1
|
Soares JM, Yakovlev VV, Blanco KC, Bagnato VS. Photodynamic inactivation and its effects on the heterogeneity of bacterial resistance. Sci Rep 2024; 14:28268. [PMID: 39550440 PMCID: PMC11569256 DOI: 10.1038/s41598-024-79743-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024] Open
Abstract
Antimicrobial resistance is a growing threat to global public health, requiring innovative approaches for its control. Photodynamic inactivation (PDI) with light-activated photosensitizers has emerged as a strategy to combat resistant bacteria, challenging the intrinsic heterogeneity of bacterial populations. This study evaluates the impact of PDI on both heterogeneity and shape of the distribution profile of resistant bacterial populations, specifically on strains of Staphylococcus aureus resistant to amoxicillin, erythromycin, and gentamicin, for exploring its potential as an adjuvant therapy in the fight against bacterial resistance. Curcumin (10 µM) was used as a photosensitizer and five cycles of PDI were applied on Staphylococcus aureus strains under 450 nm irradiation of 10 J/cm² energy density. The resistance variations amongst bacterial subpopulations were investigated by calculating the minimum inhibitory concentration (MIC) before and after PDI treatment. MIC was significantly reduced by the antibiotics tested post-PDI and a reduction in the heterogeneity of bacterial populations was recorded, suggesting PDI can effectively decrease the resistance diversity of Staphylococcus aureus. The result reinforces the potential of PDI as a valuable adjuvant therapy, offering a promising avenue for mitigating bacterial resistance and promoting more effective treatment strategies against resistant infections.
Collapse
Affiliation(s)
- Jennifer M Soares
- Institute of Physics of São Carlos, University of São Paulo, São Carlos, SP, Brazil.
| | | | - Kate C Blanco
- Institute of Physics of São Carlos, University of São Paulo, São Carlos, SP, Brazil
| | - Vanderlei S Bagnato
- Institute of Physics of São Carlos, University of São Paulo, São Carlos, SP, Brazil
- Biomedical Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
2
|
Hu Q, Zuo H, Hsu JC, Zeng C, Zhou T, Sun Z, Cai W, Tang Z, Chen W. The Emerging Landscape for Combating Resistance Associated with Energy-Based Therapies via Nanomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308286. [PMID: 37971203 PMCID: PMC10872442 DOI: 10.1002/adma.202308286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Cancer represents a serious disease with significant implications for public health, imposing substantial economic burden and negative societal consequences. Compared to conventional cancer treatments, such as surgery and chemotherapy, energy-based therapies (ET) based on athermal and thermal ablation provide distinct advantages, including minimally invasive procedures and rapid postoperative recovery. Nevertheless, due to the complex pathophysiology of many solid tumors, the therapeutic effectiveness of ET is often limited. Nanotechnology offers unique opportunities by enabling facile material designs, tunable physicochemical properties, and excellent biocompatibility, thereby further augmenting the outcomes of ET. Numerous nanomaterials have demonstrated the ability to overcome intrinsic therapeutic resistance associated with ET, leading to improved antitumor responses. This comprehensive review systematically summarizes the underlying mechanisms of ET-associated resistance (ETR) and highlights representative applications of nanoplatforms used to mitigate ETR. Overall, this review emphasizes the recent advances in the field and presents a detailed account of novel nanomaterial designs in combating ETR, along with efforts aimed at facilitating their clinical translation.
Collapse
Affiliation(s)
- Qitao Hu
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Huali Zuo
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Jessica C. Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Wisconsin 53705, United States
| | - Cheng Zeng
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Tian Zhou
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Zhouyi Sun
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Wisconsin 53705, United States
| | - Zhe Tang
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyu Chen
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| |
Collapse
|
3
|
Aniogo EC, George BP, Abrahamse H. Molecular Effectors of Photodynamic Therapy-Mediated Resistance to Cancer Cells. Int J Mol Sci 2021; 22:ijms222413182. [PMID: 34947979 PMCID: PMC8704319 DOI: 10.3390/ijms222413182] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022] Open
Abstract
Photodynamic therapy (PDT) is currently enjoying considerable attention as the subject of experimental research to treat resistant cancers. The preferential accumulation of a non-toxic photosensitizer (PS) in different cellular organelles that causes oxidative damage by combining light and molecular oxygen leads to selective cell killing. However, one major setback, common among other treatment approaches, is tumor relapse and the development of resistance causing treatment failure. PDT-mediated resistance could result from increased drug efflux and decreased localization of PS, reduced light exposure, increased DNA damage repair, and altered expression of survival genes. This review highlights the essential insights of PDT reports in which PDT resistance was observed and which identified some of the molecular effectors that facilitate the development of PDT resistance. We also discuss different perceptions of PDT and how its current limitations can be overturned to design improved cancer resistant treatments.
Collapse
|
4
|
Romero MP, Alves F, Stringasci MD, Buzzá HH, Ciol H, Inada NM, Bagnato VS. One-Pot Microwave-Assisted Synthesis of Carbon Dots and in vivo and in vitro Antimicrobial Photodynamic Applications. Front Microbiol 2021; 12:662149. [PMID: 34234756 PMCID: PMC8255795 DOI: 10.3389/fmicb.2021.662149] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Carbon-based photosensitizers are more attractive than the other ones based on their low cost, high stability, broadband of light absorption, tunable emission spectra, high quantum yield, water solubility, high resistance to metabolic degradation, and selective delivery. These properties allow multiple applications in the field of biology and medicine. The present study evaluated in vitro and in vivo the antimicrobial photodynamic effect of a one-pot microwave produced C-DOTS based on citric acid. The in vitro assays assessed the effectiveness of illuminated C-DOTS (C-DOTS + light) against Staphylococcus aureus suspension and biofilm. The concentrations of 6.9 and 13.8 mg/mL of C-DOTS and light doses of 20 and 40 J/cm2 were able to reduce significantly the microorganisms. Based on these parameters and results, the in vivo experiments were conducted in mice, evaluating this treatment on wounds contaminated with S. aureus. The viability test showed that C-DOTS-mediated photodynamic inactivation reduced 104 log of the bacteria present on the skin lesions. These results, altogether, showed that antibacterial photodynamic therapy using C-DOTS is a promising and viable treatment for Gram-positive bacteria-infected wounds.
Collapse
Affiliation(s)
- María Paulina Romero
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
- Departamento de Materiales, Facultad de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito, Ecuador
| | - Fernanda Alves
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | | | - Hilde Harb Buzzá
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Heloísa Ciol
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | | | - Vanderlei Salvador Bagnato
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
- Hagler Fellow, Texas A&M University, College Station, TX, United States
| |
Collapse
|
5
|
Willis JA, Cheburkanov V, Kassab G, Soares JM, Blanco KC, Bagnato VS, Yakovlev VV. Photodynamic viral inactivation: Recent advances and potential applications. APPLIED PHYSICS REVIEWS 2021; 8:021315. [PMID: 34084253 PMCID: PMC8132927 DOI: 10.1063/5.0044713] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/13/2021] [Indexed: 05/04/2023]
Abstract
Antibiotic-resistant bacteria, which are growing at a frightening rate worldwide, has put the world on a long-standing alert. The COVID-19 health crisis reinforced the pressing need to address a fast-developing pandemic. To mitigate these health emergencies and prevent economic collapse, cheap, practical, and easily applicable infection control techniques are essential worldwide. Application of light in the form of photodynamic action on microorganisms and viruses has been growing and is now successfully applied in several areas. The efficacy of this approach has been demonstrated in the fight against viruses, prompting additional efforts to advance the technique, including safety use protocols. In particular, its application to suppress respiratory tract infections and to provide decontamination of fluids, such as blood plasma and others, can become an inexpensive alternative strategy in the fight against viral and bacterial infections. Diverse early treatment methods based on photodynamic action enable an accelerated response to emerging threats prior to the availability of preventative drugs. In this review, we evaluate a vast number of photodynamic demonstrations and first-principle proofs carried out on viral control, revealing its potential and encouraging its rapid development toward safe clinical practice. This review highlights the main research trends and, as a futuristic exercise, anticipates potential situations where photodynamic treatment can provide a readily available solution.
Collapse
Affiliation(s)
- Jace A. Willis
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Vsevolod Cheburkanov
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Giulia Kassab
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Jennifer M. Soares
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Kate C. Blanco
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | | | - Vladislav V. Yakovlev
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
6
|
Martins WK, Belotto R, Silva MN, Grasso D, Suriani MD, Lavor TS, Itri R, Baptista MS, Tsubone TM. Autophagy Regulation and Photodynamic Therapy: Insights to Improve Outcomes of Cancer Treatment. Front Oncol 2021; 10:610472. [PMID: 33552982 PMCID: PMC7855851 DOI: 10.3389/fonc.2020.610472] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is considered an age-related disease that, over the next 10 years, will become the most prevalent health problem worldwide. Although cancer therapy has remarkably improved in the last few decades, novel treatment concepts are needed to defeat this disease. Photodynamic Therapy (PDT) signalize a pathway to treat and manage several types of cancer. Over the past three decades, new light sources and photosensitizers (PS) have been developed to be applied in PDT. Nevertheless, there is a lack of knowledge to explain the main biochemical routes needed to trigger regulated cell death mechanisms, affecting, considerably, the scope of the PDT. Although autophagy modulation is being raised as an interesting strategy to be used in cancer therapy, the main aspects referring to the autophagy role over cell succumbing PDT-photoinduced damage remain elusive. Several reports emphasize cytoprotective autophagy, as an ultimate attempt of cells to cope with the photo-induced stress and to survive. Moreover, other underlying molecular mechanisms that evoke PDT-resistance of tumor cells were considered. We reviewed the paradigm about the PDT-regulated cell death mechanisms that involve autophagic impairment or boosted activation. To comprise the autophagy-targeted PDT-protocols to treat cancer, it was underlined those that alleviate or intensify PDT-resistance of tumor cells. Thereby, this review provides insights into the mechanisms by which PDT can be used to modulate autophagy and emphasizes how this field represents a promising therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Waleska K Martins
- Laboratory of Cell and Membrane, Anhanguera University of São Paulo, São Paulo, Brazil
| | - Renata Belotto
- Perola Byington Hospital Gynecology - Lasertherapy Clinical Research Department, São Paulo, Brazil
| | - Maryana N Silva
- Laboratory of Cell and Membrane, Anhanguera University of São Paulo, São Paulo, Brazil
| | - Daniel Grasso
- CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maynne D Suriani
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Tayná S Lavor
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Rosangela Itri
- Institute of Physics, University of São Paulo, São Paulo, Brazil
| | | | - Tayana M Tsubone
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
7
|
Soares JM, Inada NM, Bagnato VS, Blanco KC. Evolution of surviving Streptoccocus pyogenes from pharyngotonsillitis patients submit to multiple cycles of antimicrobial photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 210:111985. [PMID: 32771915 DOI: 10.1016/j.jphotobiol.2020.111985] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022]
Abstract
It is estimated over 600 million pharyngotonsillitis (PT) cases worldwide per year and 30% of this total are caused by Streptococcus pyogenes with standard antibiotic treatment. Antimicrobial Photodynamic Therapy (aPDT) has been studied for the clinical research in infectious diseases. The study aim was to analyze the evolution of aPDT on inactivation of clinical strains of multiple cycles. S. pyogenes and clinical strains isolated from patients with PT were incubated with curcumin in formulation (2.25 mg/ml) and irradiated at 450 nm in Light fluence rates. A mortality was a measure of the counting colony forming units per milliliter (CFU/ml) surviving. Parameters of bacterial biofilm formation, uptake of photosensitizer (PS) and efficacy of antibiotics on survival of bacteria of each cycle were tested. The bacteria profile remains unchanged between 10 aPDT cycles was observed. The bacterial colony survival presented a reduction in capacity to form biofilm due adhesion of strains and PS uptake rate. The antibiotic remained efficient after aPDT cycles. Our in vitro results suggested a low-level of development of PDT resistance, however a decrease of photosensitizer uptake was observed. Furthermore, there is no cross effect on aPDT cycles and the first application of antibiotics.
Collapse
Affiliation(s)
- Jennifer Machado Soares
- São Carlos Institute of Physics, University of São Paulo, Box 369, 13566-590, São Carlos, SP, Brazil.
| | - Natalia Mayumi Inada
- São Carlos Institute of Physics, University of São Paulo, Box 369, 13566-590, São Carlos, SP, Brazil
| | - Vanderlei Salvador Bagnato
- São Carlos Institute of Physics, University of São Paulo, Box 369, 13566-590, São Carlos, SP, Brazil; Texas A&M University, College Station, Texas, USA
| | - Kate Cristina Blanco
- São Carlos Institute of Physics, University of São Paulo, Box 369, 13566-590, São Carlos, SP, Brazil
| |
Collapse
|
8
|
Romero MP, Marangoni VS, de Faria CG, Leite IS, Silva CDCCE, Maroneze CM, Pereira-da-Silva MA, Bagnato VS, Inada NM. Graphene Oxide Mediated Broad-Spectrum Antibacterial Based on Bimodal Action of Photodynamic and Photothermal Effects. Front Microbiol 2020; 10:2995. [PMID: 32010081 PMCID: PMC6974586 DOI: 10.3389/fmicb.2019.02995] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/11/2019] [Indexed: 12/24/2022] Open
Abstract
Graphene oxide (GO) with their interesting properties including thermal and electrical conductivity and antibacterial characteristics have many promising applications in medicine. The prevalence of resistant bacteria is considered a public health problem worldwide, herein, GO has been used as a broad spectrum selective antibacterial agent based on the photothermal therapy (PTT)/photodynamic therapy (PDT) effect. The preparation, characterization, determination of photophysical properties of two different sizes of GO is described. In vitro light dose and concentration-dependent studies were performed using Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria based on the PTT/PDT effect used ultra-low doses (65 mW cm-2) of 630 nm light, to achieve efficient bacterial decontamination. The results show that GO and nanographene oxide (nGO) can sensitize the formation of 1O2 and allow a temperature rise of 55°C to 60°C together nGO and GO to exert combined PTT/PDT effect in the disinfection of gram-positive S. aureus and gram-negative E. coli bacteria. A complete elimination of S. aureus and E. coli bacteria based on GO and nGO is obtained by using a dose of 43-47 J cm-2 for high concentration used in this study, and a dose of around 70 J cm-2 for low dose of GO and nGO. The presence of high concentrations of GO allows the bacterial population of S. aureus and E. coli to be more sensitive to the use of PDT/PTT and the efficiency of S. aureus and E. coli bacteria disinfection in the presence of GO is similar to that of nGO. In human neonatal dermal fibroblast, HDFs, no significant alteration to cell viability was promoted by GO, but in nGO is observed a mild damage in the HDFs cells independent of nGO concentration and light exposure. The unique properties of GO and nGO may be useful for the clinical treatment of disinfection of broad-spectrum antimicrobials. The antibacterial results of PTT and PDT using GO in gram-positive and gram-negative bacteria, using low dose light, allow us to conclude that GO and nGO can be used in dermatologic infections, since the effect on human dermal fibroblasts of this treatment is low compared to the antibacterial effect.
Collapse
Affiliation(s)
- María Paulina Romero
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
- Department of Materials, Escuela Politécnica Nacional, Quito, Ecuador
| | | | | | - Ilaiali Souza Leite
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | | | | | | | | | | |
Collapse
|