1
|
Mkpuma VO, Moheimani NR, Ennaceri H. Effect of light intensity on Chlorella sp. biofilm growth on anaerobically digested food effluents (ADFE). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123015. [PMID: 39471596 DOI: 10.1016/j.jenvman.2024.123015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024]
Abstract
Optimizing light conditions in any culture design for effluent treatment is crucial for maximizing microalgae growth and nutrient uptake. We investigated the impact of low (53 ± 1 μmol m-2 s-1), medium (208 ± 12 μmol m-2 s-1), and high (518 ± 22 μmol m-2 s-1) light intensities on the diffused biofilm-based growth of Chlorella sp. for treating anaerobically digested food effluent (ADFE). The alga grew well across all treatments, irrespective of light intensity. However, biomass yields, and productivity positively correlated with light intensity, with the highest biomass yield (120 g m-2) and productivity (11.6 g m-2 d-1) occurring at high light intensity. Notably, specific growth rates peaked uniformly on day 2 across all treatments, indicating an initial surge in growth. A relatively stable photosynthetic performance occurred under medium light treatment, while stress evidence was noticed particularly after day 4 at high and low light treatments, with higher magnitude seen under low light treatments. Total ammonia nitrogen (TAN) and phosphate removal efficiencies increased with light intensities, reaching 100 % removal at high light after 10 days. Intriguingly, there was a notable enhancement in chemical oxygen demand (COD) removal under low light conditions, being 2.9- and 1.64-fold higher compared to medium and high light intensities, respectively. Despite the superior performance of Chlorella sp. biofilm under high-light conditions in biomass yield and uptake of nutrients, the low-light treatment also achieved remarkable results, indicating that this biofilm design offers enhanced exposure to light. Therefore, this biofilm configuration presents an enticing opportunity for treating ADFE at lower light intensities, potentially minimizing energy consumption while maximizing profitability.
Collapse
Affiliation(s)
- Victor Okorie Mkpuma
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Navid Reza Moheimani
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia; Centre for Water, Energy, and Waste, Harry Butler Institute, Murdoch University, Perth, 6150, Australia
| | - Houda Ennaceri
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia; Centre for Water, Energy, and Waste, Harry Butler Institute, Murdoch University, Perth, 6150, Australia.
| |
Collapse
|
2
|
Mkpuma VO, Moheimani NR, Ennaceri H. Biofilm cultivation of chlorella species. MUR 269 to treat anaerobic digestate food effluent (ADFE): Total ammonia nitrogen (TAN) concentrations effect. CHEMOSPHERE 2024; 354:141688. [PMID: 38484996 DOI: 10.1016/j.chemosphere.2024.141688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/06/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Microalgal-based treatment of anaerobic digestate food effluent (ADFE) has been found to be efficient and effective. However, turbidity and high total ammonia nitrogen (TAN)) content of ADFE is a major setback, requiring significant dilution. Although the possibility of growing microalgae in a high-strength ADFE with minimal dilution has been demonstrated in suspension cultures, such effluents remain highly turbid and affect the light path in suspension cultures. Here, the feasibility of growing Chlorella sp.MUR 269 in biofilm to treat ADFE with high TAN concentrations was investigated. Six different TAN concentrations in ADFE were evaluated for their effects on biofilm growth and nutrient removal by Chlorella sp. MUR 269 using the perfused biofilm technique. Biomass yields and productivities of this alga at various TAN concentrations (mg N NH3 L-1) were 55a (108 g m-2 and 9.80 g m-2 d-1)>100b > 200c = 300c = 500c > 1000d. Growth was inhibited, resulting in a 28% reduction in yield of Chlorella biofilm when this alga was grown at 1000 mg N NH3 L-1. A survey of the photosynthetic parameters reveals evidence of stress occurring in the following sequence: 55 < 100<200 < 300<1000. A significant nutrient removal was observed across various TAN concentrations. The removal pattern also followed the concentration gradients except COD, where the highest removal occurred at 500 mg N NH3 L-1. Higher removal rates were seen at higher nutrient concentrations and declined gradually over time. In general, our results indicated that the perfused biofilm strategy is efficient, minimizes water consumption, offers easy biomass harvesting, and better exposure to light. Therefore, it can be suitable for treating turbid and concentrated effluent with minimal treatment to reduce the TAN concentration.
Collapse
Affiliation(s)
- Victor Okorie Mkpuma
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Navid Reza Moheimani
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth, 6150, Australia
| | - Houda Ennaceri
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth, 6150, Australia.
| |
Collapse
|
3
|
Mkpuma VO, Moheimani NR, Ennaceri H. Commercial paper as a promising carrier for biofilm cultivation of Chlorella sp. for the treatment of anaerobic digestate food effluent (ADFE): Effect on the photosynthetic efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165439. [PMID: 37437632 DOI: 10.1016/j.scitotenv.2023.165439] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Microalgal technology is still economically unattractive due to the high cost associated with microalgal cultivation and biomass recovery from conventional suspension cultures. Biofilm-based cultivation is a promising alternative for higher biomass yield and cheap/easy biomass harvesting opportunities. Additionally, using anaerobic digestate food effluent (ADFE) as a nutrient source reduces the cultivation cost and achieves ADFE treatment as an added value. However, the search for locally available, inexpensive, and efficient support materials is still open to research. This study evaluates the potential of commercially available, low-cost papers as support material for biofilm cultivation of Chlorella sp. and treatment of ADFE. Among the four papers screened for microalgal attachment, quill board paper performed better in higher biomass yield and stability throughout the study period. The attached growth study was done in a modular food container vessel, using anaerobic digestate food effluent (ADFE) as a nutrient source and a basal medium as a control. The microalgae grew well on the support material with higher biomass yield and productivity of 108.64 g(DW) m-2 and 9.96 g (DW) m-2 d-1, respectively, in the ADFE medium compared with 85.87 g (DW) m-2 and 4.99 g (DW) m-2 d-1, respectively in the basal medium. Chlorophyll, a fluorescence (ChlF) probe, showed that cell density in the biofilm significantly changes the photosynthetic apparatus of the algae, with evidence of stress observed as the culture progressed. Also, efficient nutrient removal from the ADFE medium was achieved in the 100 %, 85 %, and 40.2 % ratios for ammoniacal nitrogen, phosphate, and chemical oxygen demand (COD). Therefore, using quill board paper as carrier material for microalgal cultivation offers promising advantages, including high biomass production, easy biomass harvesting (by scrapping or rolling the biomass with the paper), and efficient effluent treatment.
Collapse
Affiliation(s)
- Victor Okorie Mkpuma
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Navid Reza Moheimani
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Houda Ennaceri
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia.
| |
Collapse
|
4
|
Paul K, Gaikwad M, Choudhary P, Mohan N, Pai P, Patil SD, Pawar Y, Chawande A, Banerjee A, Nagle V, Chelliah M, Sapre A, Dasgupta S. Year-round sustainable biomass production potential of Nannochloris sp. in outdoor raceway pond enabled through strategic photobiological screening. PHOTOSYNTHESIS RESEARCH 2022; 154:303-328. [PMID: 36434418 DOI: 10.1007/s11120-022-00984-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Microalgae cultivation utilizes the energy of sunlight to reduce carbon dioxide (CO2) for producing renewable energy feedstock. The commercial success of the biological fixation of carbon in a consistent manner depends upon the availability of a robust microalgae strain. In the present work, we report the identification of a novel marine Nannochloris sp. through multiparametric photosynthetic evaluation. Detailed photobiological analysis of this strain has revealed a smaller functional antenna, faster relaxation kinetics of non-photochemical quenching, and a high photosynthetic rate with increasing light and temperatures. Furthermore, laboratory scale growth assessment demonstrated a broad range halotolerance of 10-70 parts per thousand (PPT) and high-temperature tolerance up to 45 °C. Such traits led to the translation of biomass productivity potential from the laboratory scale (0.2-3.0 L) to the outdoor 50,000 L raceway pond scale (500-m2) without any pond crashes. The current investigation revealed outdoor single-day peak areal biomass productivity of 43 g m-2 d-1 in summer with an annual (March 2019-February 2020) average productivity of 20 g m-2 d-1 in seawater. From a sustainability perspective, this is the first report of successful round-the-year (> 347 days) multi-season (summer, monsoon, and winter) outdoor cultivation of Nannochloris sp. in broad seawater salinity (1-57 PPT), wide temperature ranges (15-40 °C), and in fluctuating light conditions. Concurrently, outdoor cultivation of this strain demonstrated conducive fatty acid distribution, including increased unsaturated fatty acids in winter. This inherent characteristic might play a role in protecting photosynthesis machinery at low temperatures and in high light stress. Altogether, our marine Nannochloris sp. showed tremendous potential for commercial scale cultivation to produce biofuels, food ingredients, and a sustainable source for vegetarian protein.
Collapse
Affiliation(s)
- Kenny Paul
- Synthetic Biology Research and Development Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane- Belapur Road, Navi Mumbai, 400701, India
| | - Mahadev Gaikwad
- Synthetic Biology Research and Development Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane- Belapur Road, Navi Mumbai, 400701, India
| | | | | | - Puja Pai
- Synthetic Biology Research and Development Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane- Belapur Road, Navi Mumbai, 400701, India
| | - Smita D Patil
- Synthetic Biology Research and Development Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane- Belapur Road, Navi Mumbai, 400701, India
| | - Yogesh Pawar
- Synthetic Biology Research and Development Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane- Belapur Road, Navi Mumbai, 400701, India
| | - Akshay Chawande
- Synthetic Biology Research and Development Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane- Belapur Road, Navi Mumbai, 400701, India
| | - Arun Banerjee
- Synthetic Biology Research and Development Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane- Belapur Road, Navi Mumbai, 400701, India.
| | - Vinod Nagle
- Synthetic Biology Research and Development Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane- Belapur Road, Navi Mumbai, 400701, India
| | | | - Ajit Sapre
- Synthetic Biology Research and Development Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane- Belapur Road, Navi Mumbai, 400701, India
| | - Santanu Dasgupta
- Synthetic Biology Research and Development Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane- Belapur Road, Navi Mumbai, 400701, India
| |
Collapse
|
5
|
Ye Q, Shen Y, Zhang Q, Wu X, Guo W. Life-cycle assessment of flue gas CO 2 fixation from coal-fired power plant and coal chemical plant by microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157728. [PMID: 35917957 DOI: 10.1016/j.scitotenv.2022.157728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/01/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The technology of flue gas CO2 fixation by microalgae is highly attractive in the era of CO2 neutrality. However, CO2 emission along the whole process has yet to be sufficiently evaluated. Here, a life-cycle assessment was performed to evaluate the energy conversion characteristics and environmental impacts of flue gas CO2 fixation from coal-fired power plant (Case 1) and coal chemical plant (Case 2) by microalgae. The results show that total energy consumption and CO2 gas emissions for Case 1 are 27.5-38.0 MJ/kg microalgae power (MP) and 5.7-7.7 kg CO2 equiv/kg MP, respectively, which are lower than that for Case 2 (122.5-181.3 MJ/kg MP and 32.7-48.6 kg CO2 equiv/kg MP). The CO2 gas aeration rate and microalgae growth rate are the two most sensitive parameters for the energy conversion and net CO2 emission. Therefore, increasing the CO2 aeration efficiency and microalgae growth rate are key to advance the technology of flue gas CO2 fixation by microalgae which will contribute to carbon naturality.
Collapse
Affiliation(s)
- Qing Ye
- College of Energy, Soochow University, Suzhou 215006, China
| | - Yu Shen
- College of Energy, Soochow University, Suzhou 215006, China
| | - Qi Zhang
- College of Energy, Soochow University, Suzhou 215006, China
| | - Xi Wu
- College of Energy, Soochow University, Suzhou 215006, China
| | - Wangbiao Guo
- Microbial Sciences Institute, Department of Microbial Pathogenesis, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
6
|
Rasheed R, Thaher M, Younes N, Bounnit T, Schipper K, Nasrallah GK, Al Jabri H, Gifuni I, Goncalves O, Pruvost J. Solar cultivation of microalgae in a desert environment for the development of techno-functional feed ingredients for aquaculture in Qatar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155538. [PMID: 35489502 DOI: 10.1016/j.scitotenv.2022.155538] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
The demand for aquaculture feed will increase in the coming years in order to ensure food security for a growing global population. Microalgae represent a potential fish-feed ingredient; however, the feasibility of their sustainable production has great influence on its successful application. Geographical locations offering high light and temperature, such as Qatar, are ideal to cultivate microalgae with high productivities. For that, the environmental and biological interactions, including field and laboratory optimization, for solar production and application of two native microalgae, Picochlorum maculatum and Nannochloris atomus, were investigated as potential aquaculture feed ingredients. After validating pilot-scale outdoor cultivation, both strains were further investigated under simulated seasonal conditions using a thermal model to predict light and culture temperature cycles for the major climatic seasons in Qatar. Applied thermal and light variations ranged from 36 °C and 2049 μmol/m2/s in extreme summer, to as low as 15 °C and 1107 μmol/m2/s in winter, respectively. Biomass productivities of both strains varied significantly with maximum productivities of 32.9 ± 2.5 g/m2/d and 17.1 ± 0.8 g/m2/d found under moderate summer conditions for P. maculatum and N. atomus, respectively. These productivities were significantly reduced under both extreme summer, as well as winter conditions. To improve annual biomass productivities, the effect of implementation of a simple ground heat exchanger for thermal regulation of raceway ponds was also studied. Biomass productivities increased significantly, during extreme seasons due to respective cooling and heating of the culture. Both strains produced high amounts of proteins during winter, 54.5 ± 0.55% and 44 ± 2.25%, while lipid contents were high during summer reaching up to 29.6 ± 0.75 and 28.65 ± 0.65%, for P. maculatum and N. atomus respectively. Finally, using acute toxicity assay with zebra fish embryos, both strains showed no toxicity even at the highest concentrations tested, and is considered safe for use as feed ingredient and to the environment.
Collapse
Affiliation(s)
- Rihab Rasheed
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| | - Mahmoud Thaher
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Nadin Younes
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; Department of Biomedical Sciences, College of Health Sciences, Member of QU Health, Qatar University, Doha 2713, Qatar
| | - Touria Bounnit
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Kira Schipper
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; Department of Biomedical Sciences, College of Health Sciences, Member of QU Health, Qatar University, Doha 2713, Qatar
| | - Hareb Al Jabri
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar; Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Imma Gifuni
- Algosource Technologies, 7, Rue Eugène Cornet, 44600 Saint-Nazaire, France
| | - Olivier Goncalves
- CNRS, GEPEA, UMR 6144, Université de Nantes, Oniris, F-44600 Saint-Nazaire, France
| | - Jeremy Pruvost
- CNRS, GEPEA, UMR 6144, Université de Nantes, Oniris, F-44600 Saint-Nazaire, France
| |
Collapse
|
7
|
Huang B, Cui J, Chen X, Huang Y, Xu C, Xie E. Mechanism of the allelopathic effect of macroalgae Gracilaria bailiniae on Nitzschia closterium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113767. [PMID: 35714486 DOI: 10.1016/j.ecoenv.2022.113767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/06/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
With the rapid development of the seaweed industry in China, the scale and production of its commercial seaweed are ranked among the most significant worldwide. Consequently, the control of algal blooms, especially fouling diatoms, during macroalgae industrialisation is an important issue. Many diatom bloom studies have focused on physical and chemical controls, with limited economic and eco-friendly biological controls reported. In our study, Gracilaria bailiniae fresh thalli and aqueous extract profoundly suppressed Nitzschia closterium growth (50% inhibition concentration of the fourth day (IC50-4 day) was 0.667 × 10-3 g·mL-1 and 3.889 × 10-3 g·mL-1, respectively). The cellular morphology changes of N. closterium exposed to the G. bailiniae aqueous extract were severe atrophies and plasmolysis and dissolution of endocellular structures. To explore more potential allelochemicals to control N. closterium, the intracellular compounds of G. bailiniae were detected and screened. Three organic acids (citrate, hydroxyethanesulfonic acid (HA) and taurine) had allelopathic potential against N. closterium. Our results showed that citrate and HA markedly suppressed N. closterium (IC50-4 day: 1.035 mM and 1.151 mM, respectively); however, taurine poorly suppressed N. closterium (IC50-4 day: 2.500 mM). Therefore, HA is one of the main allelopathic compounds in G. bailiniae. Further, the allelopathic mechanism of HA against the N. closterium photosynthetic system broke its photosynthetic apparatus (oxygen-evolving complex, reaction centres, the effective antenna size and the donor side of photosystem II) and hindered electron transport. The experimental results provide a new and eco-friendly strategy to control diatom blooms.
Collapse
Affiliation(s)
- Bowen Huang
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jianjun Cui
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Xinyi Chen
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongjian Huang
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Cong Xu
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Enyi Xie
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
8
|
Liu Y, Liu X, Sun J. Response of Chlorophyll Fluorescence Characteristics and Dissolved Organic Matter for Marine Diatom Skeletonema dohrnii under Stress from Penicillin and Zn 2. PLANTS (BASEL, SWITZERLAND) 2021; 10:2684. [PMID: 34961155 PMCID: PMC8708301 DOI: 10.3390/plants10122684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022]
Abstract
Skeletonema dohrnii is a good model diatom for studying environmental stress and has promising applications and prospects in various fields. Antibiotics and heavy metals are commonly exceeded in the nearshore marine habitats. In this work, we investigated the effects of an antibiotic (penicillin, 2 µg/L) and a heavy metal ion (Zn2+, 10 µmol/L) stress on marine diatom S. dohrnii, mainly using excitation-emission matrices (EEMs) fluorescence methods and OJIP test. Results indicated that algal cells grown with the antibiotic showed higher biomass, specific growth rate, doubling time, chlorophyll a, and chlorophyll fluorescence variables. Moreover, excess zinc had negative effects on S. dohrnii. We found that zinc not only inhibited the relative photosynthetic electron transfer efficiency but also reduced the Chl a content, which ultimately affected algal growth and organic matter production. In addition, the combined effect of penicillin and Zn2+ further affected the physiological state of S. dohrnii. The dissolved organic matter (DOM) characteristics of the four cultures were also different, including fluorescence indices (fluorescence index, biological index, β/α, and humification index) and fluorescence peaks (peaks A, C, M and T). In brief, characterization of chlorophyll fluorescence characteristics and DOM-related variables are important for understanding the effects of environmental stress on microalgae.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China;
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan 430074, China;
| | - Xiaofang Liu
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan 430074, China;
| | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan 430074, China;
| |
Collapse
|
9
|
Matula EE, Nabity JA, McKnight DM. Supporting Simultaneous Air Revitalization and Thermal Control in a Crewed Habitat With Temperate Chlorella vulgaris and Eurythermic Antarctic Chlorophyta. Front Microbiol 2021; 12:709746. [PMID: 34504481 PMCID: PMC8422879 DOI: 10.3389/fmicb.2021.709746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Including a multifunctional, bioregenerative algal photobioreactor for simultaneous air revitalization and thermal control may aid in carbon loop closure for long-duration surface habitats. However, using water-based algal media as a cabin heat sink may expose the contained culture to a dynamic, low temperature environment. Including psychrotolerant microalgae, native to these temperature regimes, in the photobioreactor may contribute to system stability. This paper assesses the impact of a cycled temperature environment, reflective of spacecraft thermal loops, to the oxygen provision capability of temperate Chlorella vulgaris and eurythermic Antarctic Chlorophyta. The tested 28-min temperature cycles reflected the internal thermal control loops of the International Space Station (C. vulgaris, 9-27°C; Chlorophyta-Ant, 4-14°C) and included a constant temperature control (10°C). Both sample types of the cycled temperature condition concluded with increased oxygen production rates (C. vulgaris; initial: 0.013 mgO2 L-1, final: 3.15 mgO2 L-1 and Chlorophyta-Ant; initial: 0.653 mgO2 L-1, final: 1.03 mgO2 L-1) and culture growth, suggesting environmental acclimation. Antarctic sample conditions exhibited increases or sustainment of oxygen production rates normalized by biomass dry weight, while both C. vulgaris sample conditions decreased oxygen production per biomass. However, even with the temperature-induced reduction, cycled temperature C. vulgaris had a significantly higher normalized oxygen production rate than Antarctic Chlorophyta. Chlorophyll fluorometry measurements showed that the cycled temperature conditions did not overly stress both sample types (FV/FM: 0.6-0.75), but the Antarctic Chlorophyta sample had significantly higher fluorometry readings than its C. vulgaris counterpart (F = 6.26, P < 0.05). The steady state C. vulgaris condition had significantly lower fluorometry readings than all other conditions (FV/FM: 0.34), suggesting a stressed culture. This study compares the results to similar experiments conducted in steady state or diurnally cycled temperature conditions. Recommendations for surface system implementation are based off the presented results. The preliminary findings imply that both C. vulgaris and Antarctic Chlorophyta can withstand the dynamic temperature environment reflective of a thermal control loop and these data can be used for future design models.
Collapse
Affiliation(s)
- Emily E Matula
- Bioastronautics, Smead Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| | - James A Nabity
- Bioastronautics, Smead Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| | - Diane M McKnight
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, United States.,Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
10
|
The Role of Selected Wavelengths of Light in the Activity of Photosystem II in Gloeobacter violaceus. Int J Mol Sci 2021; 22:ijms22084021. [PMID: 33924720 PMCID: PMC8069770 DOI: 10.3390/ijms22084021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/03/2023] Open
Abstract
Gloeobacter violaceus is a cyanobacteria species with a lack of thylakoids, while photosynthetic antennas, i.e., phycobilisomes (PBSs), photosystem II (PSII), and I (PSI), are located in the cytoplasmic membrane. We verified the hypothesis that blue–red (BR) light supplemented with a far-red (FR), ultraviolet A (UVA), and green (G) light can affect the photosynthetic electron transport chain in PSII and explain the differences in the growth of the G. violaceus culture. The cyanobacteria were cultured under different light conditions. The largest increase in G. violaceus biomass was observed only under BR + FR and BR + G light. Moreover, the shape of the G. violaceus cells was modified by the spectrum with the addition of G light. Furthermore, it was found that both the spectral composition of light and age of the cyanobacterial culture affect the different content of phycobiliproteins in the photosynthetic antennas (PBS). Most likely, in cells grown under light conditions with the addition of FR and G light, the average antenna size increased due to the inactivation of some reaction centers in PSII. Moreover, the role of PSI and gloeorhodopsin as supplementary sources of metabolic energy in the G. violaceus growth is discussed.
Collapse
|
11
|
Chen Q, Sun D, Fang T, Zhu B, Liu W, He X, Sun X, Duan S. In vitro allelopathic effects of compounds from Cerbera manghas L. on three Dinophyta species responsible for harmful common red tides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142253. [PMID: 33254874 DOI: 10.1016/j.scitotenv.2020.142253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/29/2020] [Accepted: 09/05/2020] [Indexed: 05/18/2023]
Abstract
Allelopathy is regarded as an economic and eco-friendly approach for the control of harmful algal blooms (HABs) because allelochemicals degrade easily and cause less pollution than traditional algicides. We first surveyed the inhibitory effect of the traditional medicinal plant Cerbera manghas L. on the notorious dinoflagellates Alexandrium tamarense, Scrippsiella trochoidea, and Karenia mikimotoi. Then, we identified and quantified the potential algicidal compounds by UPLC-MS and determined their activity. The aqueous extract inhibited algae with EC50-120 h at 0.986, 1.567 and 1.827 g L-1 for A. tamarense, S. trochoidea, and K. mikimotoi, respectively. Three potential allelochemicals were quantified in the stock solution: quinic acid (QA) (28.81 mg L-1), protocatechuic acid (PA) (53.91 mg L-1), and phloridzin (PD) (26.17 mg L-1). Our results illustrated that 1) QA did not have an inhibitory effect, 2) PA had medium toxicity to algae (EC50-120h: 0.22, 0.28, and 0.35 mM for A. tamarense, S. trochoidea, and K. mikimotoi), and 3) PD had low toxicity (EC50-120h > 0.66 mM). These findings suggested that PA might be the main allelopathic compound in the aqueous extract of the studied algae. In addition, PA could have a negative effect on the photosynthesis of S. trochoidea by impeding the reduction of quinone electrons and destroying electron transfer in PSII. In summary, this was the first study to quantify allelochemicals in C. manghas fruit. Moreover, C. manghas and protocatechuic have the potential to be algicides to control and mitigate the HABs caused by dinoflagellates.
Collapse
Affiliation(s)
- Qi Chen
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Dong Sun
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524000, China
| | - Ting Fang
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Bo Zhu
- School of Life Science and Engineering, State Defense Key Laboratory of the Nuclear Waste and Environmental Security, Southwest University of Science and Technology, Mianyang 621010, China
| | - Weijie Liu
- South China Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510530, China
| | - Xingyu He
- University of Cincinnati, Cincinnati, OH 45221, USA
| | - Xian Sun
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, P.R. China.
| | - Shunshan Duan
- Department of Ecology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
12
|
Liu J, Zhang H, Yan L, Kerr PG, Zhang S, Wu Y. Electron transport, light energy conversion and proteomic responses of periphyton in photosynthesis under exposure to AgNPs. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123809. [PMID: 33113741 DOI: 10.1016/j.jhazmat.2020.123809] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 05/09/2023]
Abstract
Silver nanoparticles (AgNPs) including a mix of intact nanoparticle-Ag and 'free' Ag+ pose high risks to benthic photoautotrophs, but the photosynthetic responses of benthic microbial aggregates to AgNPs still remain largely unknown. Here, periphyton and Nostoc were used to elucidate the photosynthetic responses of benthic algae community to intact nanoparticle-Ag and Ag+. During exposure, both intact nanoparticle-Ag and Ag+ imposed negative effects on photosynthesis of benthic algae, but via different pathways. Specifically, Ag+ had stronger effects on damaging the oxygen-evolving complex (OEC) and thylakoid membrane than intact nanoparticle-Ag. Ag+ also suppressed electron transfer from QA to QB, and impaired phycobilisome. Intact nanoparticle-Ag inhibited the expression of PsbD and PsbL in PSII, but prompted the ROS scavenging capacity. In response to the stress of AgNPs, the benthic algae increased light energy absorption to maintain the electron transport efficiency, and up-regulated PSI reaction center protein (PsaA) to compensate the degraded PSII. These results reveal how intact nanoparticle-Ag and Ag+ influence electron transport, energy conversion and protein expression in the photosynthesis of periphyton, and provide deep insights into the responses of benthic photoautotrophs to different components of AgNPs.
Collapse
Affiliation(s)
- Junzhuo Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China; Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Yichang, 443605, China.
| | - Huijie Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China; College of Agricultural Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liying Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China
| | - Philip G Kerr
- School of Biomedical Sciences, Charles Sturt University, Boorooma St., Wagga Wagga, NSW, 2678, Australia
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China; Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Yichang, 443605, China.
| |
Collapse
|
13
|
Photo-Oxidative Protection of Chlorophyll a in C-Phycocyanin Aqueous Medium. Antioxidants (Basel) 2020; 9:antiox9121235. [PMID: 33291466 PMCID: PMC7762101 DOI: 10.3390/antiox9121235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 01/28/2023] Open
Abstract
In this study, potential protection of chlorophyll a from illumination and oxidation-induced decomposition has been examined using C-phycocyanin (C-PC) aqueous medium. Photo-oxidation resistance of chlorophyll a was monitored in various aqueous media using ultraviolet-visible spectroscopy and direct-infusion atmospheric pressure chemical ionization mass spectrometry analysis. The spectroscopy results showed that chlorophyll a in C-PC medium experienced the lowest rate of conversion to its derivatives; thus, it was demonstrated that chlorophyll a was mostly intact in the C-PC medium. Furthermore, the C-PC treated with chlorophyll a showed the lowest concentrations of malondialdehyde, and chlorophyll a in C-PC medium did not cause serious damage to human liver cells in vitro after intensive illumination. Therefore, we propose a new method of protecting chlorophyll a from photodegradation and oxidation using C-PC aqueous medium.
Collapse
|
14
|
Kim TY, Hong JE, Park HM, Lee UJ, Lee SY. Decontamination of low-level contaminated water from radioactive cesium and cobalt using microalgae. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-019-07008-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Biological manipulation of eutrophication in West Yangchen Lake. AQUACULTURE AND FISHERIES 2019. [DOI: 10.1016/j.aaf.2019.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Levasseur W, Taidi B, Lacombe R, Perré P, Pozzobon V. Impact of seconds to minutes photoperiods on Chlorella vulgaris growth rate and chlorophyll a and b content. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Cheng J, Guo W, Song Y, Kumar S, Ameer Ali K, Zhou J. Enhancing vorticity magnitude of turbulent flow to promote photochemical efficiency and trichome helix pitch of Arthrospira platensis in a raceway pond with conic baffles. BIORESOURCE TECHNOLOGY 2018; 269:1-8. [PMID: 30144753 DOI: 10.1016/j.biortech.2018.08.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
In order to clarify vortex mechanisms under a turbulent flow field to explain enhanced biomass productivity, computational fluid dynamics and a miniature Doppler velocimeter were employed to investigate the promoted vorticity magnitude and turbulent kinetic energy to support the increased actual photochemical efficiency of Arthrospira platensis in a raceway pond with alternatively permutated conic baffles. Results showed that whereas the first two parameters increased by 5.9 and 13.9 times, respectively, the third rose on an average by 28% to the value of 0.59 measured on pulse-modulated fluorometer. Furthermore, it was detected on a Nikon inverted-fluorescence microscope that the average helix pitch and trichome length increased by 14% and 10% respectively, resulting in higher biomass productivity (34.8%).
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Wangbiao Guo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yanmei Song
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Santosh Kumar
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Kubar Ameer Ali
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Junhu Zhou
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|