1
|
Dabaghkar Y, Eghlima G, Behboudi H, Ebrahimi M, Ghorbanpour M. Agro-morphological characterization and assessment of metabolic profiling and anticancer activities in various tribulus (Tribulus terrestris L.) populations. BMC PLANT BIOLOGY 2025; 25:20. [PMID: 39757213 DOI: 10.1186/s12870-024-06021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Tribulus terrestris L. from the family of Zygophyllaceae, which is rich in saponin compounds, especially diosgenin, has various biological properties, such as anti-inflammation, anti-Alzheimer, anti-obesity, anti-diabetes, anti-leukemia, and anti-cancer activities, due to these compounds. This research aimed to study the diversity of agro-morphological and phytochemical traits and anti-proliferative activity against human prostate cancer cells (PC3) of T. terrestris collected from 24 geographical regions in Iran and to select the superior populations for future domestication and breeding projects. The highest coefficient of variations was related to the fruit dry weight (104.77%), shoot dry weight (104.62%), and leaf dry weight (99.83%). Maximum plant height (113.96 cm), leaf length (49.39 mm), leaf width (23.48 mm), fruit diameter (11.42 mm), and fruit dry weight (34.11 g/plant) were recorded in SBU population. Gallic acid, 3.4dhb, rutin, salicylic acid, quercetin, kaempferol, apigenin, chlorogenic acid, caffeic acid, p-coumarin, ferulic acid, and rosmarinic acid were identified as the main phenolic compounds by HPLC. The highest total saponin content was observed in the RAF population (9.46 µg OCE/g DW) and the lowest in the KER population (4.75 µg OCE/g DW). The minimum (0.65 mg/g DW) and maximum (7.49 mg/g DW) diosgenin content was observed in KHA and PAN populations, respectively. The results of the MTT assay demonstrated the significant anti-proliferative activity of the T. terrestris extracts against the PC3 cancer cell line. IC50 calculated for the T. terrestris extracts in the 24-h treatment was from 15.02 to 27.11 µg/ml, implying that all samples had considerable cytotoxicity activity against the PC3 cells. The diversity observed among the T. terrestris populations in the studied traits shows its high potential for selecting and using the best populations in domestication, breeding, and cultivation projects.
Collapse
Affiliation(s)
- Yasamin Dabaghkar
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Ghasem Eghlima
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran.
| | - Hossein Behboudi
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
2
|
Alula MT. Peroxidase-like activity of biosynthesized silver nanoparticles for colorimetric detection of cysteine. RSC Adv 2023; 13:16396-16404. [PMID: 37266501 PMCID: PMC10231313 DOI: 10.1039/d3ra01587d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
Cysteine is one of the important amino acids that is involved in various physiological processes, food industries, pharmaceuticals, and personal care. It also serves as a biomarker for some diseases. The large use of cysteine necessitates rapid, cheap, and accurate determination of cysteine in a range of samples. Although many techniques have been employed for the detection of cysteine, they suffer from limitations that make them unsuitable for routine analysis. Here we report on a cheap colorimetric method using biosynthesized silver nanoparticles (AgNPs) as nanozymes. The AgNPs were characterized by UV/visible spectrophotometry, scanning electron microscopy (SEM), and surface-enhanced Raman spectroscopy (SERS). The AgNPs exhibit peroxidase-like activity using o-phenylenediamine (OPD) as a chromogenic reagent. The low Km values observed for OPD and H2O2 (0.9133 and 61.56 mM respectively) show strong affinity of the substrates to AgNPs. The peroxidase-like activity of AgNPs, however, was inhibited on the addition of cysteine. The results show that the absorption intensity of the oxidized OPD decreased linearly with the concentration of cysteine in the range of 0.5-20 μM. The limit of detection (LOD) in this linear range was found to be as low as 90.4 nM. The recovery from urine sample (spiked with cysteine) analyses demonstrated the feasibility of the method in real sample application. From our findings, we anticipate that our method can be applied for the analysis of cysteine in various samples.
Collapse
Affiliation(s)
- Melisew Tadele Alula
- Department of Chemical and Forensic Sciences, Faculty of Science, Botswana International University of Science and Technology Plot 10071, Private Bag 16 Palapye Botswana +267-4900102 +267-76126741
| |
Collapse
|
3
|
Elbagory AM, Hull R, Meyer M, Dlamini Z. Reports of Plant-Derived Nanoparticles for Prostate Cancer Therapy. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091870. [PMID: 37176928 PMCID: PMC10181082 DOI: 10.3390/plants12091870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Plants have demonstrated potential in providing various types of phytomedicines with chemopreventive properties that can combat prostate cancer. However, despite their promising in vitro activity, the incorporation of these phytochemicals into the market as anticancer agents has been hindered by their poor bioavailability, mainly due to their inadequate aqueous solubility, chemical instability, and unsatisfactory circulation time. To overcome these drawbacks, it has been suggested that the incorporation of phytochemicals as nanoparticles can offer a solution. The use of plant-based chemicals can also improve the biocompatibility of the formulated nanoparticles by avoiding the use of certain hazardous chemicals in the synthesis, leading to decreased toxicity in vivo. Moreover, in some cases, phytochemicals can act as targeting agents to tumour sites. This review will focus on and summarize the following points: the different types of nanoparticles that contain individual phytochemicals or plant extracts in their design with the aim of improving the bioavailability of the phytochemicals; the therapeutic evaluation of these nanoparticles against prostate cancer both in vitro and in vivo and the reported mode of action and the different types of anticancer experiments used; how the phytochemicals can also improve the targeting effects of these nanoparticles in some instances; and the potential toxicity of these nanoparticles.
Collapse
Affiliation(s)
- Abdulrahman M Elbagory
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Cape Town, Private Bag X17, Bellville 7535, South Africa
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Mervin Meyer
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Cape Town, Private Bag X17, Bellville 7535, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|
4
|
Jamróz E, Janik M, Marangoni L, Vieira RP, Tkaczewska J, Kawecka A, Szuwarzyński M, Mazur T, Jasińska JM, Krzyściak P, Juszczak L. Double-Layered Films Based on Furcellaran, Chitosan, and Gelatin Hydrolysates Enriched with AgNPs in Yerba Mate Extract, Montmorillonite, and Curcumin with Rosemary Essential Oil. Polymers (Basel) 2022; 14:4283. [PMID: 36297858 PMCID: PMC9612216 DOI: 10.3390/polym14204283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/01/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022] Open
Abstract
Double-layered active films based on furcellaran (1st layer-FUR), chitosan, and gelatin hydrolysates (2nd layer-CHIT+HGEL) were successfully prepared. Bioactive ingredients were added to the 1st film layer: AgNPs, which were synthesized in situ with yerba mate extract; montmorillonite clay (MMT); and different loads of ethanolic curcumin (CUR) extract enriched with rosemary essential oil (REO). SEM images confirmed the presence of AgNPs with a size distribution of 94.96 ± 3.33 nm throughout the films, and AFM and SEM photos indicated that the higher substance concentrations had rougher and more porous film microstructures. However, the water vapor transmission rate was reduced only at the lowest load of this ingredient. Despite the tensile strength of the films having decreased, the incorporation of the compounds showed a tendency towards reducing the modulus of elasticity, resulting in a lower stiffness of the composites. The addition of CUR and AgNPs improved the UV light barrier properties of the materials. The presented films showed quick reactions to changes in the pH value (from orange to red along with an increase in pH from 2 to 10), which indicates their potential use as indicators for monitoring the freshness of food products. Composite No. 2 showed the highest antimicrobial potential, while none of the presented films showed an antifungal effect. Finally, the antioxidant activities of the films increased dramatically at higher AgNP and CUR loads, suggesting an outstanding potential for active food packaging applications.
Collapse
Affiliation(s)
- Ewelina Jamróz
- Department of Chemistry, University of Agriculture, ul. Balicka 122, PL-30-149 Kraków, Poland
| | - Magdalena Janik
- Department of Chemistry, University of Agriculture, ul. Balicka 122, PL-30-149 Kraków, Poland
| | - Luís Marangoni
- Packaging Technology Center, Institute of Food Technology, Campinas 13083-862, Brazil
| | - Roniérik Pioli Vieira
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas 13083-862, Brazil
| | - Joanna Tkaczewska
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, PL-30-149 Kraków, Poland
| | - Agnieszka Kawecka
- Department of Product Packaging, Cracow University of Economics, ul. Rakowicka 27, PL-31-510 Kraków, Poland
| | - Michał Szuwarzyński
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. Mickiewicza 30, PL-30-059 Kraków, Poland
| | - Tomasz Mazur
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. Mickiewicza 30, PL-30-059 Kraków, Poland
| | - Joanna Maria Jasińska
- Department of Chemistry, University of Agriculture, ul. Balicka 122, PL-30-149 Kraków, Poland
| | - Paweł Krzyściak
- Department of Infection Control and Mycology, Faculty of Medicine, Jagiellonian University Medical College, ul. Czysta 18, PL-31-121 Kraków, Poland
| | - Lesław Juszczak
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Długosz University in Częstochowa, ul. Armii Krajowej 13/15, PL-42-200 Częstochowa, Poland
| |
Collapse
|
5
|
Morais M, Machado V, Dias F, Figueiredo P, Palmeira C, Martins G, Fernandes R, Malheiro AR, Mikkonen KS, Teixeira AL, Medeiros R. Glucose-Functionalized Silver Nanoparticles as a Potential New Therapy Agent Targeting Hormone-Resistant Prostate Cancer cells. Int J Nanomedicine 2022; 17:4321-4337. [PMID: 36147546 PMCID: PMC9489222 DOI: 10.2147/ijn.s364862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/17/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Silver nanoparticles (AgNPs) have shown great potential as anticancer agents, namely in therapies’ resistant forms of cancer. The progression of prostate cancer (PCa) to resistant forms of the disease (castration-resistant PCa, CRPC) is associated with poor prognosis and life quality, with current limited therapeutic options. CRPC is characterized by a high glucose consumption, which poses as an opportunity to direct AgNPs to these cancer cells. Thus, this study explores the effect of glucose functionalization of AgNPs in PCa and CRPC cell lines (LNCaP, Du-145 and PC-3). Methods AgNPs were synthesized, further functionalized, and their physical and chemical composition was characterized both in water and in culture medium, through UV-visible spectrum, dynamic light scattering (DLS), transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR). Their effect was assessed in the cell lines regarding AgNPs’ entering pathway, cellular proliferation capacity, ROS production, mitochondrial membrane depolarization, cell cycle analysis and apoptosis evaluation. Results AgNPs displayed an average size of 61nm and moderate monodispersity with a slight increase after functionalization, and a round shape. These characteristics remained stable when redispersed in culture medium. Both AgNPs and G-AgNPs were cytotoxic only to CRPC cells and not to hormone-sensitive ones and their effect was higher after functionalization showing the potential of glucose to favor AgNPs’ uptake by cancer cells. Entering through endocytosis and being encapsulated in lysosomes, the NPs increased the ROS, inducing mitochondrial damage, and arresting cell cycle in S Phase, therefore blocking proliferation, and inducing apoptosis. Conclusion The nanoparticles synthesized in the present study revealed good characteristics and stability for administration to cancer cells. Their uptake through endocytosis leads to promising cytotoxic effects towards CRPC cells, revealing the potential of G-AgNPs as a future therapeutic approach to improve the management of patients with PCa resistant to hormone therapy or metastatic disease.
Collapse
Affiliation(s)
- Mariana Morais
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal.,ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, 4050-513, Portugal
| | - Vera Machado
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal
| | - Patrícia Figueiredo
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, FI-00014, Finland
| | - Carlos Palmeira
- Department of Immunology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, 4200-072, Portugal.,Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal.,Biomedical Research Center (CEBIMED, Faculty of Health Sciences, Fernando Pessoa University (UFP), Porto, 4249-004, Portugal
| | - Gabriela Martins
- Department of Immunology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, 4200-072, Portugal.,Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal
| | - Rui Fernandes
- HEMS-Histology and Electron Microscopy, i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, 4200-135, Portugal.,IBMC, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Ana Rita Malheiro
- HEMS-Histology and Electron Microscopy, i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, 4200-135, Portugal.,IBMC, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, FI-00014, Finland.,Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Helsinki, FI-00014, Finland
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal.,ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, 4050-513, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal.,ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, 4050-513, Portugal.,Biomedical Research Center (CEBIMED, Faculty of Health Sciences, Fernando Pessoa University (UFP), Porto, 4249-004, Portugal.,Research Department, LPCC- Portuguese League Against Cancer (NRNorte), Porto, Portugal.,Faculty of Medicine, University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, University of Porto, Porto, 4200-319, Portugal
| |
Collapse
|
6
|
Ullah K, Khan S, Khan M, Rahman ZU, Al-Ghamdi YO, Mahmood A, Hussain S, Khan SB, Khan SA. A bioresource catalyst system of alginate-starch-activated carbon microsphere templated Cu nanoparticles: Potentials in nitroarenes hydrogenation and dyes discoloration. Int J Biol Macromol 2022; 222:887-901. [PMID: 36179868 DOI: 10.1016/j.ijbiomac.2022.09.226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/07/2022] [Accepted: 09/24/2022] [Indexed: 11/18/2022]
Abstract
The evolution and development of solid-matrix are considered a backbone for supporting and stabilizing of metal nanoparticles (NPs) and are the soul of the catalytic system. In the current study, the alginate-starch microsphere (Alg-St) was cross-linked using CaCl2 as a cross-linker. In addition, the Alg-St microsphere was blended with different percentages of activated carbon (AC). The microspheres adsorbed Cu+2 was reduced to zero-valent copper NPs through NaBH4 and used as a dip-catalyst. The supported Cu NPs cum NaBH4 system was used as dip-catalyst for the hydrogenation of 4-nitrophenol (4NP), 2-nitroanilline (2NA), and degradation of methylene blue (MB) and Congo red (CR) dyes. Among the different kinetics models, the experimental data were well-fitted in the zero-order kinetic model. Moreover pH, and recyclability were studied for 4NP, where the best activity was achieved at pH 7.0 for 4NP. No leaching was observed after 3rd cycle in the catalyst.
Collapse
Affiliation(s)
- Kaleem Ullah
- Department of Chemistry, University of Swabi, Anbar, Swabi 23561, Pakistan
| | - Salman Khan
- Department of Chemistry, University of Swabi, Anbar, Swabi 23561, Pakistan
| | - Musa Khan
- Department of Chemistry, University of Swabi, Anbar, Swabi 23561, Pakistan
| | - Zia Ur Rahman
- Department of Chemistry, University of Swabi, Anbar, Swabi 23561, Pakistan
| | - Youssef O Al-Ghamdi
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Azhar Mahmood
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Shah Hussain
- Department of Chemistry, Government Postgraduate College, Nowshera 24100, Khyber-Pakhtunkhwa, Pakistan
| | - Sher Bahadar Khan
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology (NUST), Islamabad 44000, Pakistan.
| |
Collapse
|
7
|
Enhanced catalytic reduction/degradation of organic pollutants and antimicrobial activity with metallic nanoparticles immobilized on copolymer modified with NaY zeolite films. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
8
|
Kirdeeva Y, Fedorova O, Daks A, Barlev N, Shuvalov O. How Should the Worldwide Knowledge of Traditional Cancer Healing Be Integrated with Herbs and Mushrooms into Modern Molecular Pharmacology? Pharmaceuticals (Basel) 2022; 15:868. [PMID: 35890166 PMCID: PMC9320176 DOI: 10.3390/ph15070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Traditional herbal medicine (THM) is a "core" from which modern medicine has evolved over time. Besides this, one third of people worldwide have no access to modern medicine and rely only on traditional medicine. To date, drugs of plant origin, or their derivates (paclitaxel, vinblastine, vincristine, vinorelbine, etoposide, camptothecin, topotecan, irinotecan, and omacetaxine), are very important in the therapy of malignancies and they are included in most chemotherapeutic regimes. To date, 391,000 plant and 14,000 mushroom species exist. Their medical and biochemical capabilities have not been studied in detail. In this review, we systematized the information about plants and mushrooms, as well as their active compounds with antitumor properties. Plants and mushrooms are divided based on the regions where they are used in ethnomedicine to treat malignancies. The majority of their active compounds with antineoplastic properties and mechanisms of action are described. Furthermore, on the basis of the available information, we divided them into two priority groups for research and for their potential of use in antitumor therapy. As there are many prerequisites and some examples how THM helps and strengthens modern medicine, finally, we discuss the positive points of THM and the management required to transform and integrate THM into the modern medicine practice.
Collapse
Affiliation(s)
- Yulia Kirdeeva
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Nikolai Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| |
Collapse
|
9
|
Li S, Xue Y, Hao B, Yang T, Zhang Y, Shen Q. γ‐Valerolactone/H
2
O‐ Derived Facile Preparation of Lignin‐Based AgNPs to Full Utilization of Lignocellulosic Biomass. ChemistrySelect 2022. [DOI: 10.1002/slct.202200443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shengren Li
- College of Chemical Engineering and Technology Taiyuan University of Technology Wanbailin District Taiyuan 030000 China
| | - Yuyuan Xue
- College of Chemical Engineering and Technology Taiyuan University of Technology Wanbailin District Taiyuan 030000 China
| | - Baolin Hao
- College of Chemical Engineering and Technology Taiyuan University of Technology Wanbailin District Taiyuan 030000 China
| | - Taowei Yang
- College of Chemical Engineering and Technology Taiyuan University of Technology Wanbailin District Taiyuan 030000 China
| | - Yan Zhang
- College of Chemical Engineering and Technology Taiyuan University of Technology Wanbailin District Taiyuan 030000 China
| | - Qi Shen
- College of Chemical Engineering and Technology Taiyuan University of Technology Wanbailin District Taiyuan 030000 China
| |
Collapse
|
10
|
Muthusamy N, Kanniah P, Vijayakumar P, Murugan U, Raj DS, Sankaran U. Green-Inspired Fabrication of Silver Nanoparticles and Examine its Potential In-Vitro Cytotoxic and Antibacterial Activities. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02082-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Tinajero-Díaz E, Salado-Leza D, Gonzalez C, Martínez Velázquez M, López Z, Bravo-Madrigal J, Knauth P, Flores-Hernández FY, Herrera-Rodríguez SE, Navarro RE, Cabrera-Wrooman A, Krötzsch E, Carvajal ZYG, Hernández-Gutiérrez R. Green Metallic Nanoparticles for Cancer Therapy: Evaluation Models and Cancer Applications. Pharmaceutics 2021; 13:1719. [PMID: 34684012 PMCID: PMC8537602 DOI: 10.3390/pharmaceutics13101719] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Metal-based nanoparticles are widely used to deliver bioactive molecules and drugs to improve cancer therapy. Several research works have highlighted the synthesis of gold and silver nanoparticles by green chemistry, using biological entities to minimize the use of solvents and control their physicochemical and biological properties. Recent advances in evaluating the anticancer effect of green biogenic Au and Ag nanoparticles are mainly focused on the use of conventional 2D cell culture and in vivo murine models that allow determination of the half-maximal inhibitory concentration, a critical parameter to move forward clinical trials. However, the interaction between nanoparticles and the tumor microenvironment is not yet fully understood. Therefore, it is necessary to develop more human-like evaluation models or to improve the existing ones for a better understanding of the molecular bases of cancer. This review provides recent advances in biosynthesized Au and Ag nanoparticles for seven of the most common and relevant cancers and their biological assessment. In addition, it provides a general idea of the in silico, in vitro, ex vivo, and in vivo models used for the anticancer evaluation of green biogenic metal-based nanoparticles.
Collapse
Affiliation(s)
- Ernesto Tinajero-Díaz
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647, 08028 Barcelona, Spain;
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Daniela Salado-Leza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava, Zona Universitaria, San Luis Potosí 78210, Mexico; (D.S.-L.); (C.G.)
- Cátedras CONACyT, México City 03940, Mexico
| | - Carmen Gonzalez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava, Zona Universitaria, San Luis Potosí 78210, Mexico; (D.S.-L.); (C.G.)
| | - Moisés Martínez Velázquez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Zaira López
- Centro Universitario de la Ciénega, Cell Biology Laboratory, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán 47810, Mexico; (Z.L.); (P.K.)
| | - Jorge Bravo-Madrigal
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Peter Knauth
- Centro Universitario de la Ciénega, Cell Biology Laboratory, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán 47810, Mexico; (Z.L.); (P.K.)
| | - Flor Y. Flores-Hernández
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Sara Elisa Herrera-Rodríguez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Rosa E. Navarro
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico;
| | - Alejandro Cabrera-Wrooman
- Centro Nacional de Investigación y Atención de Quemados, Laboratory of Connective Tissue, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, México City 14389, Mexico; (A.C.-W.); (E.K.)
| | - Edgar Krötzsch
- Centro Nacional de Investigación y Atención de Quemados, Laboratory of Connective Tissue, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, México City 14389, Mexico; (A.C.-W.); (E.K.)
| | - Zaira Y. García Carvajal
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Rodolfo Hernández-Gutiérrez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| |
Collapse
|
12
|
Anwar Y, Ullah I, Al Johny BO, Al-Shehri AMG, Bakhsh EM, Ul-Islam M, Asiri AM, Kamal T. Nigella sativa L. seeds extract assisted synthesis of silver nanoparticles and their antibacterial and catalytic performance. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02048-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Dirar AI, Devkota HP. Ethnopharmacological uses, phytochemistry and pharmacological activities of Guiera senegalensis J.F. Gmel. (Combretaceae). JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113433. [PMID: 33011373 DOI: 10.1016/j.jep.2020.113433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 09/14/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Guiera senegalensis J.F. Gmel. (Combretaceae), commonly known as "Gubeish" in Sudan, is a small shrub abundant in semi-desert areas of the Sudano-Sahelian zone. It is widely used in African traditional medicine as a tonic and for the treatment of many complications such as respiratory and gastrointestinal disorders, microbial and parasitic infections. AIM OF THE REVIEW The aim of this review is to critically analyze the reports on the traditional uses, ethnopharmacological studies, chemical constituents and pharmacological activities of G. senegalensis. METHODS Scientific information on G. senegalensis was retrieved from the online bibliographic databases (e.g. like MEDLINE/PubMed, SciFinder, Web of Science, Google Scholar, Scopus, Elsevier, SpringerLink). Other scientific information was acquired from secondary resources including books and proceedings, library catalogs, and dissertations. RESULTS G. senegalensis is reported to be widely used traditionally for the treatment of various diseases in many African countries. Most of these studies are reported from Burkina Faso, Guinea, Mali, Nigeria, Senegal, and Sudan. Phytochemical studies have revealed the presence of a total of 46 compounds belonging to major phytochemical classes namely; phenolic compounds, alkaloids, and triterpenes. Among them, galloylquinic acid derivatives and flavonoids are the most frequently reported constituents. The extracts and compounds have shown diverse biological activities including antimicrobial, anti-inflammatory, antiprotozoal activities and activities against gastrointestinal and respiratory disorders. CONCLUSION G. senegalensis is widely used in most African traditional medicine systems and used among African people for the treatment of many diseases. Although there are many reports on its biological activities, most of these studies are based on in vitro systems and only very few are based on in vivo systems. Also, some of these pharmacological data are insufficient and lack essential parameters such as proper positive and negative controls, and calculating the minimum inhibitory concentration (MIC) values. From these studies, it is difficult to assess the future clinical potential of this plant without detailed studies in animal models or in humans. Similarly, there are not many reports on the action mechanism of the extracts and compounds. Future studies should focus to explore the therapeutic potential of G. senegalensis with advance experimental protocols and cutting-edge technologies.
Collapse
Affiliation(s)
- Amina Ibrahim Dirar
- Graduate School of Pharmaceutical Sciences, Kumamoto University 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto 862-0973, Japan; Medicinal, Aromatic Plants and Traditional Medicine Research Institute (MAPTRI), National Center for Research, P.O. Box 2404, Mek Nimr Street, Khartoum, Sudan; Faculty of Clinical and Industrial Pharmacy, National University-Sudan, P.O. Box 3783, Al-Raki Area, Khartoum, Sudan
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto 862-0973, Japan; Program for Leading Graduate Schools, Health life Science: Interdisciplinary and Glocal Oriented (HIGO) Program, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
14
|
Pang Y, Chen Z, Zhao R, Yi C, Qiu X, Qian Y, Lou H. Facile synthesis of easily separated and reusable silver nanoparticles/aminated alkaline lignin composite and its catalytic ability. J Colloid Interface Sci 2020; 587:334-346. [PMID: 33370659 DOI: 10.1016/j.jcis.2020.11.113] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 01/09/2023]
Abstract
Green synthesis of silver nanoparticles (AgNPs) has received increasing attention. In this study, AgNPs were prepared through in-situ reduction by aminated alkaline lignin (AAL). Compared with alkaline lignin (AL), AAL exhibited stronger reduction capacity (increased by 36%) due to the introduced amine groups and better water solubility. Moreover, the coordination effect of amine groups on AAL improved the binding force between lignin and AgNPs. The content of AgNPs in AgNPs/AAL composite were 2.4 times higher than that in AgNPs/AL, such content could be further increased through increasing the reduction pH or prolonging the heating time. The results of XPS, XRD and TEM showed that the AgNPs were spherical and monodisperse with an average particle size about 17 nm. Additionally, the size of AgNPs was affected by the amination degree of lignin. AgNPs/AAL exhibited good catalytic performance for the reduction of 4-nitrophenol to 4-aminophenol, and this compound could be easily recovered and reused for at least eight cycles.
Collapse
Affiliation(s)
- Yuxia Pang
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Zhengsong Chen
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Rubin Zhao
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Conghua Yi
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yong Qian
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Hongming Lou
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
15
|
Morais M, Teixeira AL, Dias F, Machado V, Medeiros R, Prior JAV. Cytotoxic Effect of Silver Nanoparticles Synthesized by Green Methods in Cancer. J Med Chem 2020; 63:14308-14335. [PMID: 33231444 DOI: 10.1021/acs.jmedchem.0c01055] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is a major public health problem, but despite the several treatment approaches available, patients develop resistance in short time periods, making overcoming resistance or finding more efficient treatments an imperative challenge. Silver nanoparticles (AgNPs) have been described as an alternative option due to their physicochemical properties. The scope of this review was to systematize the available scientific information concerning these characteristics in AgNPs synthesized according to green chemistry's recommendations as well as their cytotoxicity in different cancer models. This is the first paper analyzing, correlating, and summarizing AgNPs' main parameters that modulate their cellular effect, including size, shape, capping, and surface plasmon resonance profile, dose range, and exposure time. It highlights the strong dependence of AgNPs' cytotoxic effects on their characteristics and tumor model, making evident the strong need of standardization and full characterization. AgNPs' application in oncology research is a new, open, and promising field and needs additional studies.
Collapse
Affiliation(s)
- Mariana Morais
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal.,Research Department, LPCC-Portuguese League Against Cancer (NRNorte), Estrada Interior da Circunvalação 6657, 4200-172 Porto, Portugal.,ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal.,ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Vera Machado
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal.,Research Department, LPCC-Portuguese League Against Cancer (NRNorte), Estrada Interior da Circunvalação 6657, 4200-172 Porto, Portugal.,ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal.,CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, Praça de 9 de Abril 349, 4249-004 Porto, Portugal
| | - João A V Prior
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
16
|
Kiani M, Rabiee N, Bagherzadeh M, Ghadiri AM, Fatahi Y, Dinarvand R, Webster TJ. Improved green biosynthesis of chitosan decorated Ag- and Co 3O 4-nanoparticles: A relationship between surface morphology, photocatalytic and biomedical applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 32:102331. [PMID: 33181272 DOI: 10.1016/j.nano.2020.102331] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
AgNPs@Chitosan and Co3O4-NPs@Chitosan were fabricated with Salvia hispanica. Results showed MZI values of 5 and 30 mm for Co3O4-NPs- and AgNPs@Chitosan against S. aureus, and 15 and 21 mm for Co3O4-NPs- and AgNPs@Chitosan against E. coli (24 h, 20 μg/mL), respectively. MTT assays showed up to 80% and 90%, 71% and 75%, and 91% and 94% mammalian cell viability for the green synthesized, chemically synthesized AgNPs and green synthesized AgNPs@Chitosan for HEK-293 and PC12 cells, respectively, and 70% and 71%, 59% and 62%, and 88% and 73% for the related Co3O4-NPs (24 h, 20 μg/mL). The photocatalytic activities showed dye degradation after 135 and 105 min for AgNPs@Chitosan and Co3O4-NPs@Chitosan, respectively. FESEM results showed differences in particle sizes (32 ± 3.0 nm for the AgNPs and 41 ± 3.0 nm for the Co3O4NPs) but AFM results showed lower roughness of the AgNPs@Chitosan (7.639 ± 0.85 nm) compared to Co3O4NPs@Chitosan (9.218 ± 0.93 nm), which resulted in potential biomedical applications.
Collapse
Affiliation(s)
- Mahsa Kiani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | | | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
17
|
Khan SA, Bakhsh EM, Akhtar K, Khan SB. A template of cellulose acetate polymer-ZnAl/C layered double hydroxide composite fabricated with Ni NPs: Applications in the hydrogenation of nitrophenols and dyes degradation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118671. [PMID: 32650247 DOI: 10.1016/j.saa.2020.118671] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/07/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
In this work, cellulose acetate polymer (CA) sheet and 2% ZnAl grafted on activated carbon grown in the form of layered double hydroxide (ZnAl/C-LDH) incorporated into CA polymer (CA-ZA2) 5 wt% (CA-ZA5) and 10 wt% of ZnAl/C-LDH (CA-ZA10) sheets were synthesized by simple casting method. All the stated sheets were fabricated with zero-valent Ni nanoparticles by adsorption of Ni+2 ions followed by subsequent reduction with NaBH4 and named as CA@Ni, CA-ZA2@Ni, CA-ZA5@Ni, and CA-ZA10@Ni NPs. The synthesized Ni NPs were investigated through FESEM, FTIR, XRD and EDS techniques. These supported and stabilized Ni NPs were largely used for the reduction of 4-nitrophenol (PNP), and 2-nitrophenol (ONP) in the presence of NaBH4 which act as a reducing agent. Similarly, the catalytic efficiency was also assessed against the removal of dyes. The linear relationship and Kapp were obtained from pseudo-first-order kinetics. The rate constant Kapp of CA@Ni NPs for the reduction of PNP is 1.5 × 10-1 and CA-ZA2@Ni (Kapp = 2.6 × 10-1), CA-ZA5@Ni (Kapp = 3.2 × 10-1), and CA-ZA10@Ni is 5.7 × 10-1 min-1. The highest rate constant for PNP reduction was observed with CA-ZA10@Ni NPs. The rate of CR removal with ZA10@Ni NPs is 2.05 × 10-1 while the adjacent R2 is 0.9013. Similarly, the rate constant and adjacent R2 values were calculated for the degradation of other dyes and nitrophenols.
Collapse
Affiliation(s)
- Shahid Ali Khan
- Department of Chemistry, University of Swabi, Swabi Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Esraa M Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Kalsoom Akhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
18
|
Malami I, Jagaba NM, Abubakar IB, Muhammad A, Alhassan AM, Waziri PM, Yakubu Yahaya IZ, Mshelia HE, Mathias SN. Integration of medicinal plants into the traditional system of medicine for the treatment of cancer in Sokoto State, Nigeria. Heliyon 2020; 6:e04830. [PMID: 32939417 PMCID: PMC7479351 DOI: 10.1016/j.heliyon.2020.e04830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 02/04/2020] [Accepted: 08/27/2020] [Indexed: 01/28/2023] Open
Abstract
This study was designed to explore and record various medicinal plants integrated into the traditional system of medicine for the treatment of cancer. The traditional system of medicine is a routine practiced among the indigenous ethnic groups of Sokoto state. A semi-structured questionnaire was designed and used for data collection around the selected Local Government Areas. A substantial number of plant species were identified, recorded, and collected for preservation. Data collected for each specie was analysed to assess its frequent use among the medicinal plants. A total of 67 species belonging to 31 families have been identified and recorded. Out of the 473 frequency of citation (FC), Acacia nilotica was the most frequently cited specie (32 FC, 64% FC, 0.6 RFC), followed by Guiera senegalensis (27 FC, 54% FC, 0.5 RFC), Erythrina sigmoidea (17 FC, 34% FC, 0.3 RFC), and subsequently Combretum camporum (15 FC, 30% FC, 0.3 RFC). The most common parts of the plants used include the barks (55.2%), the roots (53.2%), and the leaves (41.8%). Additionally, decoction (74.6%), powdered form (49.3%), and maceration (46.3%) are the most frequently used mode of preparation. The historical knowledge of a traditional system of medicine practiced by the native traditional healers of Sokoto for the treatment of cancer has been documented. The present study further provides a baseline for future pharmacological investigations into the beneficial effects of such medicinal plants for the treatment of cancer.
Collapse
Affiliation(s)
- Ibrahim Malami
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training (CAMRET), Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
- Corresponding author.
| | - Nasiru Muhammad Jagaba
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Ibrahim Babangida Abubakar
- Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero, PMB 1144, Kebbi State, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University Zaria, 810271, Nigeria
| | - Alhassan Muhammad Alhassan
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Peter Maitama Waziri
- Department of Biochemistry, Kaduna State University, Main Campus, PMB 2336, Kaduna, Nigeria
| | - Ibrahim Zakiyya Yakubu Yahaya
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Halilu Emmanuel Mshelia
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Sylvester Nefy Mathias
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| |
Collapse
|
19
|
Ali S, Ali H, Siddique M, Gulab H, Haleem MA, Ali J. Exploring the biosynthesized gold nanoparticles for their antibacterial potential and photocatalytic degradation of the toxic water wastes under solar light illumination. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Jamila N, Khan N, Bibi A, Haider A, Noor Khan S, Atlas A, Nishan U, Minhaz A, Javed F, Bibi A. Piper longum catkin extract mediated synthesis of Ag, Cu, and Ni nanoparticles and their applications as biological and environmental remediation agents. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
21
|
Ismail M, Akhtar K, Khan MI, Kamal T, Khan MA, M Asiri A, Seo J, Khan SB. Pollution, Toxicity and Carcinogenicity of Organic Dyes and their Catalytic Bio-Remediation. Curr Pharm Des 2020; 25:3645-3663. [PMID: 31656147 DOI: 10.2174/1381612825666191021142026] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022]
Abstract
Water pollution due to waste effluents of the textile industry is seriously causing various health problems in humans. Water pollution with pathogenic bacteria, especially Escherichia coli (E. coli) and other microbes is due to the mixing of fecal material with drinking water, industrial and domestic sewage, pasture and agricultural runoff. Among the chemical pollutants, organic dyes due to toxic nature, are one of the major contaminants of industrial wastewater. Adequate sanitation services and drinking quality water would eliminate 200 million cases of diarrhea, which results in 2.1 million less deaths caused by diarrheal disease due to E. coli each year. Nanotechnology is an excellent platform as compared to conventional treatment methods of water treatment and remediation from microorganisms and organic dyes. In the current study, toxicity and carcinogenicity of the organic dyes have been studied as well as the remediation/inactivation of dyes and microorganism has been discussed. Remediation by biological, physical and chemical methods has been reviewed critically. A physical process like adsorption is cost-effective, but can't degrade dyes. Biological methods were considered to be ecofriendly and cost-effective. Microbiological degradation of dyes is cost-effective, eco-friendly and alternative to the chemical reduction. Besides, certain enzymes especially horseradish peroxidase are used as versatile catalysts in a number of industrial processes. Moreover, this document has been prepared by gathering recent research works related to the dyes and microbial pollution elimination from water sources by using heterogeneous photocatalysts, metal nanoparticles catalysts, metal oxides and enzymes.
Collapse
Affiliation(s)
- Muhammad Ismail
- Department of Chemistry, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Kalsoom Akhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - M I Khan
- Department of Chemistry, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Tahseen Kamal
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Murad A Khan
- Department of Chemistry, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.,Center of Excellence for Advanced Materials Research, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Jongchul Seo
- Department of Packaging, Yonsei University, 1 Yonseidae-gil, Wonju, Kangwon-do 26493, South Korea
| | - Sher B Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.,Center of Excellence for Advanced Materials Research, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
22
|
Shah Z, Hassan S, Shaheen K, Khan SA, Gul T, Anwar Y, Al-Shaeri MA, Khan M, Khan R, Haleem MA, Suo H. Synthesis of AgNPs coated with secondary metabolites of Acacia nilotica: An efficient antimicrobial and detoxification agent for environmental toxic organic pollutants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110829. [PMID: 32279826 DOI: 10.1016/j.msec.2020.110829] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/17/2020] [Accepted: 03/09/2020] [Indexed: 11/17/2022]
Abstract
This study concentrates on biosynthesis of Silver Nanoparticles (AgNPs) from stem extract of Acacia nilotica (A. nilotica). The reaction was completed at a temperature ~40-45 °C and time duration of 5 h. AgNPs were thoroughly investigated via advanced characterization techniques such as UV-Vis spectrophotometry (UV-Vis), Fourier Transform Infrared spectroscopy (FTIR), X-ray Diffractometry (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HRTEM), X-ray Photoelectron Spectroscopy (XPS), Thermo Gravimetric Analysis (TGA), Diffuse Reflectance Spectroscopy (DRS), Brunner-Emmett-Teller (BET), Dynamic Light Scattering (DLS), and Zeta potential analysis. AgNPs with average size below 50 nm were revealed by all the measuring techniques. Maximum surface area ~5.69 m2/g was reported for the as synthesized NPs with total pore volume ~0.0191 mL/g and average pore size ~1.13 nm. Physical properties such as size and shape have changed the surface plasmon resonance peak in UV-visible spectrum. Antimicrobial activity was reported due to denaturation of microbial ribosome's sulphur and phosphorus bond by silver ions against bacterium Methicillin Resistant Staphylococcus aureus (MRSA) and fungus Candida Albican (CA). Furthermore, AgNPs degraded toxic pollutants such as 4-nitrophenol (4-NP), 2-nitrophenol (2-NP) and various hazardous dyes such as Congo Red (CR), Methylene Blue (MB) and Methyl Orange (MO) up to 95%. The present work provided low cost, green and an effective way for synthesis of AgNPs which were utilized as potential antimicrobial agents as well as effective catalyst for detoxification of various pollutants and dyes.
Collapse
Affiliation(s)
- Zarbad Shah
- Department of Chemistry, Bacha Khan University Charsadda, Charsadda-24420, Khyber Pakhtunkhwa, Pakistan.
| | - Sara Hassan
- Department of Chemistry, Bacha Khan University Charsadda, Charsadda-24420, Khyber Pakhtunkhwa, Pakistan
| | - Kausar Shaheen
- The Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing, University of Technology, Beijing-100124, China.
| | - Shahid Ali Khan
- Department of Chemistry, University of Swabi, Anbar-23561, Khyber Pakhtunkhwa, Pakistan
| | - Taj Gul
- Department of Chemistry, Bacha Khan University Charsadda, Charsadda-24420, Khyber Pakhtunkhwa, Pakistan
| | - Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majed A Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Momin Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Rasool Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar-25120, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Abdul Haleem
- Department of Chemistry, Bacha Khan University Charsadda, Charsadda-24420, Khyber Pakhtunkhwa, Pakistan
| | - Hongli Suo
- The Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing, University of Technology, Beijing-100124, China.
| |
Collapse
|
23
|
Khan SA, Khan N, Irum U, Farooq A, Asiri AM, Bakhsh EM, Khan SB. Cellulose acetate-Ce/Zr@Cu 0 catalyst for the degradation of organic pollutant. Int J Biol Macromol 2020; 153:806-816. [PMID: 32145236 DOI: 10.1016/j.ijbiomac.2020.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 01/29/2023]
Abstract
In the present work, Cu nanoparticles were stabilized on ceria/zirconia (Ce/Zr@Cu0), cellulose acetate (CA@Cu0), and a thin film of cellulose acetate embedded ceria/zirconia (CA-Ce/Zr) designated as CA-Ce/Zr@Cu0. In the presence of a reducing agent, all the catalysts revealed excellent catalytic efficiency in aqueous media for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) and degradation of cationic dyes methylene blue (MB) and rhodamine B (RB). Different order of equations were applied to determine the adjacent R2 value and rate constant. Adjacent R2 values for MB are 9.470, 9.422 and 9.050 and its kapp values per minutes are 1.7 × 10-1, 8.3 × 10-2, and 6. 7 × 10-1 with Ce/Zr@Cu0, CA@Cu0, and CA-Ce/Zr@Cu0 derived from the pseudo 1st order kinetics, while in the absence of catalyst the R2 and kapp for MB degradation in the presence of NaBH4 is 0.8643 and 3.4 × 10-3 respectively. Furthermore, regression models, ANOVA and correlation coefficients suggested that all the data are highly significant. The synthesized catalysts were applied for the simultaneous reduction/degradation of mixture of 4-NP-MB, 4-NP-RB and 4-NP-MB-RB mixture to check the practical applicability. Catalytic recyclability of CA-Ce/Zr@Cu0 catalyst dropped till 5th cycle which is due to the leaching of Cu0 NPs.
Collapse
Affiliation(s)
- Shahid Ali Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Noureen Khan
- Department of Chemistry, Sardar Bahadur Khan University, Quetta, Balochistan, Pakistan
| | - Uzma Irum
- Department of Chemistry, Sardar Bahadur Khan University, Quetta, Balochistan, Pakistan
| | - Aliya Farooq
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Pakistan
| | - Abdullah M Asiri
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Esraa M Bakhsh
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
24
|
Jamila N, Khan N, Hwang IM, Saba M, Khan F, Amin F, Khan SN, Atlas A, Javed F, Minhaz A, Ullah F. Characterization of natural gums via elemental and chemometric analyses, synthesis of silver nanoparticles, and biological and catalytic applications. Int J Biol Macromol 2020; 147:853-866. [DOI: 10.1016/j.ijbiomac.2019.09.245] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022]
|
25
|
Riaz Rajoka MS, Mehwish HM, Zhang H, Ashraf M, Fang H, Zeng X, Wu Y, Khurshid M, Zhao L, He Z. Antibacterial and antioxidant activity of exopolysaccharide mediated silver nanoparticle synthesized by Lactobacillus brevis isolated from Chinese koumiss. Colloids Surf B Biointerfaces 2020; 186:110734. [DOI: 10.1016/j.colsurfb.2019.110734] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/28/2019] [Accepted: 12/14/2019] [Indexed: 12/19/2022]
|
26
|
Phyto-Nanocatalysts: Green Synthesis, Characterization, and Applications. Molecules 2019; 24:molecules24193418. [PMID: 31547052 PMCID: PMC6804184 DOI: 10.3390/molecules24193418] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 01/14/2023] Open
Abstract
Catalysis represents the cornerstone of chemistry, since catalytic processes are ubiquitous in almost all chemical processes developed for obtaining consumer goods. Nanocatalysis represents nowadays an innovative approach to obtain better properties for the catalysts: stable activity, good selectivity, easy to recover, and the possibility to be reused. Over the last few years, for the obtaining of new catalysts, classical methods—based on potential hazardous reagents—have been replaced with new methods emerged by replacing those reagents with plant extracts obtained in different conditions. Due to being diversified in morphology and chemical composition, these materials have different properties and applications, representing a promising area of research. In this context, the present review focuses on the metallic nanocatalysts’ importance, different methods of synthesis with emphasis to the natural compounds used as support, characterization techniques, parameters involved in tailoring the composition, size and shape of nanoparticles and applications in catalysis. This review presents some examples of green nanocatalysts, grouped considering their nature (mono- and bi-metallic nanoparticles, metallic oxides, sulfides, chlorides, and other complex catalysts).
Collapse
|
27
|
Khan SA, Rasool S, Rahman KU, Hussain S, Khan I, Ismail M, Farooq A, Khan S, Raza MA, Asiri AM, Khan SB. A Simple but Efficient Catalytic Approach for the Degradation of Pollutants in Aqueous Media through Cicer arietinum Supported Ni Nanoparticles. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2018-1297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Plant based materials are considered to have broad applications in the remediation of toxic materials. In this report, we present an environmental friendly and economic Cicer arietinum, named as (CP) supported for the synthesis of Ni nanoparticles (NPs) designated as Ni@CP. The in situ Ni@CP NPs were obtained using aqueous medium in the presence of sodium borohydride (NaBH4) as a reducing agent. The prepared catalysts were applied for the hydrogenation/degradation of p-nitrophenol (PNP), o-nitrophenol (ONP), and 2,4-dinitrophenol (DNP), as well as congo red (CR), methyl orange (MO), methylene blue (MB) and rhodamine B (RB) dyes. The amount of total metal ions adsorbed onto the CP was evaluated by flame atomic absorption spectroscopy. The Ni@CP catalyst was characterized through PXRD, FTIR, FESEM and EDX analyses.
Collapse
Affiliation(s)
- Shahid Ali Khan
- Department of Chemistry , University of Swabi , Anbar-23561, Khyber Pakhtunkhwa , Pakistan
- Center of Excellence for Advanced Materials Research (CEAMR) , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
- Department of Chemistry , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
| | - Shagufta Rasool
- Department of Chemistry , Sarhad University of Science and Technology , Peshawar , Pakistan
| | - Khaliq Ur Rahman
- Department of Chemistry , University of Swabi , Anbar-23561, Khyber Pakhtunkhwa , Pakistan
| | - Shah Hussain
- Department of Chemistry , Govt. Postgraduate College , Nowshera-24100, Khyber-Pakhtunkhwa , Pakistan
- Department of Chemistry , Abdul Wali Khan University , Mardan 23200 , Pakistan
| | - Inamullah Khan
- Department of Chemistry , University of Swabi , Anbar-23561, Khyber Pakhtunkhwa , Pakistan
| | - Muhammad Ismail
- Department of Chemistry , Kohat University of Science and Technology , Kohat , Pakistan
| | - Aliya Farooq
- Department of Chemistry , Shaheed Benazir Bhutto Women University , Peshawar , Pakistan
| | - Sarzamin Khan
- Department of Chemistry , University of Swabi , Anbar-23561, Khyber Pakhtunkhwa , Pakistan
| | - Mian Ahmad Raza
- Department of Agriculture (Plant Breeding and Genetics) , University of Swabi , Swabi , Khyber Pakhtunkhwa
| | - Abdullah Muhammad Asiri
- Center of Excellence for Advanced Materials Research (CEAMR) , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
- Department of Chemistry , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
| | - Sher Bahadar Khan
- Center of Excellence for Advanced Materials Research (CEAMR) , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
- Department of Chemistry , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
| |
Collapse
|
28
|
Salehi B, Fokou PVT, Yamthe LRT, Tali BT, Adetunji CO, Rahavian A, Mudau FN, Martorell M, Setzer WN, Rodrigues CF, Martins N, Cho WC, Sharifi-Rad J. Phytochemicals in Prostate Cancer: From Bioactive Molecules to Upcoming Therapeutic Agents. Nutrients 2019; 11:E1483. [PMID: 31261861 PMCID: PMC6683070 DOI: 10.3390/nu11071483] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/22/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is a heterogeneous disease, the second deadliest malignancy in men and the most commonly diagnosed cancer among men. Traditional plants have been applied to handle various diseases and to develop new drugs. Medicinal plants are potential sources of natural bioactive compounds that include alkaloids, phenolic compounds, terpenes, and steroids. Many of these naturally-occurring bioactive constituents possess promising chemopreventive properties. In this sense, the aim of the present review is to provide a detailed overview of the role of plant-derived phytochemicals in prostate cancers, including the contribution of plant extracts and its corresponding isolated compounds.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Patrick Valere Tsouh Fokou
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde I, Ngoa Ekelle, Annex Fac. Sci, Yaounde 812, Cameroon
| | | | - Brice Tchatat Tali
- Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Messa-Yaoundé 812, Cameroon
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University, Iyamho, Edo State 300271, Nigeria
| | - Amirhossein Rahavian
- Department of Urology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1989934148, Iran
| | - Fhatuwani Nixwell Mudau
- Department of Agriculture and Animal Health, University of South Africa, Private Bag X6, Florida 1710, South Africa
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Célia F Rodrigues
- LEPABE-Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China.
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| |
Collapse
|
29
|
Denrah S, Sarkar M. Design of experiment for optimization of nitrophenol reduction by green synthesized silver nanocatalyst. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
30
|
Nguyen TTN, Vo TT, Nguyen BNH, Nguyen DT, Dang VS, Dang CH, Nguyen TD. Silver and gold nanoparticles biosynthesized by aqueous extract of burdock root, Arctium lappa as antimicrobial agent and catalyst for degradation of pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34247-34261. [PMID: 30291612 DOI: 10.1007/s11356-018-3322-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
This study presents an efficient and facile method for biosynthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) using aqueous extract of burdock root (BR), A. lappa, and their applications. The nanoparticles were characterized by ultraviolet-visible spectrophotometry, X-ray diffraction, transmission electron microscopy, energy dispersive X-ray, thermogravimetry, and differential thermal analysis. AgNPs capped the BR extract (BR-AgNPs) possessed roughly spherical geometry with an average diameter of 21.3 nm while uneven geometry of AuNPs capped the BR extract (BR-AuNPs) showed multi shapes in average size of 24.7 nm. The BR-AgNPs strongly inhibited five tested microorganism strains. In particular, the nanoparticles showed excellent catalytic activity for the conversion of pollutants within wastewater. Pseudo-first-order rate constants for the degradation of 4-nitrophenol, methyl orange, and rhodamine B were respectively found 6.77 × 10-3, 3.70 × 10-3, and 6.07 × 10-3 s-1 for BR-AgNPs and 6.87 × 10-3, 6.07 × 10-3, and 7.07 × 10-3 s-1 for BR-AuNPs. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Thi Thanh-Ngan Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang City, Vietnam
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1 Mac Dinh Chi Street, District 1, Ho Chi Minh City, Vietnam
| | - Thanh-Truc Vo
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1 Mac Dinh Chi Street, District 1, Ho Chi Minh City, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | | | | | - Van-Su Dang
- Department of Chemical Technology, Ho Chi Minh City University of Food Industry, Ho Chi Minh, Vietnam
| | - Chi-Hien Dang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1 Mac Dinh Chi Street, District 1, Ho Chi Minh City, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thanh-Danh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang City, Vietnam.
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1 Mac Dinh Chi Street, District 1, Ho Chi Minh City, Vietnam.
| |
Collapse
|
31
|
Ismail M, Khan M, Khan SB, Akhtar K, Khan MA, Asiri AM. Catalytic reduction of picric acid, nitrophenols and organic azo dyes via green synthesized plant supported Ag nanoparticles. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.030] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Pantic I, Sarenac D, Cetkovic M, Milisavljevic M, Rakocevic R, Kasas S. Silver Nanomaterials in Contemporary Molecular Physiology Research. Curr Med Chem 2018; 27:411-422. [PMID: 30027845 DOI: 10.2174/0929867325666180719110432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/01/2018] [Accepted: 07/03/2018] [Indexed: 11/22/2022]
Abstract
Silver nanoparticles have numerous potential applications in engineering, industry, biology and medicine. Because of their unique chemical properties, they have become the focus of many research teams all over the world. Silver nanoparticles may exhibit significant antimicrobial and anticancer effects, and they may be a valuable part of various bioassays and biosensors. However, the research on biological and medical uses of AgNPs is related with numerous potential problems and challenges that need to be overcome in the years ahead. Possible toxic effects of silver nanoparticles on living organisms represent a great concern, both in clinical medicine and public health. Nevertheless, in the future, it may be expected that all metallic nanomaterials, including the ones made from silver will greatly benefit almost all natural scientific fields. In this short review, we focus on the recent research on silver nanoparticles in experimental physiology, as well as other areas of fundamental and clinical medicine.
Collapse
Affiliation(s)
- Igor Pantic
- Institute of Belgrade, Faculty of Medicine, Institute of Medical Physiology, Laboratory for Cellular Physiology, University of Belgrade, Visegradska 26/II, RS-11129, Belgrade, Serbia.,University of Haifa, 199 Abba Hushi Blvd. Mount Carmel, Haifa IL-3498838, Israel
| | - David Sarenac
- Institute of Belgrade, Faculty of Medicine, Institute of Medical Physiology, Laboratory for Cellular Physiology, University of Belgrade, Visegradska 26/II, RS-11129, Belgrade, Serbia
| | - Mila Cetkovic
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Visegradska 26/II, RS-11129 Belgrade, Serbia
| | - Milan Milisavljevic
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr. Subotica 4/2, RS-11129, Belgrade, Serbia
| | - Rastko Rakocevic
- Institute of Belgrade, Faculty of Medicine, Institute of Medical Physiology, Laboratory for Cellular Physiology, University of Belgrade, Visegradska 26/II, RS-11129, Belgrade, Serbia.,Rutgers New Jersey Medical School, Rutgers University, Newark, United States
| | - Sandor Kasas
- Ecole polytechnique Fédérale de Lausanne EPFL-IPSB-LPMV, BSP/Cubotron 414, CH-1015 Lausanne, Switzerland
| |
Collapse
|
33
|
Khan SA, Bello BA, Khan JA, Anwar Y, Mirza MB, Qadri F, Farooq A, Adam IK, Asiri AM, Khan SB. Albizia chevalier based Ag nanoparticles: Anti-proliferation, bactericidal and pollutants degradation performance. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 182:62-70. [PMID: 29621690 DOI: 10.1016/j.jphotobiol.2018.03.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 12/30/2022]
Abstract
The eco-friendly biosynthesis of silver nanoparticles (AgNps) from bark extract of Albizia chevalier are reported here for their anti-proliferative, antibacterial and pollutant degradation potentials. The synthesized AgNps were characterized by FTIR spectroscopy, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy dispersive X-rays spectrometry (EDS) and X-ray diffraction studies. The TEM and FESEM images show a monodispersed spherical shaped particles of approximately 30 nm. Crystalline peaks were obtained for the synthesized AgNps in XRD spectrum. The AgNps were investigated for in vitro anticancer and antibacterial activities and its potential to degrade 4-nitrophenol (4-NP) and congo red dye (CR). The MTT results shows a significant dose-dependent antiproliferation effect of the AgNps on the cell lines HepG2, MDA-MB-231 and MFC7. The effect was found more pronounced in MDA-MB-231 as compared to MFC-7 cell lines. The antibacterial results indicated 99 and 95% killing of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) respectively, after 24 h of incubation with the AgNps. The AgNps were found to speed up the reductive degradation of 4-NP and CR dye, which give an alternative route for the removal of toxic organic pollutants from the wastewater. The synthesized AgNps were not only used as a bactericidal and anticancer agent, but also effectively used for the reductive degradation of carcinogenic compounds which are listed as the priority pollutants. Therefore, AgNps have the potential for the treatment of various cancers, bacterial infections and for industrial detoxification of wastewater.
Collapse
Affiliation(s)
- Shahid Ali Khan
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan; Center of Excellence for Advanced Materials Research (CEAMR), King Abdul-Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Bello Aminu Bello
- Department of Biochemistry, King Abdul-Aziz University, Jeddah, Saudi Arabia; Department of Biochemistry, Federal University Dutse, P.M.B. 7156, Dutse, Jigawa State, Nigeria
| | | | - Yasir Anwar
- Department of Biological sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Muqtadir Baig Mirza
- Department of Biological sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Fareed Qadri
- Department of Biological sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Aliya Farooq
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Pakistan
| | - Ibrahim Khalil Adam
- Department of Biochemistry, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Abdullah Muhammad Asiri
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdul-Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdul-Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|