techniques for drug plasma protein binding characterization.
Collapse
Affiliation(s)
- Michael Ronzetti
- a National Center for Advancing Translational Sciences , National Institutes of Health , Rockville , Maryland , USA
| | - Bolormaa Baljinnyam
- a National Center for Advancing Translational Sciences , National Institutes of Health , Rockville , Maryland , USA
| | - Adam Yasgar
- a National Center for Advancing Translational Sciences , National Institutes of Health , Rockville , Maryland , USA
| | - Anton Simeonov
- a National Center for Advancing Translational Sciences , National Institutes of Health , Rockville , Maryland , USA
| |
Collapse
|
16
|
Behavior of bovine serum albumin in the presence of locust bean gum. Int J Biol Macromol 2018; 111:1-10. [DOI: 10.1016/j.ijbiomac.2017.12.139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/23/2017] [Accepted: 12/25/2017] [Indexed: 12/16/2022]
|
17
|
Gao S, Liu R. Comprehensive insights into the interaction mechanism between perfluorodecanoic acid and human serum albumin. NEW J CHEM 2018. [DOI: 10.1039/c8nj00124c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this investigation, we explored the toxic effects of perfluorodecanoic acid (PFDA) on human serum albumin (HSA), established the interaction mode of PFDA with HSA, and provided a new strategy for the evaluation of toxicity of PFDA on functional proteins.
Collapse
Affiliation(s)
- Sichen Gao
- School of Environmental Science and Engineering
- Shandong University
- Shandong Province
- Jinan 250100
- China
| | - Rutao Liu
- School of Environmental Science and Engineering
- Shandong University
- Shandong Province
- Jinan 250100
- China
| |
Collapse
|
18
|
Zhang H, Wang Y, Zhu H, Fei Z, Cao J. Binding mechanism of triclocarban with human serum albumin: Effect on the conformation and activity of the model transport protein. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Rabbani G, Baig MH, Jan AT, Ju Lee E, Khan MV, Zaman M, Farouk AE, Khan RH, Choi I. Binding of erucic acid with human serum albumin using a spectroscopic and molecular docking study. Int J Biol Macromol 2017; 105:1572-1580. [DOI: 10.1016/j.ijbiomac.2017.04.051] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 03/17/2017] [Accepted: 04/11/2017] [Indexed: 11/28/2022]
|
20
|
Siddiqi M, Nusrat S, Alam P, Malik S, Chaturvedi SK, Ajmal MR, Abdelhameed AS, Khan RH. Investigating the site selective binding of busulfan to human serum albumin: Biophysical and molecular docking approaches. Int J Biol Macromol 2017; 107:1414-1421. [PMID: 28987797 DOI: 10.1016/j.ijbiomac.2017.10.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022]
Abstract
We have studied the binding of busulfan (BN) to human serum albumin (HSA) at physiological pH 7.4 by using fluorescence, UV-vis and circular dichroism (CD) spectroscopic tools, as well as dynamic light scattering (DLS) measurements and molecular simulation approaches. HSA fluorescence quenching experiments showed that BN reduces the HSA native fluorescence intensity through the static mechanism. In addition, a single binding site on the HSA is occupied by BN with a binding constant at 298K of 1.84×103M-1. The enthalpy change (ΔH) and entropy change (ΔS) of BN-HSA interaction were calculated as -1.40kcalmol-1 and +10.14calmol-1K-1 respectively, which suggest the possible interaction mode as hydrophobic and hydrogen bonding. Moreover, the secondary structure alteration of HSA following its complexation with BN was studied and showed that α-helical content of HSA gets increased on interacting with BN. Ligand binding site to HSA was further investigated by site-specific markers in fluorescence measurements as well molecular modeling approach which indicated that BN bind to the nearby sudlow site II of HSA through hydrophobic as well as hydrogen bonding interaction. The present study will be helpful for understanding the binding mechanism of BN to human serum albumin.
Collapse
Affiliation(s)
- Mohammad Siddiqi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Saima Nusrat
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Sumit Kumar Chaturvedi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Mohammad Rehan Ajmal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Ali Saber Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| |
Collapse
|
21
|
Sekar G, Haldar M, Thirumal Kumar D, George Priya Doss C, Mukherjee A, Chandrasekaran N. Exploring the interaction between iron oxide nanoparticles (IONPs) and Human serum albumin (HSA): Spectroscopic and docking studies. J Mol Liq 2017; 241:793-800. [DOI: 10.1016/j.molliq.2017.06.093] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|