1
|
Reinhold LM, Rymer TL, Helgen KM, Wilson DT. Photoluminescence in mammal fur: 111 years of research. J Mammal 2023; 104:892-906. [PMID: 37545668 PMCID: PMC10399922 DOI: 10.1093/jmammal/gyad027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/04/2023] [Indexed: 08/08/2023] Open
Abstract
Photoluminescence in the pelage of mammals, a topic that has gained considerable recent research interest, was first documented in the 1700s and reported sporadically in the literature over the last century. The first detailed species accounts were of rabbits and humans, published 111 years ago in 1911. Recent studies have largely overlooked this earlier research into photoluminescent mammalian taxa and their luminophores. Here we provide a comprehensive update on existing research on photoluminescence in mammal fur, with the intention of drawing attention to earlier pioneering research in this field. We provide an overview on appropriate terminology, explain the physics of photoluminescence, and explore pigmentation and the ubiquitous photoluminescence of animal tissues, before touching on the emerging debate regarding visual function. We then provide a chronological account of research into mammalian fur photoluminescence, from the earliest discoveries and identification of luminophores to the most recent studies. While all mammal fur is likely to have a general low-level photoluminescence due to the presence of the protein keratin, fur glows luminously under ultraviolet light if it contains significant concentrations of tryptophan metabolites or porphyrins. Finally, we briefly discuss issues associated with preserved museum specimens in studies of photoluminescence. The study of mammal fur photoluminescence has a substantial history, which provides a broad foundation on which future studies can be grounded.
Collapse
Affiliation(s)
- Linda M Reinhold
- College of Science and Engineering, James Cook University, P.O. Box 6811, Cairns, Queensland 4870, Australia
| | - Tasmin L Rymer
- College of Science and Engineering, James Cook University, P.O. Box 6811, Cairns, Queensland 4870, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P.O. Box 6811, Cairns, Queensland 4870, Australia
| | - Kristofer M Helgen
- Australian Museum Research Institute, 1 William Street, Sydney, New South Wales 2010, Australia
| | - David T Wilson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia
| |
Collapse
|
2
|
Stereoselective effects of chiral epoxiconazole on the metabolomic and lipidomic profiling of leek. Food Chem 2022; 405:134962. [DOI: 10.1016/j.foodchem.2022.134962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/05/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
3
|
Vidal C, Ruiz A, Ortiz J, Larama G, Perez R, Santander C, Ferreira PAA, Cornejo P. Antioxidant Responses of Phenolic Compounds and Immobilization of Copper in Imperata Cylindrica, a Plant with Potential Use for Bioremediation of Cu Contaminated Environments. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1397. [PMID: 33092309 PMCID: PMC7589974 DOI: 10.3390/plants9101397] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/14/2022]
Abstract
This work examined the capability of Imperata cylindrica to respond, tolerate and accumulate Cu when growing at high Cu concentration (300 mg kg-1 of substrate) at different times of exposure (2, 14 and 21 days). The Cu accumulation in plants was examined by atomic absorption spectroscopy (AAS) and Cu localized by Scanning Electron Microscopy-Energy Dispersive X-Ray spectroscopy. Additionally, the phenolic compound identifications and concentrations were determined using liquid chromatography coupled to mass spectrometry. Our results showed that root biomass decreased significantly at high Cu levels, with a greater decrease at 21 days (39.8% less biomass in comparison to control). The root showed 328 mg Cu kg-1 dry weight at 21 days of exposure to Cu, being the tissue that accumulates most of the Cu. Lipid peroxidation was a clear indicator of Cu stress, principally in shoots. The exposure to Cu significantly increased the synthesis of phenolic compounds in shoots of plants exposed 21 days to Cu, where 5-caffeoylquinic acid reached the highest concentrations. Our results support that I. cylindrica is a Cu accumulator plant in root organs with a medium level of accumulation (between 200-600 mg Cu kg-1 biomass), which can tolerate the exposure to high Cu levels by means of increasing the synthesis of phenolic compound in shoots, suggesting a potential use as phytoremediation tool in Cu polluted environments.
Collapse
Affiliation(s)
- Catalina Vidal
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avda. Francisco Salazar, 01145 Temuco, Chile; (C.V.); (A.R.); (R.P.); (C.S.)
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Avda. Francisco Salazar, 01145 Temuco, Chile
| | - Antonieta Ruiz
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avda. Francisco Salazar, 01145 Temuco, Chile; (C.V.); (A.R.); (R.P.); (C.S.)
| | - Javier Ortiz
- Laboratorio de Biorremediación, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Avda. Francisco Salazar, 01145 Temuco, Chile;
| | - Giovanni Larama
- Centro de Modelación y Computación Científica, Universidad de La Frontera, Avda. Francisco Salazar, 01145 Temuco, Chile;
| | - Rodrigo Perez
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avda. Francisco Salazar, 01145 Temuco, Chile; (C.V.); (A.R.); (R.P.); (C.S.)
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Avda. Francisco Salazar, 01145 Temuco, Chile
| | - Christian Santander
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avda. Francisco Salazar, 01145 Temuco, Chile; (C.V.); (A.R.); (R.P.); (C.S.)
| | | | - Pablo Cornejo
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avda. Francisco Salazar, 01145 Temuco, Chile; (C.V.); (A.R.); (R.P.); (C.S.)
| |
Collapse
|