1
|
Tarlachkov SV, Starodumova IP, Boueva OV, Chernyshov SV, Evtushenko LI. Deep dive into the diversity and properties of rhodopsins in actinomycetes of the family Geodermatophilaceae. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 262:113083. [PMID: 39729693 DOI: 10.1016/j.jphotobiol.2024.113083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/28/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024]
Abstract
In recent decades, most studies of microbial rhodopsins have focused on their identification and characterization in aquatic bacteria. In 2021, actinomycetes of the family Geodermatophilaceae, commonly inhabiting terrestrial ecosystems in hot and arid regions, have been reported to contain rhodopsins with DTEW, DTEF and NDQ amino acid motifs. An advanced bioinformatics analysis performed in this work additionally revealed NTQ rhodopsin and heliorhodopsins. The absorption maxima identified for rhodopsins from the above five groups ranged from 513 nm (NTQ rhodopsin) to 559 nm (heliorhodopsin). An assessment of pumping specificity showed that DTEW and DTEF rhodopsins possessed outward H+-transport activities. Ca2+ ions were required for pumping if E. coli C43(DE3) was used as an expression strain, but were unnecessary in the case of E. coli BL21(DE3). For NDQ rhodopsin, outward H+-transport was detected in NaCl and KCl solutions at pH 5 and 6, but not at neutral pH. A weak Na+-efflux was observed for this rhodopsin at pH 6 and 7 in a NaCl solution only in the presence of proton ionophore. NTQ rhodopsin acted as an inward Cl--, Br--, and I-- pump, with a much weaker activity towards NO3-. No pumping activity was detected for the heliorhodopsin tested. The finding of rhodopsins with novel properties further expands the rhodopsin landscape.
Collapse
Affiliation(s)
- Sergey V Tarlachkov
- All-Russian Collection of Microorganisms (VKM), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 5, 142290 Pushchino, Moscow Region, Russia; Group of Molecular Biotechnology, Department of Biotechnology, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, pr. Nauki 6, 142290, Pushchino, Moscow Region, Russia.
| | - Irina P Starodumova
- All-Russian Collection of Microorganisms (VKM), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 5, 142290 Pushchino, Moscow Region, Russia
| | - Olga V Boueva
- All-Russian Collection of Microorganisms (VKM), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 5, 142290 Pushchino, Moscow Region, Russia
| | - Sergei V Chernyshov
- Group of Molecular Biotechnology, Department of Biotechnology, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, pr. Nauki 6, 142290, Pushchino, Moscow Region, Russia
| | - Lyudmila I Evtushenko
- All-Russian Collection of Microorganisms (VKM), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 5, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
2
|
Xiao L, Yang Q, Tan J, Ma B, Chen D. Engineering a Cl - -Modulated Light-Driven Na + Pump. Chemistry 2023; 29:e202302543. [PMID: 37833829 DOI: 10.1002/chem.202302543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
Microbial Na+ -pumping rhodopsin (NaR) is a promising optogenetic tool due to its unique ability to transport Na+ . Like most rhodopsin-based tools, NaR is limited to light-based control. In this study, our objective was to develop a novel mode of modulation for NaR beyond light control. By introducing a potential Cl- binding site near the putative Na+ release cavity, we engineered Nonlabens dokdonensis rhodopsin 2 (NdR2) to be modulated by Cl- , an essential chemical in organisms. The engineered NdR2 demonstrated an approximately two-fold increase in Na+ pump activity in the presence of 100 mM Cl- compared to Cl- -free solution. Increasing Cl- concentration decreased the lifetimes of the M and O intermediates accordingly. The analysis of competitive ion uptake suggested the bound Cl- may increase the Na+ affinity and selectivity. This chemical modulation allows for more diverse and precise control over cellular processes, advancing the development of next-generation optogenetic tools. Notably, our Cl- -modulated NdR2 establishes an innovative mechanism for linking Cl- to Na+ -related processes, with potential applications in optogenetic therapies for related diseases.
Collapse
Affiliation(s)
- Lan Xiao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qifan Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jingjing Tan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baofu Ma
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deliang Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Yang Q, Chen D. Na + Binding and Transport: Insights from Light-Driven Na +-Pumping Rhodopsin. Molecules 2023; 28:7135. [PMID: 37894614 PMCID: PMC10608830 DOI: 10.3390/molecules28207135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Na+ plays a vital role in numerous physiological processes across humans and animals, necessitating a comprehensive understanding of Na+ transmembrane transport. Among the various Na+ pumps and channels, light-driven Na+-pumping rhodopsin (NaR) has emerged as a noteworthy model in this field. This review offers a concise overview of the structural and functional studies conducted on NaR, encompassing ground/intermediate-state structures and photocycle kinetics. The primary focus lies in addressing key inquiries: (1) unraveling the translocation pathway of Na+; (2) examining the role of structural changes within the photocycle, particularly in the O state, in facilitating Na+ transport; and (3) investigating the timing of Na+ uptake/release. By delving into these unresolved issues and existing debates, this review aims to shed light on the future direction of Na+ pump research.
Collapse
Affiliation(s)
- Qifan Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Deliang Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Xu J, Yang Q, Ma B, Li L, Kong F, Xiao L, Chen D. K +-Dependent Photocycle and Photocurrent Reveal the Uptake of K + in Light-Driven Sodium Pump. Int J Mol Sci 2023; 24:14414. [PMID: 37833864 PMCID: PMC10572131 DOI: 10.3390/ijms241914414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Engineering light-controlled K+ pumps from Na+-pumping rhodopsins (NaR) greatly expands the scope of optogenetic applications. However, the limited knowledge regarding the kinetic and selective mechanism of K+ uptake has significantly impeded the modification and design of light-controlled K+ pumps, as well as their practical applications in various fields, including neuroscience. In this study, we presented K+-dependent photocycle kinetics and photocurrent of a light-driven Na+ pump called Nonlabens dokdonensis rhodopsin 2 (NdR2). As the concentration of K+ increased, we observed the accelerated decay of M intermediate in the wild type (WT) through flash photolysis. In 100 mM KCl, the lifetime of the M decay was approximately 1.0 s, which shortened to around 0.6 s in 1 M KCl. Additionally, the K+-dependent M decay kinetics were also observed in the G263W/N61P mutant, which transports K+. In 100 mM KCl, the lifetime of the M decay was approximately 2.5 s, which shortened to around 0.2 s in 1 M KCl. According to the competitive model, in high KCl, K+ may be taken up from the cytoplasmic surface, competing with Na+ or H+ during M decay. This was further confirmed by the K+-dependent photocurrent of WT liposome. As the concentration of K+ increased to 500 mM, the amplitude of peak current significantly dropped to approximately ~60%. Titration experiments revealed that the ratio of the rate constant of H+ uptake (kH) to that of K+ uptake (kK) is >108. Compared to the WT, the G263W/N61P mutant exhibited a decrease of approximately 40-fold in kH/kK. Previous studies focused on transforming NaR into K+ pumps have primarily targeted the intracellular ion uptake region of Krokinobacter eikastus rhodopsin 2 (KR2) to enhance K+ uptake. However, our results demonstrate that the naturally occurring WT NdR2 is capable of intracellular K+ uptake without requiring structural modifications on the intracellular region. This discovery provides diverse options for future K+ pump designs. Furthermore, we propose a novel photocurrent-based approach to evaluate K+ uptake, which can serve as a reference for similar studies on other ion pumps. In conclusion, our research not only provides new insights into the mechanism of K+ uptake but also offers a valuable point of reference for the development of optogenetic tools and other applications in this field.
Collapse
Affiliation(s)
- Jikang Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
| | - Qifan Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Baofu Ma
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
| | - Longjie Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
| | - Fei Kong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
| | - Lan Xiao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
| | - Deliang Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Singh M, Ito S, Hososhima S, Abe-Yoshizumi R, Tsunoda SP, Inoue K, Kandori H. Light-Driven Chloride and Sulfate Pump with Two Different Transport Modes. J Phys Chem B 2023; 127:7123-7134. [PMID: 37552856 DOI: 10.1021/acs.jpcb.3c02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Ion pumps are membrane proteins that actively translocate ions by using energy. All known pumps bind ions in the resting state, and external energy allows ion transport through protein structural changes. The light-driven sodium-ion pump Krokinobacter eikastus rhodopsin 2 (KR2) is an exceptional case in which ion binding follows the energy input. In this study, we report another case of this unusual transport mode. The NTQ rhodopsin from Alteribacter aurantiacus (AaClR) is a natural light-driven chloride pump, in which the chloride ion binds to the resting state. AaClR is also able to pump sulfate ions, though the pump efficiency is much lower for sulfate ions than for chloride ions. Detailed spectroscopic analysis revealed no binding of the sulfate ion to the resting state of AaClR, indicating that binding of the substrate (sulfate ion) to the resting state is not necessary for active transport. This property of the AaClR sulfate pump is similar to that of the KR2 sodium pump. Photocycle dynamics of the AaClR sulfate pump resemble a non-functional cycle in the absence of anions. Despite this, flash photolysis and difference Fourier transform infrared spectroscopy suggest transient binding of the sulfate ion to AaClR. The molecular mechanism of this unusual active transport by AaClR is discussed.
Collapse
Affiliation(s)
- Manish Singh
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shota Ito
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shoko Hososhima
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Rei Abe-Yoshizumi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Satoshi P Tsunoda
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-855, Japan
| | - Keiichi Inoue
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-855, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-855, Japan
| |
Collapse
|
6
|
Ghosh M, Misra R, Bhattacharya S, Majhi K, Jung KH, Sheves M. Retinal-Carotenoid Interactions in a Sodium-Ion-Pumping Rhodopsin: Implications on Oligomerization and Thermal Stability. J Phys Chem B 2023; 127:2128-2137. [PMID: 36857147 PMCID: PMC10026069 DOI: 10.1021/acs.jpcb.2c07502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Microbial rhodopsin (also called retinal protein)-carotenoid conjugates represent a unique class of light-harvesting (LH) complexes, but their specific interactions and LH properties are not completely elucidated as only few rhodopsins are known to bind carotenoids. Here, we report a natural sodium-ion (Na+)-pumping Nonlabens (Donghaeana) dokdonensis rhodopsin (DDR2) binding with a carotenoid salinixanthin (Sal) to form a thermally stable rhodopsin-carotenoid complex. Different spectroscopic studies were employed to monitor the retinal-carotenoid interaction as well as the thermal stability of the protein, while size-exclusion chromatography (SEC) and homology modeling are performed to understand the protein oligomerization process. In analogy with that of another Na+-pumping protein Krokinobacter eikastus rhodopsin 2 (KR2), we propose that DDR2 (studied concentration range: 2 × 10-6 to 4 × 10-5 M) remains mainly as a pentamer at room temperature and neutral pH, while heating above 55 °C partially converted it into a thermally less stable oligomeric form of the protein. This process is affected by both the pH and concentration. At high concentrations (4 × 10-5 to 2 × 10-4 M), the protein adopts a pentamer form reflected in the excitonic circular dichroism (CD) spectrum. In the presence of Sal, the thermal stability of DDR2 is increased significantly, and the pigment is stable even at 85 °C. The results presented could have implications in designing stable rhodopsin-carotenoid antenna complexes.
Collapse
Affiliation(s)
- Mihir Ghosh
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ramprasad Misra
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sudeshna Bhattacharya
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Koushik Majhi
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul 04107, South Korea
| | - Mordechai Sheves
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
7
|
Inoue K. Diversity, Mechanism, and Optogenetic Application of Light-Driven Ion Pump Rhodopsins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:89-126. [PMID: 33398809 DOI: 10.1007/978-981-15-8763-4_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ion-transporting microbial rhodopsins are widely used as major molecular tools in optogenetics. They are categorized into light-gated ion channels and light-driven ion pumps. While the former passively transport various types of cations and anions in a light-dependent manner, light-driven ion pumps actively transport specific ions, such as H+, Na+, Cl-, against electrophysiological potential by using light energy. Since the ion transport by these pumps induces hyperpolarization of membrane potential and inhibit neural firing, light-driven ion-pumping rhodopsins are mostly applied as inhibitory optogenetics tools. Recent progress in genome and metagenome sequencing identified more than several thousands of ion-pumping rhodopsins from a wide variety of microbes, and functional characterization studies has been revealing many new types of light-driven ion pumps one after another. Since light-gated channels were reviewed in other chapters in this book, here the rapid progress in functional characterization, molecular mechanism study, and optogenetic application of ion-pumping rhodopsins were reviewed.
Collapse
Affiliation(s)
- Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Chiba, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
8
|
Kwon SK, Jun SH, Kim JF. Omega Rhodopsins: A Versatile Class of Microbial Rhodopsins. J Microbiol Biotechnol 2020; 30:633-641. [PMID: 32482928 PMCID: PMC9728251 DOI: 10.4014/jmb.1912.12010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022]
Abstract
Microbial rhodopsins are a superfamily of photoactive membrane proteins with covalently bound retinal cofactor. Isomerization of the retinal chromophore upon absorption of a photon triggers conformational changes of the protein to function as ion pumps or sensors. After the discovery of proteorhodopsin in an uncultivated γ-proteobacterium, light-activated proton pumps have been widely detected among marine bacteria and, together with chlorophyll-based photosynthesis, are considered as an important axis responsible for primary production in the biosphere. Rhodopsins and related proteins show a high level of phylogenetic diversity; we focus on a specific class of bacterial rhodopsins containing the 3 omega motif. This motif forms a stack of three nonconsecutive aromatic amino acids that correlates with the B-C loop orientation, and is shared among the phylogenetically close ion pumps such as the NDQ motif-containing sodium-pumping rhodopsin, the NTQ motif-containing chloride-pumping rhodopsin, and some proton-pumping rhodopsins including xanthorhodopsin. Here, we reviewed the recent research progress on these omega rhodopsins, and speculated on their evolutionary origin of functional diversity..
Collapse
Affiliation(s)
- Soon-Kyeong Kwon
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sung-Hoon Jun
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju 8119, Republic of Korea
| | - Jihyun F. Kim
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul 0722, Republic of Korea
| |
Collapse
|
9
|
Ghosh M, Jung KH, Sheves M. Protein conformational alterations induced by the retinal excited state in proton and sodium pumping rhodopsins. Phys Chem Chem Phys 2019; 21:9450-9455. [PMID: 31012470 DOI: 10.1039/c9cp00681h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Retinal proteins' biological activity is triggered by the retinal chromophore's light absorption, which initiates a photocycle. However, the mechanism by which retinal light excitation induces the protein's response is not completely understood. Recently, two new retinal proteins were discovered, namely, King Sejong 1-2 (KS1-2) and Nonlabens (Donghaeana) dokdonensis (DDR2), which exhibit H+ and Na+ pumping activities, respectively. To pinpoint whether protein conformation alterations can be achieved without light-induced retinal C13[double bond, length as m-dash]C14 double-bond isomerization, we utilized the hydroxylamine reaction, which cleaves the protonated Schiff base bond through which the retinal chromophore is covalently bound to the protein. The reaction is accelerated by light even though the cleavage is not a photochemical reaction. Therefore, the cleavage reaction may serve as a tool to detect protein conformation alterations. We discovered that in both KS1-2 and DDR2, the hydroxylamine reaction is light accelerated, even in artificial pigments derived from synthetic retinal in which the crucial C13[double bond, length as m-dash]C14 double-bond isomerization is prevented. Therefore, we propose that in both proteins the light-induced retinal charge redistribution taking place in the retinal excited state polarizes the protein, which, in turn, triggers protein conformation alterations. A further general possible application of the present finding is associated with other photoreceptor proteins having retinal or other non-retinal chromophores whose light excitation may affect the protein conformation.
Collapse
Affiliation(s)
- Mihir Ghosh
- Department of Organic Chemistry, Weizmann Institute of Science Rehovot, Israel.
| | | | | |
Collapse
|
10
|
Miyahara T, Nakatsuji H. Light-Driven Proton, Sodium Ion, and Chloride Ion Transfer Mechanisms in Rhodopsins: SAC-CI Study. J Phys Chem A 2019; 123:1766-1784. [DOI: 10.1021/acs.jpca.8b10203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tomoo Miyahara
- Quantum Chemistry Research Institute, Kyoto Technoscience Center 16, 14 Yoshida Kawara-machi, Sakyou-ku, Kyoto 606-8305, Japan
| | - Hiroshi Nakatsuji
- Quantum Chemistry Research Institute, Kyoto Technoscience Center 16, 14 Yoshida Kawara-machi, Sakyou-ku, Kyoto 606-8305, Japan
| |
Collapse
|
11
|
Tomida S, Ito S, Inoue K, Kandori H. Hydrogen-bonding network at the cytoplasmic region of a light-driven sodium pump rhodopsin KR2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:684-691. [PMID: 29852143 DOI: 10.1016/j.bbabio.2018.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/11/2018] [Accepted: 05/24/2018] [Indexed: 01/15/2023]
Abstract
Light-driven sodium-pumping rhodopsins are able to actively transport sodium ions. Structure/function studies of Krokinobacter eikastus rhodopsin 2 (KR2) identified N61 and G263 at the cytoplasmic surface constituting the "Ion-selectivity filter" for sodium ions, while retinal Schiff base acts as the light "Switch and Gate" for transport of sodium ions. Q123 is located between the two regions, and plays an important role for the pump function, which was implicated by functional, spectroscopic, X-ray crystallographic and computational studies. According to the atomic structure of KR2, Q123 is involved in the hydrogen-bonding network at the cytoplasmic region, together with S64, protein-bound waters, and peptide carbonyl of K255 bound to the chromophore. To gain the detailed structural information around Q123, here we compared light-induced difference Fourier-transform infrared (FTIR) spectra at 77 K between the wild-type (WT) and mutant proteins of KR2, such as Q123A, Q123V, and S64A. The obtained spectra were very similar between WT and these mutants, whereas the observed mutation effects enabled us to identify vibrations of the hydrogen-bonding network at the Q123 and S64 region. This is unique for KR2, not for the corresponding mutations in a light-driven proton-pump bacteriorhodopsin (BR). Hydrogen-bonding alteration is absent for the mutants of KR2, suggesting that proper inter-helical connectivity of helices B, C, and G is important for protein structural changes for sodium-pump function, which is controlled by the region around Q123.
Collapse
Affiliation(s)
- Sahoko Tomida
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shota Ito
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Keiichi Inoue
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; Frontier Research Institute for Material Science, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| |
Collapse
|
12
|
Shigeta A, Ito S, Kaneko R, Tomida S, Inoue K, Kandori H, Kawamura I. Long-distance perturbation on Schiff base-counterion interactions by His30 and the extracellular Na +-binding site in Krokinobacter rhodopsin 2. Phys Chem Chem Phys 2018. [PMID: 29537054 DOI: 10.1039/c8cp00626a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Krokinobacter rhodopsin 2 (KR2), a light-driven Na+ pump, is a dual-functional protein, pumping protons in the absence of Na+ when K+ or larger alkali metal ions are present. A specific mutation in helix A near the extracellular Na+ binding site, H30A, eliminates its proton pumping ability. We induced structural changes in H30A by altering the alkali metal ion bound at the extracellular binding site, and observed a strong electrostatic interaction between the Schiff base and counterion and torsion around the Schiff base as revealed by solid-state nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopies. The strong interaction when His30 was absent and no ion bound at the extracellular binding site disabled retinal reisomerization, as was shown with flash-photolysis, forming a small amount of only a K-like intermediate. This revealed why H30A lacks the proton pumping function. Long-distance perturbation of the binding site and Schiff base revealed that a non-transported ion binding at the extracellular site is essential for pumping.
Collapse
Affiliation(s)
- Arisu Shigeta
- Graduate School of Engineering, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Mamedov AM, Bertsova YV, Anashkin VA, Mamedov MD, Baykov AA, Bogachev AV. Identification of the key determinant of the transport promiscuity in Na +-translocating rhodopsins. Biochem Biophys Res Commun 2018; 499:600-604. [PMID: 29601812 DOI: 10.1016/j.bbrc.2018.03.196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 02/07/2023]
Abstract
Bacterial Na+-transporting rhodopsins convert solar energy into transmembrane ion potential difference. Typically, they are strictly specific for Na+, but some can additionally transport H+. To determine the structural basis of cation promiscuity in Na+-rhodopsins, we compared their primary structures and found a single position that harbors a cysteine in strictly specific Na+-rhodopsins and a serine in the promiscuous Krokinobacter eikastus Na+-rhodopsin (Kr2). A Cys253Ser variant of the strictly specific Dokdonia sp. PRO95 Na+-rhodopsin (NaR) was indeed found to transport both Na+ and H+ in a light-dependent manner when expressed in retinal-producing Escherichia coli cells. The dual specificity of the NaR variant was confirmed by analysis of its photocycle, which revealed an acceleration of the cation-capture step by comparison with the wild-type NaR in a Na+-deficient medium. The structural basis for the dependence of the Na+/H+ specificity in Na+-rhodopsin on residue 253 remains to be determined.
Collapse
Affiliation(s)
- Adalyat M Mamedov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Viktor A Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Mahir D Mamedov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.
| |
Collapse
|
14
|
Kandori H, Inoue K, Tsunoda SP. Light-Driven Sodium-Pumping Rhodopsin: A New Concept of Active Transport. Chem Rev 2018. [DOI: 10.1021/acs.chemrev.7b00548] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Keiichi Inoue
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Satoshi P. Tsunoda
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
15
|
Chen HF, Inoue K, Ono H, Abe-Yoshizumi R, Wada A, Kandori H. Time-resolved FTIR study of light-driven sodium pump rhodopsins. Phys Chem Chem Phys 2018; 20:17694-17704. [DOI: 10.1039/c8cp02599a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Light-driven sodium ion pump rhodopsin (NaR) is a new functional class of microbial rhodopsin. Present step-scan time-resolved FTIR spectroscopy revealed that the K, L and O intermediates of NaRs contain 13-cis retinal with similar distortion.
Collapse
Affiliation(s)
- Hui-Fen Chen
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
- Department of Life Science and Applied Chemistry
| | - Keiichi Inoue
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
- OptoBioTechnology Research Center
| | - Hikaru Ono
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Rei Abe-Yoshizumi
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science
- Kobe Pharmaceutical University
- Kobe 658-8558
- Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
- OptoBioTechnology Research Center
| |
Collapse
|
16
|
Abstract
Microbial rhodopsins (MRs) are a large family of photoactive membrane proteins, found in microorganisms belonging to all kingdoms of life, with new members being constantly discovered. Among the MRs are light-driven proton, cation and anion pumps, light-gated cation and anion channels, and various photoreceptors. Due to their abundance and amenability to studies, MRs served as model systems for a great variety of biophysical techniques, and recently found a great application as optogenetic tools. While the basic aspects of microbial rhodopsins functioning have been known for some time, there is still a plenty of unanswered questions. This chapter presents and summarizes the available knowledge, focusing on the functional and structural studies.
Collapse
Affiliation(s)
- Ivan Gushchin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
| | - Valentin Gordeliy
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
- University of Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France.
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany.
| |
Collapse
|