1
|
Yıldız Gül E, Aydin Karataş E, Aydin Doğan H, Yenilmez Çiftçi G, Tanrıverdi Eçik E. BODIPY precursors and their cyclotriphosphazene Derivatives: Synthesis, photochemical properties and their application in PDT. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:124006. [PMID: 38350411 DOI: 10.1016/j.saa.2024.124006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/03/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Photodynamic therapy (PDT) is a treatment method consisting of common combination of oxygen, light energy and a light absorbing molecule called a photosensitizer. In this work, four new compounds consisting of BODIPY precursors and BODIPY-cyclotriphosphazene derivatives were synthesized to investigate the PDT effects. The chemical structures of the compounds were characterized and then their photophysical properties were determined by spectroscopic techniques. The precursor BODIPYs and their cyclotriphosphazene derivatives exhibited similar properties such as strong absorption intensity, high photostability and low fluorescence profile in the NIR region. Additionally, the singlet oxygen production capacities of these compounds were determined using the photobleaching technique of 1,3-diphenylisobenzofuran (DPBF) under light illumination. By introducing iodine atoms into the molecule, which are responsible for the intersystem transition (ISC) enhancement, a more efficient singlet oxygen production was achieved in both the iodinated-BODIPY and its cyclotriphosphazene derivative. Anticancer activities of the precursor BODIPYs and their cyclotriphosphazene derivatives in the absence and presence of light illumination were evaluated on cancerous cell lines (PC3 and DU145) and non-tumorigenic prostate epithelial PNT1a cell. The compounds triggered the death of cancer cell PC3 the more significantly in the presence of red light compared to the healthy cells (PNT1a).
Collapse
Affiliation(s)
- Elif Yıldız Gül
- Department of Chemistry, Atatürk University, Erzurum, Turkey
| | - Elanur Aydin Karataş
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey; High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Hatice Aydin Doğan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey; High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | | | | |
Collapse
|
2
|
de Morais FAP, Balbinot RB, Bakoshi ABK, Lazarin-Bidoia D, da Silva Souza Campanholi K, da Silva Junior RC, Gonçalves RS, Ueda-Nakamura T, de Oliveira Silva S, Caetano W, Nakamura CV. Advanced theranostic nanoplatforms for hypericin delivery in the cancer treatment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 247:112782. [PMID: 37660488 DOI: 10.1016/j.jphotobiol.2023.112782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Biomodified coated-lipid vesicles were obtained using the DPPC lipid (L) and F127 copolymer linked covalently with spermine (SN), biotin (BT), and folic acid (FA), resulting in LF127-SN, LF127-BT, and LF127-FA nanoplatforms. The photosensitizer hypericin (HY) was incorporated into the nanosystem by a thin-film method and characterized by dynamic light scattering, zeta potential, encapsulation efficiency, and transmission electronic microscopy. The results provided a good level of stability for all nanoplatforms for at least 5 days as an aqueous dispersion. The in vitro serum stability showed that the HY-loaded LF127-SN has a lower tendency to form complexes with BSA protein than with its analogs. LF127-SN was the most stable HY formulation, followed by LF127-BT and LF127-FA, confirmed by the association constant (Kd) values: 600 μmol L-1, 1100 μmol L-1, 515 μmol L-1, and 378 μmol L-1 for LF127, LF127 FA, LF127-BT, and LF127-SN, respectively. The photodynamic potential of HY was accessed by cytotoxicity assays using Caco-2, B16-F10, L-929, and HaCat cells. HY-loaded LF127-SN revealed a significant increase in the selectivity compared to other nanoplatforms. HY-loaded in LF127-BT and LF127-SN showed distinct uptake and biodistribution after 2 h of intravenous application. All biomodified coated-lipids showed satisfactory metabolism within 72 h after application, without significant accumulation or residue in any vital organ. These results suggest that incorporating HY-loaded in these nanosystems may be a promising strategy for future applications, even with a small amount of binders to the coating copolymer (0.02% w/v). Furthermore, these results indicate that the LF127-SN showed remarkable superiority compared to other evaluated systems, being the most distinct for future photodynamic therapy and theranostic applications.
Collapse
Affiliation(s)
- Flávia Amanda Pedroso de Morais
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil.
| | - Rodolfo Bento Balbinot
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil
| | - Amanda Beatriz Kawano Bakoshi
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil
| | - Danielle Lazarin-Bidoia
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil
| | | | | | - Renato Sonchini Gonçalves
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil.
| | - Tânia Ueda-Nakamura
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil.
| | - Sueli de Oliveira Silva
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil.
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, 87020-900 Maringá, PR, Brazil.
| | - Celso Vataru Nakamura
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
3
|
de Morais FAP, De Oliveira ACV, Balbinot RB, Lazarin-Bidóia D, Ueda-Nakamura T, de Oliveira Silva S, da Silva Souza Campanholi K, da Silva Junior RC, Gonçalves RS, Caetano W, Nakamura CV. Multifunctional Nanoparticles as High-Efficient Targeted Hypericin System for Theranostic Melanoma. Polymers (Basel) 2022; 15:polym15010179. [PMID: 36616529 PMCID: PMC9824163 DOI: 10.3390/polym15010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Biotin, spermine, and folic acid were covalently linked to the F127 copolymer to obtain a new drug delivery system designed for HY-loaded PDT treatment against B16F10 cells. Chemical structures and binders quantification were performed by spectroscopy and spectrophotometric techniques (1NMR, HABA/Avidin reagent, fluorescamine assay). Critical micelle concentration, critical micelle temperature, size, polydispersity, and zeta potential indicate the hydrophobicity of the binders can influence the physicochemical parameters. Spermine-modified micelles showed fewer changes in their physical and chemical parameters than the F127 micelles without modification. Furthermore, zeta potential measurements suggest an increase in the physical stability of these carrier systems. The phototherapeutic potential was demonstrated using hypericin-loaded formulation against B16F10 cells, which shows that the combination of the binders on F127 copolymer micelles enhances the photosensitizer uptake and potentializes the photodynamic activity.
Collapse
Affiliation(s)
- Flávia Amanda Pedroso de Morais
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá 87020-900, PR, Brazil
- Department of Chemistry, State University of Maringá, Maringá 87020-900, PR, Brazil
- Correspondence: (F.A.P.d.M.); (C.V.N.); Tel.: +55-(44)-3011-3680 (F.A.P.d.M. & C.V.N.)
| | | | - Rodolfo Bento Balbinot
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá 87020-900, PR, Brazil
| | - Danielle Lazarin-Bidóia
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá 87020-900, PR, Brazil
| | - Tânia Ueda-Nakamura
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá 87020-900, PR, Brazil
| | - Sueli de Oliveira Silva
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá 87020-900, PR, Brazil
| | | | | | - Renato Sonchini Gonçalves
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Maringá 87020-900, PR, Brazil
| | - Celso Vataru Nakamura
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá 87020-900, PR, Brazil
- Correspondence: (F.A.P.d.M.); (C.V.N.); Tel.: +55-(44)-3011-3680 (F.A.P.d.M. & C.V.N.)
| |
Collapse
|
4
|
Palladium(II) Complexes of Substituted Salicylaldehydes: Synthesis, Characterization and Investigation of Their Biological Profile. Pharmaceuticals (Basel) 2022; 15:ph15070886. [PMID: 35890184 PMCID: PMC9323974 DOI: 10.3390/ph15070886] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Five palladium(II) complexes of substituted salicylaldehydes (X-saloH, X = 4-Et2N (for 1), 3,5-diBr (for 2), 3,5-diCl (for 3), 5-F (for 4) or 4-OMe (for 5)) bearing the general formula [Pd(X-salo)2] were synthesized and structurally characterized. The crystal structure of complex [Pd(4-Et2N-salo)2] was determined by single-crystal X-ray crystallography. The complexes can scavenge 1,1-diphenyl-picrylhydrazyl and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radicals and reduce H2O2. They are active against two Gram-positive (Staphylococcus aureus and Bacillus subtilis) and two Gram-negative (Escherichia coli and Xanthomonas campestris) bacterial strains. The complexes interact strongly with calf-thymus DNA via intercalation, as deduced by diverse techniques and via the determination of their binding constants. Complexes interact reversibly with bovine and human serum albumin. Complementary insights into their possible mechanisms of bioactivity at the molecular level were provided by molecular docking calculations, exploring in silico their ability to bind to calf-thymus DNA, Escherichia coli and Staphylococcus aureus DNA-gyrase, 5-lipoxygenase, and membrane transport lipid protein 5-lipoxygenase-activating protein, contributing to the understanding of the role complexes 1–5 can play both as antioxidant and antibacterial agents. Furthermore, in silico predictive tools have been employed to study the chemical reactivity, molecular properties and drug-likeness of the complexes, and also the drug-induced changes of gene expression profile (as protein- and mRNA-based prediction results), the sites of metabolism, the substrate/metabolite specificity, the cytotoxicity for cancer and non-cancer cell lines, the acute rat toxicity, the rodent organ-specific carcinogenicity, the anti-target interaction profiles, the environmental ecotoxicity, and finally the activity spectra profile of the compounds.
Collapse
|
5
|
Jiao Y, Gao Y, Wang J, An H, Xiang Li Y, Zhang X. Intelligent porphyrin nano-delivery system for photostimulated and targeted inhibition of angiogenesis. Int J Pharm 2022; 621:121805. [DOI: 10.1016/j.ijpharm.2022.121805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 12/17/2022]
|
6
|
Tse RTH, Wong CYP, Chiu PKF, Ng CF. The Potential Role of Spermine and Its Acetylated Derivative in Human Malignancies. Int J Mol Sci 2022; 23:ijms23031258. [PMID: 35163181 PMCID: PMC8836144 DOI: 10.3390/ijms23031258] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/20/2022] Open
Abstract
Polyamines are essential biomolecules for normal cellular metabolism in humans. The roles of polyamines in cancer development have been widely discussed in recent years. Among all, spermine alongside with its acetylated derivative, N1, N12-Diacetylspermine, demonstrate a relationship with the diagnosis and staging of various cancers, including lung, breast, liver, colorectal and urogenital. Numerous studies have reported the level of spermine in different body fluids and organ tissues in patients with different types of cancers. Currently, the role and the underlying mechanisms of spermine in cancer development and progression are still under investigation. This review summarized the roles of spermine in cancer development and as a diagnostic, prognostic and therapeutic tool in various cancers.
Collapse
Affiliation(s)
| | | | - Peter Ka-Fung Chiu
- Correspondence: (P.K.-F.C.); (C.-F.N.); Tel.: +852-3505-2625 (P.K.-F.C. & C.-F.N.)
| | - Chi-Fai Ng
- Correspondence: (P.K.-F.C.); (C.-F.N.); Tel.: +852-3505-2625 (P.K.-F.C. & C.-F.N.)
| |
Collapse
|
7
|
Inhibition of Mitochondrial Metabolism Leads to Selective Eradication of Cells Adapted to Acidic Microenvironment. Int J Mol Sci 2021; 22:ijms221910790. [PMID: 34639130 PMCID: PMC8509312 DOI: 10.3390/ijms221910790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 10/02/2021] [Indexed: 01/17/2023] Open
Abstract
Metabolic transformation of cancer cells leads to the accumulation of lactate and significant acidification in the tumor microenvironment. Both lactate and acidosis have a well-documented impact on cancer progression and negative patient prognosis. Here, we report that cancer cells adapted to acidosis are significantly more sensitive to oxidative damage induced by hydrogen peroxide, high-dose ascorbate, and photodynamic therapy. Higher lactate concentrations abrogate the sensitization. Mechanistically, acidosis leads to a drop in antioxidant capacity caused by a compromised supply of nicotinamide adenine dinucleotide phosphate (NADPH) derived from glucose metabolism. However, lactate metabolism in the Krebs cycle restores NADPH supply and antioxidant capacity. CPI-613 (devimistat), an anticancer drug candidate, selectively eradicates the cells adapted to acidosis through inhibition of the Krebs cycle and induction of oxidative stress while completely abrogating the protective effect of lactate. Simultaneous cell treatment with tetracycline, an inhibitor of the mitochondrial proteosynthesis, further enhances the cytotoxic effect of CPI-613 under acidosis and in tumor spheroids. While there have been numerous attempts to treat cancer by neutralizing the pH of the tumor microenvironment, we alternatively suggest considering tumor acidosis as the Achilles’ heel of cancer as it enables selective therapeutic induction of lethal oxidative stress.
Collapse
|
8
|
Predicting the membrane permeability of organic fluorescent probes by the deep neural network based lipophilicity descriptor DeepFl-LogP. Sci Rep 2021; 11:6991. [PMID: 33772099 PMCID: PMC7997998 DOI: 10.1038/s41598-021-86460-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/16/2021] [Indexed: 01/17/2023] Open
Abstract
Light microscopy has become an indispensable tool for the life sciences, as it enables the rapid acquisition of three-dimensional images from the interior of living cells/tissues. Over the last decades, super-resolution light microscopy techniques have been developed, which allow a resolution up to an order of magnitude higher than that of conventional light microscopy. Those techniques require labelling of cellular structures with fluorescent probes exhibiting specific properties, which are supplied from outside and therefore have to surpass cell membranes. Currently, major efforts are undertaken to develop probes which can surpass cell membranes and exhibit the photophysical properties required for super-resolution imaging. However, the process of probe development is still based on a tedious and time consuming manual screening. An accurate computer based model that enables the prediction of the cell permeability based on their chemical structure would therefore be an invaluable asset for the development of fluorescent probes. Unfortunately, current models, which are based on multiple molecular descriptors, are not well suited for this task as they require high effort in the usage and exhibit moderate accuracy in their prediction. Here, we present a novel fragment based lipophilicity descriptor DeepFL-LogP, which was developed on the basis of a deep neural network. DeepFL-LogP exhibits excellent correlation with the experimental partition coefficient reference data (R2 = 0.892 and MSE = 0.359) of drug-like substances. Further a simple threshold permeability model on the basis of this descriptor allows to categorize the permeability of fluorescent probes with 96% accuracy. This novel descriptor is expected to largely simplify and speed up the development process for novel cell permeable fluorophores.
Collapse
|
9
|
Pavlíčková V, Jurášek M, Rimpelová S, Záruba K, Sedlák D, Šimková M, Kodr D, Staňková E, Fähnrich J, Rottnerová Z, Bartůněk P, Lapčík O, Drašar P, Ruml T. Oxime-based 19-nortestosterone-pheophorbide a conjugate: bimodal controlled release concept for PDT. J Mater Chem B 2020; 7:5465-5477. [PMID: 31414695 DOI: 10.1039/c9tb01301f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photodynamic therapy has become a feasible direction for the treatment of both malignant and non-malignant diseases. It has been in the spotlight since FDA regulatory approval was granted to several photosensitizers worldwide. Nevertheless, there are still strong limitations in the targeting specificity that is vital to prevent systemic toxicity. Here, we report the synthesis and biological evaluation of a novel bimodal oxime conjugate composed of a photosensitizing drug, red-emitting pheophorbide a, and nandrolone (NT), a steroid specifically binding the androgen receptor (AR) commonly overexpressed in various tumors. We characterized the physico-chemical properties of the NT-pheophorbide a conjugate (NT-Pba) and singlet oxygen generation. Because light-triggered therapies have the potential to provide important advances in the treatment of hormone-sensitive cancer, the biological potential of this novel specifically-targeted photosensitizer was assessed in prostatic cancer cell lines in vitro using an AR-positive (LNCaP) and an AR-negative/positive cell line (PC-3). U-2 OS cells, both with and without stable AR expression, were used as a second cell line model. Interestingly, we found that the NT-Pba conjugate was not only photodynamically active and AR-specific, but also that its phototoxic effect was more pronounced compared to pristine pheophorbide a. We also examined the intracellular localization of NT-Pba. Live-cell fluorescence microscopy provided clear evidence that the NT-Pba conjugate localized in the endoplasmic reticulum and mitochondria. Moreover, we performed a competitive localization study with the excess of nonfluorescent NT, which was able to displace fluorescent NT-Pba from the cell interior, thereby further confirming the binding specificity. The oxime ether bond degradation was assayed in living cells by both real-time microscopy and a steroid receptor reporter assay using AR U-2 OS cells. Thus, NT-Pba is a promising candidate for both the selective targeting and eradication of AR-positive malignant cells by photodynamic therapy.
Collapse
Affiliation(s)
- Vladimíra Pavlíčková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Şenkuytu E, Kızılkaya P, Ölçer Z, Pala U, Davarcı D, Zorlu Y, Erdoğan H, Yenilmez Çiftçi G. Electrophoresis and Biosensor-Based DNA Interaction Analysis of the First Paraben Derivatives of Spermine-Bridged Cyclotriphosphazenes. Inorg Chem 2020; 59:2288-2298. [PMID: 31986027 DOI: 10.1021/acs.inorgchem.9b03031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer is the uncontrolled growth of abnormal cells via malignant cell division and rapid DNA replication. While DNA damaging molecules can cause cancer, their role as anticancer drugs are very significant. For this purpose, the novel series of paraben substituted spermine bridged(dispirobino) cyclotriphosphazene compounds 2-6 were synthesized for the first time, and their structures were characterized by various spectroscopic techniques. The solid-state structures and geometries of compounds 2-6 were determined using single-crystal X-ray structural analysis. In addition, it was confirmed by TGA that all compounds 1-6 showed high thermal stability. Two methods were used in order to investigate DNA interaction properties of the targeted molecules. While biosensor-based screening test that measures DNA hybridization efficiency on a biochip surface, the agarose gel electrophoresis method examines the effect of compounds on plasmid DNA structure. The results collected from the automated biosensor device and agarose gel electrophoresis have indicated that compounds 1, 5, and 6 showed higher DNA damage than the compounds 2-4. According to the biosensor results, compounds 1, 5, and 6 showed 85%, 69%, and 77% activity, respectively.
Collapse
Affiliation(s)
- Elif Şenkuytu
- Department of Chemistry , Gebze Technical University , Gebze 41400 , Kocaeli , Turkey
| | - Perihan Kızılkaya
- Department of Chemistry , Gebze Technical University , Gebze 41400 , Kocaeli , Turkey.,Faculty of Arts and Science, Department of Chemistry , Trakya University , Edirne 22020 , Turkey
| | - Zehra Ölçer
- Department of Chemistry , Gebze Technical University , Gebze 41400 , Kocaeli , Turkey
| | - Uğur Pala
- Department of Chemistry , Gebze Technical University , Gebze 41400 , Kocaeli , Turkey
| | - Derya Davarcı
- Department of Chemistry , Gebze Technical University , Gebze 41400 , Kocaeli , Turkey
| | - Yunus Zorlu
- Department of Chemistry , Gebze Technical University , Gebze 41400 , Kocaeli , Turkey
| | - Huriye Erdoğan
- Department of Chemistry , Gebze Technical University , Gebze 41400 , Kocaeli , Turkey
| | - Gönül Yenilmez Çiftçi
- Department of Chemistry , Gebze Technical University , Gebze 41400 , Kocaeli , Turkey
| |
Collapse
|
11
|
Kızılkaya P, Şenkuytu E, Davarcı D, Pala U, Ölçer Z, Yenilmez Çiftçi G. Novel paraben derivatives of tetracyclic spermine cyclotriphosphazenes: synthesis, characterization and biosensor based DNA interaction analysis. NEW J CHEM 2020. [DOI: 10.1039/d0nj03908j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new series of paraben-substituted dispiroansa (tetracyclic) spermine derivatives of cyclotriphosphazenes likely to be biologically active were synthesized for the first time and their effects on DNA were studied.
Collapse
Affiliation(s)
- Perihan Kızılkaya
- Department of Chemistry
- Gebze Technical University
- Gebze
- Turkey
- Faculty of Arts and Science, Department of Chemistry
| | - Elif Şenkuytu
- Department of Chemistry
- Gebze Technical University
- Gebze
- Turkey
- Faculty of Science
| | - Derya Davarcı
- Department of Chemistry
- Gebze Technical University
- Gebze
- Turkey
| | - Uğur Pala
- Department of Chemistry
- Gebze Technical University
- Gebze
- Turkey
| | - Zehra Ölçer
- Department of Chemistry
- Gebze Technical University
- Gebze
- Turkey
| | | |
Collapse
|
12
|
Pavlíčková V, Rimpelová S, Jurášek M, Záruba K, Fähnrich J, Křížová I, Bejček J, Rottnerová Z, Spiwok V, Drašar P, Ruml T. PEGylated Purpurin 18 with Improved Solubility: Potent Compounds for Photodynamic Therapy of Cancer. Molecules 2019; 24:E4477. [PMID: 31817655 PMCID: PMC6943672 DOI: 10.3390/molecules24244477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 12/12/2022] Open
Abstract
Purpurin 18 derivatives with a polyethylene glycol (PEG) linker were synthesized as novel photosensitizers (PSs) with the goal of using them in photodynamic therapy (PDT) for cancer. These compounds, derived from a second-generation PS, exhibit absorption at long wavelengths; considerable singlet oxygen generation and, in contrast to purpurin 18, have higher hydrophilicity due to decreased logP. Together, these properties make them potentially ideal PSs. To verify this, we screened the developed compounds for cell uptake, intracellular localization, antitumor activity and induced cell death type. All of the tested compounds were taken up into cancer cells of various origin and localized in organelles known to be important PDT targets, specifically, mitochondria and the endoplasmic reticulum. The incorporation of a zinc ion and PEGylation significantly enhanced the photosensitizing efficacy, decreasing IC50 (half maximal inhibitory compound concentration) in HeLa cells by up to 170 times compared with the parental purpurin 18. At effective PDT concentrations, the predominant type of induced cell death was apoptosis. Overall, our results show that the PEGylated derivatives presented have significant potential as novel PSs with substantially augmented phototoxicity for application in the PDT of cervical, prostate, pancreatic and breast cancer.
Collapse
Affiliation(s)
- Vladimíra Pavlíčková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 3, 166 28 Prague 6, Czech Republic; (V.P.); (J.B.); (V.S.)
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 3, 166 28 Prague 6, Czech Republic; (V.P.); (J.B.); (V.S.)
| | - Michal Jurášek
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic;
| | - Kamil Záruba
- Department of Analytical Chemistry, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic; (K.Z.); (J.F.)
| | - Jan Fähnrich
- Department of Analytical Chemistry, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic; (K.Z.); (J.F.)
| | - Ivana Křížová
- Department of Biotechnology, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic;
| | - Jiří Bejček
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 3, 166 28 Prague 6, Czech Republic; (V.P.); (J.B.); (V.S.)
| | - Zdeňka Rottnerová
- Central laboratories, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic;
| | - Vojtěch Spiwok
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 3, 166 28 Prague 6, Czech Republic; (V.P.); (J.B.); (V.S.)
| | - Pavel Drašar
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic;
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 3, 166 28 Prague 6, Czech Republic; (V.P.); (J.B.); (V.S.)
| |
Collapse
|
13
|
Targeting of stress response pathways in the prevention and treatment of cancer. Biotechnol Adv 2018; 36:583-602. [PMID: 29339119 DOI: 10.1016/j.biotechadv.2018.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/12/2022]
Abstract
The hallmarks of tumor tissue are not only genetic aberrations but also the presence of metabolic and oxidative stress as a result of hypoxia and lactic acidosis. The stress activates several prosurvival pathways including metabolic remodeling, autophagy, antioxidant response, mitohormesis, and glutaminolysis, whose upregulation in tumors is associated with a poor survival of patients, while their activation in healthy tissue with statins, metformin, physical activity, and natural compounds prevents carcinogenesis. This review emphasizes the dual role of stress response pathways in cancer and suggests the integrative understanding as a basis for the development of rational therapy targeting the stress response.
Collapse
|