1
|
Ai X, Dong X, Guo Y, Yang P, Hou Y, Bai J, Zhang S, Wang X. Targeting P2 receptors in purinergic signaling: a new strategy of active ingredients in traditional Chinese herbals for diseases treatment. Purinergic Signal 2021; 17:229-240. [PMID: 33751327 PMCID: PMC8155138 DOI: 10.1007/s11302-021-09774-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine triphosphate (ATP) and its metabolites adenosine diphosphate, adenosine monophosphate, and adenosine in purinergic signaling pathway play important roles in many diseases. Activation of P2 receptors (P2R) channels and subsequent membrane depolarization can induce accumulation of extracellular ATP, and furtherly cause kinds of diseases, such as pain- and immune-related diseases, cardiac dysfunction, and tumorigenesis. Active ingredients of traditional Chinese herbals which exhibit superior pharmacological activities on diversified P2R channels have been considered as an alternative strategy of disease treatment. Experimental evidence of potential ingredients in Chinese herbs targeting P2R and their pharmacological activities were outlined in the study.
Collapse
Affiliation(s)
- Xiaopeng Ai
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China
| | - Xing Dong
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Guo
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Yang
- Chengdu Fifth People's Hospital, Chengdu, China
| | - Ya Hou
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinrong Bai
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Zamram QAZM, Mohsin HF, Mohamad MM, Nor Hazalin NAM, Hamid KA. Physical characterisation and stability study of formulated Chromolaena odorata gel. Curr Drug Deliv 2021; 19:479-490. [PMID: 33874872 DOI: 10.2174/1567201818666210419114809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022]
Abstract
AIM Formulating topical products for skin delivery has always been a challenge for pharmaceutical scientists to fulfil good formulation criteria. Despite the challenges, gel-based drug delivery offers some advantages such that it is non-invasive, painless, avoidance of the first-pass metabolism and has satisfactory patient compliance. OBJECTIVES In this study, Chromolaena odorata gel and quercetin gel (bioactive flavonoid compound) were successfully formulated and compared with placebo and conventional wound aid gel. The chromatographic profilling was conducted to screen the presence of phytoconstituents. Subsequently, all formulated gels were subjected to physical characteristic and stability study. METHODS Reverse Phase High-Performance Liquid Chromatography (RP-HPLC) of C.odorata methanolic leaves extract shows a distinct compound separation at retention time 8.4min to 34.8 min at 254nm. All gels were characterised by evaluating their rheological properties including storage modulus, loss modulus and plastic viscosity. Besides, texture analysis was performed to measure the gels' firmness, consistency, cohesiveness, and viscosity index. RESULTS From the observation, C. odorata gel demonstrated better spreadability as compared to the other gels, which acquired less work and favourable to be applied onto the skin. Moreover, C. odorata gel showed no changes in organoleptic properties and proven to be stable after 30 days of accelerated stability study at 40°C ± 2°C with relative humidity (RH) of 75%± 5%. CONCLUSION C. odorata gel has shown to be stable, reflecting the combination of materials used in the formulation, which did not degrade throughout the study. This work suggests the potential of this gel as a vehicle to deliver the active ingredients of C. odorata to the skin, which can be further explored as a topical application in antimicrobial wound management or other skin diseases study.
Collapse
Affiliation(s)
- Qurratul Ain Zakirah Mohd Zamram
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, 42300 Puncak Alam, Selangor. Malaysia
| | - Hannis Fadzillah Mohsin
- Department of Pharmacology and Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, 42300 Puncak Alam, Selangor. Malaysia
| | - Mashani Mohamad Mohamad
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, 42300 Puncak Alam, Selangor. Malaysia
| | - Nurul Aqmar Mohamad Nor Hazalin
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, 42300 Puncak Alam, Selangor. Malaysia
| | - Khuriah Abdul Hamid
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, 42300 Puncak Alam, Selangor. Malaysia
| |
Collapse
|
3
|
Camponogara C, Silva CR, Brusco I, Piana M, Faccin H, de Carvalho LM, Schuch A, Trevisan G, Oliveira SM. Nasturtium officinale R. Br. effectively reduces the skin inflammation induced by croton oil via glucocorticoid receptor-dependent and NF-κB pathways without causing toxicological effects in mice. JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:190-204. [PMID: 30339978 DOI: 10.1016/j.jep.2018.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 09/25/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory skin diseases treatments currently used cause adverse effects. Nasturtium officinale (watercress) is used popularly as an anti-inflammatory. However, until now, no study proved its effectiveness as a topical treatment to inflammatory skin diseases. The topical anti-inflammatory activity of N. officinale crude extract leaves (NoE) on an irritant contact dermatitis (ICD) model croton oil-induced in mice was investigated. MATERIALS AND METHODS ICD models were induced by a single (1 mg/ear; acute) or repeated (0.4 mg/ear; chronic; 9 days total) croton oil application. NoE and dexamethasone solutions' (diluted in acetone; 20 μL/ear) or NoE gel, dexamethasone gel and base gel (15 mg/ear) were topically applied immediately after croton oil application. The NoE topical anti-inflammatory effect was evaluated for inflammatory parameters (ear edema, inflammatory cells infiltration, and inflammatory cytokines levels). NoE topical anti-inflammatory mechanism (NF-κB pathway and effect glucocorticoid-like) were assessed by western blot and ear edema analyses, respectively. UHPLC-MS/MS chromatography, gels accelerated stability and preliminary study of adverse effects was also performed. RESULTS UHPLC-MS/MS of the NoE revealed the presence of coumaric acid, rutin, and ferulic acid. NoE gels stability study showed no relevant changes at low temperature. NoE, dexamethasone, NoE gel and dexamethasone gel inhibited the ear edema croton oil-induced by 82 ± 6% (1 mg/ear), 99 ± 1% (0.1 mg/ear), 81 ± 8% (3%) and 70 ± 6% (0.5%) for the acute model, and 49 ± 7% (1 mg/ear), 80 ± 4% (0.1 mg/ear), 41 ± 8% (3%) and 46 ± 14% (0.5%) for the chronic model, respectively. The same treatments also reduced the inflammatory cells infiltration by 62 ± 3% (1 mg/ear), 97 ± 2% (0.1 mg/ear), 60 ± 3% (3%) and 66 ± 6% (0.5%) for the acute model, respectively, and 25 ± 8% (1 mg/ear) to NoE and 83 ± 13% to dexamethasone to the chronic model. NoE and NoE gel reduced the pro-inflammatory cytokines levels (acute ICD model) by 62 ± 5% and 71 ± 3% (MIP-2) and 32 ± 3% and 44 ± 4% (IL-1β), while dexamethasone solution's and gel reduced by 79 ± 7% and 44 ± 4% to MIP-2 and 98 ± 2% and 83 ± 9% to IL-1β, respectively. NoE' and dexamethasone' solutions inhibited the reduction of IkB-α protein expression induced by croton oil by 100% and 80 ± 14%, respectively. Besides, the mifepristone (glucocorticoid receptor antagonist) pre-treatment prevented the topical anti-edematogenic effect of NoE' and dexamethasone' solutions by 61 ± 5% to NoE and 78 ± 16% to dexamethasone. The repeated topical application of NoE did not cause adverse effects. CONCLUSION Our results suggest the N. officinale use in the cutaneous inflammatory process treatment and demonstrate the NoE potential to develop a promising topical anti-inflammatory agent to treat inflammatory disorders.
Collapse
Affiliation(s)
- Camila Camponogara
- Laboratory Neurotoxicity and Psychopharmacology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Cássia R Silva
- Graduate Program in Genetics and Biochemistry, Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Indiara Brusco
- Laboratory Neurotoxicity and Psychopharmacology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Mariana Piana
- Phytochemical Research Laboratory, Graduate Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Henrique Faccin
- Graduate Program in Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Leandro Machado de Carvalho
- Graduate Program in Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - André Schuch
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela Trevisan
- Graduate Program in Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Camobi, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Laboratory Neurotoxicity and Psychopharmacology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|