1
|
Phytoestrogens decorated nanocapsules for therapeutic methionine γ-lyase targeted delivery. Biochimie 2023; 209:1-9. [PMID: 36646203 DOI: 10.1016/j.biochi.2023.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/27/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The main task of targeted therapy is the selective destruction of cancer cells without affecting normal ones. For these purposes, small molecules and antibodies are used that target specific receptors and proteins or block signaling pathways in tumor cells. The natural phytoestrogens daidzein (Dz) and genistein (Gn) possess binding capacity to estrogen receptors (ER). Methionine γ-lyase (MGL) is promising in two strategies of antitumor therapy: for the elimination of l-methionine, which is necessary for the proliferation of tumor cells, and for the production of cytotoxic dialkyl thiosulfinates in situ. For delivery of MGL-loaded nanocapsules (nanoreactors) to the surface of cancer cells a technique for Dz or Gn incorporation into the shell of polyionic vesicles (PICsomes) was developed. The nanoreactors were characterized by dynamic light scattering and transmission electron microscopy. The enzyme retained its catalytic efficiency inside the decorated PICsomes. The binding of Dz/Gn-nanoreactors to the surface of ER + MCF7 breast adenocarcinoma cells was demonstrated. For the first time an influence of enzyme-loaded PICsomes and their individual components on embryos development was evaluated. The high rate of blastocysts formation (>80%) was observed for all tested components and nanoreactors themselves. A strong inhibitory effect on the early embryonic development of MGL-loaded PICsomes in the presence of S-alkyl-l-cysteine sulfoxide substrates was showed. This proves that the substrates can freely penetrate through the polymer shell of the polyionic vesicle and are cleaved by MGL to form cytotoxic thiosulfinates. The data obtained for phytoestrogens decorated PICsomes may be applied in enzyme therapy of malignant tumors.
Collapse
|
2
|
Photoconversion Fluoropolymer Films for the Cultivation of Agricultural Plants Under Conditions of Insufficient Insolation. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plants are capable of using mainly the quanta of the red and blue parts of a spectrum for the reception of energy during photosynthesis. However, for many crops grown indoors in high latitudes or under conditions of insufficient insolation, the average daily intensity of the red and blue parts of the spectrum is usually sufficient only on clear summer days. A technology has been proposed to produce a photoconversion fluoropolymer film for greenhouses, which is based on the modification of fluoropolymer by nanoparticles with fluorescence in the blue or red part of the spectrum (quantum dots). The films are capable of converting UV and violet radiation into the blue and red region of the visible spectrum, the most important for plants. It has been shown that the use of photoconversion fluoropolymer films promotes biomass growth. The area of cucumber leaves grown under photoconversion films increases by 20%, pumpkins by 25%, pepper by 30%, and tomatoes by 55%. The use of photoconversion fluoropolymer films for greenhouses also allows obtaining 15% more fruit biomass from one bush. In general, the use of photoconversion fluoropolymer films may be in great demand for greenhouses lying in high latitudes and located in areas with insufficient insolation.
Collapse
|
3
|
New Nanostructured Carbon Coating Inhibits Bacterial Growth, but Does Not Influence on Animal Cells. NANOMATERIALS 2020; 10:nano10112130. [PMID: 33120890 PMCID: PMC7692575 DOI: 10.3390/nano10112130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
An electrospark technology has been developed for obtaining a colloidal solution containing nanosized amorphous carbon. The advantages of the technology are its low cost and high performance. The colloidal solution of nanosized carbon is highly stable. The coatings on its basis are nanostructured. They are characterized by high adhesion and hydrophobicity. It was found that the propagation of microorganisms on nanosized carbon coatings is significantly hindered. At the same time, eukaryotic animal cells grow and develop on nanosized carbon coatings, as well as on the nitinol medical alloy. The use of a colloidal solution as available, cheap and non-toxic nanomaterial for the creation of antibacterial coatings to prevent biofilm formation seems to be very promising for modern medicine, pharmaceutical and food industries.
Collapse
|
4
|
Gudkov SV, Simakin AV, Bunkin NF, Shafeev GA, Astashev ME, Glinushkin AP, Grinberg MA, Vodeneev VA. Development and application of photoconversion fluoropolymer films for greenhouses located at high or polar latitudes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 213:112056. [PMID: 33142218 DOI: 10.1016/j.jphotobiol.2020.112056] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/25/2020] [Accepted: 10/13/2020] [Indexed: 11/28/2022]
Abstract
To convert and store energy in the process of photosynthesis, plants primarily use quanta of the red and blue parts of the spectrum. At high latitudes, the average daily intensity of red and blue parts of the spectrum is not very high; for many crops cultivated under greenhouse conditions, it reaches the sufficient level only on clear summer days. The problem of insufficient illumination in greenhouses is usually solved with artificial light sources. This article describes a technology for the manufacture of photoconversion fluoropolymer films for greenhouses. The fluoropolymer films described in the paper make use of original gold nanoparticles and nanoparticles with fluorescence in the blue or red region of the spectrum. In the polymer film, nanoparticles aggregate in the form of "beads", which enhances the field of the optical wave. The film photoconverts UV and violet light into blue and red light. Gold nanoparticles also partially convert energy in the green region of the spectrum (not used by plants) into heat, which is also important for agriculture at high latitudes. In addition, impregnation of gold nanoparticles into fluoropolymer significantly increases the lifetime of the film. The films described in the paper can significantly increase the productivity of greenhouses located at high latitudes. Plants cultivated under the films have more chlorophyll and a higher intensity of photosynthesis - although their system of distance stress signals is, to a certain degree, suppressed.
Collapse
Affiliation(s)
- Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St, Moscow 119991, Russia.
| | - Alexander V Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St, Moscow 119991, Russia
| | - Nikolay F Bunkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St, Moscow 119991, Russia; Bauman Moscow State Technical University, 2-nd Baumanskaya str. 5, Moscow 105005, Russia
| | - Georgy A Shafeev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St, Moscow 119991, Russia
| | - Maxim E Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St, Moscow 119991, Russia; Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., Pushchino, Moscow 119991, Russia
| | - Alexey P Glinushkin
- All-Russian Research Institute of Phytopatology, ul. Institut 5, Bolshie Vyazemy, Moscow 143050, Russia
| | - Marina A Grinberg
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave, Nizhny Novgorod 603950, Russia
| | - Vladimir A Vodeneev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave, Nizhny Novgorod 603950, Russia
| |
Collapse
|
5
|
Kaplan MA, Sergienko KV, Kolmakova AA, Konushkin SV, Baikin AS, Kolmakov AG, Sevostyanov MA, Kulikov AV, Ivanov VE, Belosludtsev KN, Antipov SS, Volkov MY, Shusharina NN, Karaduleva EV, Kozlov VA, Simakin AV, Gudkov SV. Development of a Biocompatible PLGA Polymers Capable to Release Thrombolytic Enzyme Prourokinase. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1405-1420. [PMID: 32323635 DOI: 10.1080/09205063.2020.1760699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The novelty of the work lies in the creation and study of the physical and biological properties of biodegradable polymer coatings for stents based on poly(lactic-co-glycolic acid) (PLGA). Polymer coatings are capable of prolonged and directed release of molecules with a high molecular weight, in particular, protein molecules of prourokinase (m.w. 54 kDa). A technology has been developed to create coatings having a relative elongation of 40% to 165% and a tensile strength of 25-65 MPa. Coatings are biodegradable; the rate of degradation of the polymer in an isotonic solution varies in the range of 0.05%-1.0% per day. The created coatings are capable of controlled release of the protein of prourokinase, while about 90% of the molecules of prourokinase retain their enzymatic activity. The rate of release of prourokinase can vary from 0.01 to 0.08 mg/day/cm2. Coatings do not have a short-term toxic effect on mammalian cells. The mitotic index of cells growing on coatings is approximately 1.5%. When implanting the developed polymers in animals in the postoperative period, there are no complications. Histological examination did not reveal pathological processes. When implanting individual polymers 60 days after surgery, only traces of PLGA are detected. Thus, a biodegradable composite mechanically resistant polymer capable of prolonged release of the high molecular weight prourokinase enzyme has been developed.
Collapse
Affiliation(s)
- Mikhail A Kaplan
- Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, Moscow, Russia
| | - Konstantin V Sergienko
- Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, Moscow, Russia
| | - Anastasia A Kolmakova
- Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, Moscow, Russia
| | - Sergey V Konushkin
- Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Baikin
- Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey G Kolmakov
- Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, Moscow, Russia.,Institute of Strength Physics and Materials Science of the Siberian Branch of Russian Academy of Sciences, Tomsk, Russia
| | - Mikhail A Sevostyanov
- Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander V Kulikov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Vladimir E Ivanov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Konstantin N Belosludtsev
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Russia.,Mari State University, Yoshkar-Ola, Mari El, Russia
| | - Sergey S Antipov
- K.G. Razumovsky Moscow State University of technologies and management (the First Cossack University), Moscow, Russia
| | | | | | - Elena V Karaduleva
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Valery A Kozlov
- Bauman Moscow State Technical University, Moscow, Russia.,Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander V Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Biodegradable stent coatings on the basis of PLGA polymers of different molecular mass, sustaining a steady release of the thrombolityc enzyme streptokinase. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104550] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Baikin AS, Kaplan MA, Nasakina EO, Shatova LA, Tsareva AM, Kolmakova AA, Danilova EA, Tishurova YA, Bunkin NF, Gudkov SV, Belosludtsev KN, Glinushkin AP, Kolmakov AG, Sevostyanov MA. Development of a Biocompatible and Biodegradable Polymer Capable of Long-Term Release of Biologically Active Substances for Medicine and Agriculture. DOKLADY CHEMISTRY 2019. [DOI: 10.1134/s0012500819110041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Baikin AS, Kolmakov AG, Shatova LA, Nasakina EO, Sharapov MG, Baymler IV, Gudkov SV, Sevostyanov MA. Polylactide-Based Stent Coatings: Biodegradable Polymeric Coatings Capable of Maintaining Sustained Release of the Thrombolytic Enzyme Prourokinase. MATERIALS 2019; 12:ma12244107. [PMID: 31818007 PMCID: PMC6947557 DOI: 10.3390/ma12244107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 01/26/2023]
Abstract
The novelty of the study is the development, creation, and investigation of biodegradable polymeric membranes based on polylactide, that are capable of directed release of large molecular weight biomolecules, particularly, prourokinase protein (MW = 46 kDa). Prourokinase is a medication with significant thrombolytic activity. The created membranes possess the required mechanical properties (relative extension value from 2% to 10%, tensile strength from 40 to 85 MPa). The membranes are biodegradable, but in the absence of living cells in a water solution they decompose by less than 10% in half a year. The created membranes are capable of controlled prourokinase release into intercellular space, and the total enzymatic activity of prourokinase does not decrease by more than 12%. The daily release of prourokinase from one square centimeter of the membrane ranges from 1 to 40 μg per day depending on the technique of membrane preparation. The membranes have no acute toxic effect on cells accreting these surfaces de novo. The number of viable cells is at least 96%-97% of the overall cell count. The mitotic index of the cells growing on the surface of the polymeric films comprised around 1.5%. Histological examination did not reveal any disorders in tissues of the animals after the implantation of polymer membranes based on polylactide, both alone and as components of stent cover. Implantation of stents covered with prourokinase-containing polymers led to the formation of a mature connective tissue capsule that is thicker than in the case of uncovered stents. Thus, various polylactide-based biodegradable polymeric membranes possessing the required mechanical properties and capable of prolonged and directed release of prourokinase macromolecules are developed and investigated in the study.
Collapse
Affiliation(s)
- Alexander S. Baikin
- Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, Leninsky Prospekt 49, Moscow 119334, Russia; (A.G.K.); (E.O.N.); (M.A.S.)
- Correspondence: ; Tel.: +7-916-565-55-32
| | - Alexey G. Kolmakov
- Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, Leninsky Prospekt 49, Moscow 119334, Russia; (A.G.K.); (E.O.N.); (M.A.S.)
- Institute of Strength Physics and Materials Science of the Siberian Branch of Russian Academy of Sciences, Tomsk 634055, Russia
| | - Lyudmila A. Shatova
- Department of Physics, Voronezh State Technical University, st. 20-letiya Oktyabrya, 84/4, Voronezh 394006, Russia;
| | - Elena O. Nasakina
- Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, Leninsky Prospekt 49, Moscow 119334, Russia; (A.G.K.); (E.O.N.); (M.A.S.)
| | - Mars G. Sharapov
- Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., Pushchino, Moscow Region 119991, Russia
- Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow Region 141700, Russia (S.V.G.)
| | - Ilya V. Baymler
- Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow Region 141700, Russia (S.V.G.)
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., Moscow 119991, Russia
| | - Sergey V. Gudkov
- Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow Region 141700, Russia (S.V.G.)
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., Moscow 119991, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia
| | - Mikhail A. Sevostyanov
- Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, Leninsky Prospekt 49, Moscow 119334, Russia; (A.G.K.); (E.O.N.); (M.A.S.)
| |
Collapse
|
9
|
Chernov AS, Reshetnikov DA, Ristsov GK, Kovalitskaya YA, Ermakov AM, Manokhin AA, Simakin AV, Vasilov RG, Gudkov SV. Influence of electromagnetic waves, with maxima in the green or red range, on the morphofunctional properties of multipotent stem cells. J Biol Phys 2019; 45:317-334. [PMID: 31595390 PMCID: PMC6917679 DOI: 10.1007/s10867-019-09531-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 08/27/2019] [Indexed: 12/16/2022] Open
Abstract
This paper examines the effect of electromagnetic waves, with maxima in the green or red regions of the spectrum, on the morphofunctional state of multipotent mesenchymal stromal cells. The illumination regimes used in our experiments did not lead to any substantial heating of the samples; the physical parameters of the lighting were carefully monitored. When the samples were illuminated with a green light, no significant photostimulatory effect was observed. Red light, on the other hand, had an evident photostimulatory effect. It is shown that photostimulation with a red light decreases the enzymatic activities of mitochondrial dehydrogenases and enhances the viability of cells, their proliferative activity, and their ability to form bone tissue. It is also established that red light stimulates cell proliferation, while not activating the genes that increase the risk of the subsequent malignant transformation of cells or their death. This paper discusses the possible role of hydrogen peroxide in the processes examined.
Collapse
Affiliation(s)
- A S Chernov
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl. 1, Moscow, Russia, 123182.
| | - D A Reshetnikov
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Nauki Ave., 3, Pushchino, Moscow Region, Russia, 142290
| | - G K Ristsov
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Nauki Ave., 3, Pushchino, Moscow Region, Russia, 142290
| | - Yu A Kovalitskaya
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Institutskaya St. 6, Pushchino, Moscow Oblast, Russia, 142290
| | - A M Ermakov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Institutskaya St. 6, Pushchino, Moscow Region, Russia, 142290
| | - A A Manokhin
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Nauki Ave., 3, Pushchino, Moscow Region, Russia, 142290
| | - A V Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Ave., 38, Moscow, Russia, 119991
| | - R G Vasilov
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl. 1, Moscow, Russia, 123182
| | - S V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Ave., 38, Moscow, Russia, 119991
- All-Russia Research Institute for Phytopathology, B. Vyazyomy, Moscow Region, Russia, 143050
| |
Collapse
|