1
|
Amir M, Qureshi MA, Musarrat J, Javed S. Structural investigation of erdafitinib, an anticancer drug, with ctDNA: A spectroscopic and computational study. Biochim Biophys Acta Gen Subj 2025; 1869:130751. [PMID: 39725241 DOI: 10.1016/j.bbagen.2024.130751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/05/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
The interaction of drugs with DNA is crucial for understanding their mechanism of action, particularly in the context of gene expression regulation. Erdafitinib (EDB), a pan-FGFR (fibroblast growth factor receptor) inhibitor approved by the FDA, is a potent anticancer agent used primarily in the treatment of urothelial carcinoma. In this study, the binding interaction between EDB and calf thymus DNA (ctDNA) was assessed using molecular docking, UV-absorption spectroscopy, fluorescence spectroscopy, and circular dichroism (CD) spectroscopy. The absorption spectra indicated a hypochromic effect when EDB was combined with ctDNA. The binding constant (Ka) of EDB-ctDNA complex was calculated as 7.84 × 103 M-1, corresponds to a free energy change (ΔG) value of approximately -5.06 kcal/mol, indicating a moderate binding affinity. Fluorometric analysis revealed a static binding mechanism in the ground state, with a bimolecular enhancement constant (KB) of 7.56 × 1011 M-1. Displacement experiments demonstrated that EDB preferentially binds to the minor groove of ctDNA, with a Ksv value of 5.14 × 104 M-1. Further, KI quenching and CD spectroscopy confirmed the minor groove binding mode, which was associated with a decrease in the Tm from 68.28 °C to 65.84 °C, reflecting a destabilizing effect on DNA helix. Molecular docking supported these findings, showing that EDB exhibits a strong affinity for the minor groove of ctDNA and hydrogen bonding and Vander Waal interactions are the major forces involved in the binding. These results suggest that EDB primarily binds to the minor groove of ctDNA, which may play a role in its anticancer activity.
Collapse
Affiliation(s)
- Mohd Amir
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Aamir Qureshi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India; Department of Biosciences, Integral University, Lucknow 226016, India
| | - Javed Musarrat
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Saleem Javed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
2
|
Singh Chauhan S, Mohan Murari B. Fluorescence Spectroscopic Studies to Evaluate Binding Interaction between Hoechst 33258 and Bilirubin. J Fluoresc 2024; 34:2229-2237. [PMID: 37728846 DOI: 10.1007/s10895-023-03440-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
A detailed spectroscopic study (fluorescence, absorption, and lifetime) was conducted to gain insight into the nature of the binding interaction between fluorophore Hoechst33258 (H258) and jaundice marker Bilirubin (Br). The fluorescence emission of the H258 (Ex/Em = 340-502nm) showed a conc. dependent quenching in the presence of Br (1.25 μ M to 10 μ M). The Stern-Volmer constant demonstrated an upward curve depicting the occurrence of both static and dynamic quenching with an acquired value of KSV = 3.1x 103 M- 1 and biomolecular quenching rate constant Kq = 8.6 x 1011 M- 1 S- 1 . The static quenching was evaluated using the sphere of action model and a sphere radius of 0.3nm indicated the presence of a static component in the quenching. The FRET analysis with overlap integral (J) = 1.4x1014 M- 1 cm- 1 nm4 and Foster Radius(R0 ) = 26.82 Å with 59% efficiency suggested occurrence of dynamic quenching. Further studies with the time-resolved fluorescence also indicated the presence of dynamic quenching. The lifetime values of H258 reduced from 3.9ns to 0.5ns. Molecular docking studies further support both static and dynamic components in quenching. A non-covalent interaction of H258 with Br in the presence of HSA is predominantly characterized by H-bonding with residues Lys, Asn, Glu, Gln, and Br. The H258 and Br interaction was within the distance of 3.04 Å, which is in coherence with the sphere of action model (0.3nm) and Van-der-Waals along with hydrophobic interactions, which suggested both static and dynamic quenching. Thus, H258 can serve as an efficient fluorophore to monitor binding interactions and can be further exploited as a suitable probe for investigating conformational changes and detection of Br in subsequent studies.
Collapse
Affiliation(s)
- Srishti Singh Chauhan
- Department of Sensor and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Bhaskar Mohan Murari
- Department of Sensor and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
3
|
Amir M, Aamir Qureshi M, Khan A, Nayeem SM, Ayoub Malik W, Javed S. Exploring the interaction of tepotinib with calf thymus DNA using molecular dynamics simulation and multispectroscopic techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123678. [PMID: 38039637 DOI: 10.1016/j.saa.2023.123678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/05/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
In recent times, there has been a surge in the discovery of drugs that directly interact with DNA, influencing gene expression. As a result, understanding how biomolecules interact with DNA has become a major area of research. One such drug is Tepotinib (TPT), an FDA-approved anti-cancer medication known as a MET tyrosine kinase inhibitor, used in chemotherapy for metastatic non-small cell lung cancer (NSCLC) with MET exon 14 skipping alterations. In our study, we adopted both biophysical and in-silico methods to investigate the binding relationship of TPT and ctDNA. The absorption spectra of ctDNA exhibited a hypochromic effect when titrated with TPT and the binding constant of TPT-ctDNA complex was calculated, Ka = 9.91 × 104 M-1. By computing bimolecular enhancement constant (KB) and thermodynamic enhancement constant (KD) in fluorometric investigations, it was found that the fluorescence enhancement is a result of a static process involving the ctDNA-TPT complex formation in the ground state, as opposed to a dynamic process. The displacement assay results further supported this finding, showing that TPT exhibits a binding preference for minor groove of ct-DNA and was also demonstrated by KI quenching and CD spectroscopy. The molecular docking and molecular dynamic simulations validated TPT's groove binding nature and binding pattern with ctDNA, respectively. Thus, the results of our present investigation offer valuable insights into the interaction between TPT and ctDNA. It is evident that TPT, as an anti-cancer medication, binds to the minor groove of ctDNA.
Collapse
Affiliation(s)
- Mohd Amir
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Aamir Qureshi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| | - Ashma Khan
- Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh 202002, India.
| | - Shahid M Nayeem
- Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh 202002, India.
| | - Waseem Ayoub Malik
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| | - Saleem Javed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
4
|
Kuzpınar E, Al Faysal A, Şenel P, Erdoğan T, Gölcü A. Quantification of mirtazapine in tablets via DNA binding mechanism; development of a new HPLC method. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1234:124019. [PMID: 38309044 DOI: 10.1016/j.jchromb.2024.124019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/05/2024]
Abstract
Atypical antidepressant mirtazapine (MIR) is mostly prescribed for the management of major depressive disorder. The identification of MIR in pharmaceutical dosage forms was made possible by developing a novel, quick, sensitive high-performance liquid chromatography (HPLC) approach that was verified in accordance with ICH recommendations. In the first part of this study, HPLC investigations were optimized with regard to variables including pH, working column, mobile phase, temperature, and flow rate. The limit of detection (LOD) was 0.013 ppm, the limit of quantification (LOQ) was 0.044 ppm, and the linear range was computed as 0.5-15 ppm (R2 = 0.9998). The recovery investigation assessed the method's accuracy, which was shown to range between 98.82 and 100.97 %. In the second part, by using UV-vis spectroscopy, HPLC, thermal denaturation, and viscosity measurements, the mechanism of binding interaction of MIR with double-stranded fish sperm deoxyribonucleic acid (dsDNA) has been thoroughly studied. The DNA binding constants (Kb) were determined using UV-Vis absorption and HPLC methods. To investigate the interactions of MIR with dsDNA, molecular docking calculations and additionally, molecular dynamics simulations were performed. Results showed that MIR is located in the minor groove of dsDNA, and in addition to hydrogen bonding, electrostatic interaction is also formed between the aromatic ring of MIR and phosphate oxygen of dsDNA. Finally, a binding characterization study using MIR tablets was also conducted in order to assess the interaction mechanism of the DNA with the drug using the validated analytical procedure developed for the MIR molecule.
Collapse
Affiliation(s)
- Ecem Kuzpınar
- Istanbul Technical University, Faculty of Sciences and Letters, Department of Chemistry, Maslak, Istanbul, Türkiye
| | - Abdullah Al Faysal
- Istanbul Technical University, Faculty of Sciences and Letters, Department of Chemistry, Maslak, Istanbul, Türkiye
| | - Pelin Şenel
- Istanbul Technical University, Faculty of Sciences and Letters, Department of Chemistry, Maslak, Istanbul, Türkiye
| | - Taner Erdoğan
- Kocaeli University, Kocaeli Vocational School, Department of Chemistry and Chemical Processing Technologies, Kocaeli, 41140, Türkiye
| | - Ayşegül Gölcü
- Istanbul Technical University, Faculty of Sciences and Letters, Department of Chemistry, Maslak, Istanbul, Türkiye.
| |
Collapse
|
5
|
Malek-Esfandiari Z, Rezvani-Noghani A, Sohrabi T, Mokaberi P, Amiri-Tehranizadeh Z, Chamani J. Molecular Dynamics and Multi-Spectroscopic of the Interaction Behavior between Bladder Cancer Cells and Calf Thymus DNA with Rebeccamycin: Apoptosis through the Down Regulation of PI3K/AKT Signaling Pathway. J Fluoresc 2023; 33:1537-1557. [PMID: 36787038 DOI: 10.1007/s10895-023-03169-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023]
Abstract
The interaction of Rebeccamycin with calf thymus (ctDNA) in the absence and presence of H1 was investigated by molecular dynamics, multi-spectroscopic, and cellular techniques. According to fluorescence and circular dichroism spectroscopies, Rebeccamycin interacted with ctDNA in the absence of H1 through intercalator or binding modes, while the presence of H1 resulted in revealing theintercalator, as the dominant role, and groove binding modes of ctDNA-Rebeccamycin complex. The binding constants, which were calculated to be 1.22 × 104 M-1 and 7.92 × 105 M-1 in the absence and presence of H1, respectively, denoted the strong binding of Rebeccamycin with ctDNA. The binding constants of Rebeccamycin with ct DNA in the absence and presence of H1 were calculated at 298, 303 and 308 K. Considering the thermodynamic parameters (ΔH0 and ΔS0), both vander waals forces and hydrogen bonds played predominant roles throughout the binding of Rebeccamycin to ctDNA in the absence and presence of H1. The outcomes of circular dichroism suggested the lack of any major conformational changes in ctDNA upon interacting with Rebeccamycin, except some perturbations in native B-DNA at local level. Additionally, the effect of NaCl and KI on ctDNA-Rebeccamycin complex provided further evidence for the reliance of their interaction modes on substituted groups. The observed increase in the relative viscosity of ctDNA caused by the enhancement of Rebeccamycin confirmed their intercalation and groove binding modes in the absence and presence of H1. Moreover, the assessments of molecular docking simulation corroborated these experimental results and also elucidated the effectiveness of Rebeccamycinin inhibiting and proliferating T24 and 5637 cells. Meanwhile, the ability of Rebeccamycin in inhibiting cell proliferation and tumor growth through the induction of apoptosis by down regulating the PI3K/AKT signaling pathway were provided.
Collapse
Affiliation(s)
- Zohreh Malek-Esfandiari
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Azadeh Rezvani-Noghani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Tahmineh Sohrabi
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Mokaberi
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Zeinab Amiri-Tehranizadeh
- Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| |
Collapse
|
6
|
Multi-spectroscopic, thermodynamic, and molecular docking/dynamic approaches for characterization of the binding interaction between calf thymus DNA and palbociclib. Sci Rep 2022; 12:14723. [PMID: 36042232 PMCID: PMC9427788 DOI: 10.1038/s41598-022-19015-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
Studying the binding interaction between biological macromolecules and small molecules has formed the core of different research aspects. The interaction of palbociclib with calf thymus DNA at simulated physiological conditions (pH 7.4) was studied using different approaches, including spectrophotometry, spectrofluorimetry, FT-IR spectroscopy, viscosity measurements, ionic strength measurements, thermodynamic, molecular dynamic simulation, and docking studies. The obtained findings showed an apparent binding interaction between palbociclib and calf thymus DNA. Groove binding mode was confirmed from the findings of competitive binding studies with ethidium bromide or rhodamine B, UV–Vis spectrophotometry, and viscosity assessment. The binding constant (Kb) at 298 K calculated from the Benesi–Hildebrand equation was found to be 6.42 × 103 M−1. The enthalpy and entropy changes (∆H0 and ∆S0) were − 33.09 kJ mol−1 and 61.78 J mol−1 K−1, respectively, showing that hydrophobic and hydrogen bonds constitute the primary binding forces. As indicated by the molecular docking results, palbociclib fits into the AT-rich region of the B-DNA minor groove with four base pairs long binding site. The dynamic performance and stability of the formed complex were also evaluated using molecular dynamic simulation studies. The in vitro study of the intermolecular binding interaction of palbociclib with calf thymus DNA could guide future clinical and pharmacological studies for the rational drug scheming with enhanced or more selective activity and greater efficacy.
Collapse
|
7
|
Kadam KR, Pandhare GR, Waghmare AS, Murade VD, Kamble NR, Kamble VT. Silica Chemisorbed Bis(Hydrogensulphato)Benzene (SiO2-BHSB) as a New, Environmentally Benign and Recyclable Catalyst for an Efficient Synthesis of Biscoumarin Scaffolds in Water Based Solvent. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.2019801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- K. R. Kadam
- Department of Chemistry and Research Centre, Padmashri Vikhe Patil College Pravaranagar, Ahmednagar, India
| | - G. R. Pandhare
- Department of Chemistry and Research Centre, Padmashri Vikhe Patil College Pravaranagar, Ahmednagar, India
| | - A. S. Waghmare
- Department of Chemistry and Research Centre, Padmashri Vikhe Patil College Pravaranagar, Ahmednagar, India
| | - V. D. Murade
- Department of Chemistry and Research Centre, Padmashri Vikhe Patil College Pravaranagar, Ahmednagar, India
| | - N. R. Kamble
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, India
| | - V. T. Kamble
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, India
| |
Collapse
|
8
|
Bera S, Ghosh S, Ali A, Pal M, Chakrabarti P. Inhibition of microtubule assembly and cytotoxic effect of graphene oxide on human colorectal carcinoma cell HCT116. Arch Biochem Biophys 2021; 708:108940. [PMID: 34058149 DOI: 10.1016/j.abb.2021.108940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Nanomaterials, such as graphene oxide (GO), are increasingly being investigated for their suitability in biomedical applications. Tubulin is the key molecule for the formation of microtubules crucial for cellular function and proliferation, and as such an appealing target for developing anticancer drug. Here we employ biophysical techniques to study the effect of GO on tubulin structure and how the changes affect the tubulin/microtubule assembly. GO disrupts the structural integrity of the protein, with consequent retardation of tubulin polymerization. Investigating the anticancer potential of GO, we found that it is more toxic to human colon cancer cells (HCT116), as compared to human embryonic kidney epithelial cells (HEK293). Immunocytochemistry indicated the disruption of microtubule assembly in HCT116 cells. GO arrested cells in the S phase with increased accumulation in Sub-G1 population of cell cycle, inducing apoptosis by generating reactive oxygen species (ROS) in a dose- and time-dependent manner. GO inhibited microtubule formation by intervening into the polymerization of tubulin heterodimers both in vitro and ex vivo, resulting in growth arrest at the S phase and ROS induced apoptosis of HCT116 colorectal carcinoma cells. There was no significant harm to the HEK293 kidney epithelial cells used as control. Our report of pristine GO causing ROS-induced apoptosis of cancer cells and inhibition of tubulin-microtubule assembly can be of interest in cancer therapeutics and nanomedicine.
Collapse
Affiliation(s)
- Supriyo Bera
- Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Asif Ali
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India.
| | - Pinak Chakrabarti
- Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India.
| |
Collapse
|
9
|
Mukherjee A, Ghosh S, Ghosh S, Mahato S, Pal M, Sen SK, Majee A, Singh B. Molecular recognition of synthesized halogenated chalcone by calf thymus DNA through multispectroscopic studies and analysis the anti-cancer, anti-bacterial activity of the compounds. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Zhang M, Dai Z, Zhao X, Wang G, Lai R. Anticarin β Inhibits Human Glioma Progression by Suppressing Cancer Stemness via STAT3. Front Oncol 2021; 11:715673. [PMID: 34408983 PMCID: PMC8366317 DOI: 10.3389/fonc.2021.715673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/20/2021] [Indexed: 01/04/2023] Open
Abstract
Glioma is the most common form of malignant brain cancer. It is very difficult to cure malignant glioma because of the presence of glioma stem cells, which are a barrier to cure, have high tumorigenesis, associated with drug resistance, and responsible for relapse by regulating stemness genes. In this study, our results demonstrated that anticarin β, a natural compound from Antiaris toxicaria, can effectively and selectively suppress proliferation and cause apoptosis in glioma cells, which has an IC50 that is 100 times lower than that in mouse normal neural stem cells. Importantly, cell sphere formation assay and real time-quantitative analysis reveal that anticarin β inhibits cancer stemness by modulating related stemness gene expression. Additionally, anticarin β induces DNA damage to regulate the oncogene expression of signal transducer and activator of transcription 3 (STAT3), Akt, mitogen-activated protein kinases (MAPKs), and eventually leading to apoptosis. Furthermore, anticarin β effectively inhibits glioma growth and prolongs the lifts pan of tumor-bearing mice without systemic toxicity in the orthotopic xenograft mice model. These results suggest that anticarin β is a promising candidate inhibitor for malignant glioma.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, China
| | - Xudong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, China
| | - Gan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, China
| |
Collapse
|
11
|
Zhu M, Hu X, Zhang Y, Pan J, Zhang G. Revealing the groove binding characteristics of plant growth regulator 3-indoleacetic acid with calf thymus DNA. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Teli P, Sethiya A, Agarwal S. An Insight View on Synthetic Protocol, Mechanistic and Biological Aspects of Biscoumarin Derivatives. ChemistrySelect 2019. [DOI: 10.1002/slct.201903632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Pankaj Teli
- Synthetic Organic Chemistry LaboratoryDepartment of ChemistryMohanlal Sukhadia University Udaipur 313001 Rajasthan India
| | - Ayushi Sethiya
- Synthetic Organic Chemistry LaboratoryDepartment of ChemistryMohanlal Sukhadia University Udaipur 313001 Rajasthan India
| | - Shikha Agarwal
- Synthetic Organic Chemistry LaboratoryDepartment of ChemistryMohanlal Sukhadia University Udaipur 313001 Rajasthan India
| |
Collapse
|
13
|
Chen X, Wang B, Zhou K, Lou Y, Kou S, Lin Z, Shi J. Characterizing the Binding Interaction between Erlotinib and Calf Thymus DNA In Vitro Using Multi‐Spectroscopic Methodologies and Viscosity Measurement Combined with Molecular Docking and DFT Calculation. ChemistrySelect 2019. [DOI: 10.1002/slct.201900089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xue‐Jun Chen
- College of Pharmaceutical ScienceZhejiang University of Technology 18, Chaowang Road, Hangzhou P.R.China
| | - Bao‐Li Wang
- College of Pharmaceutical ScienceZhejiang University of Technology 18, Chaowang Road, Hangzhou P.R.China
| | - Kai‐Li Zhou
- College of Pharmaceutical ScienceZhejiang University of Technology 18, Chaowang Road, Hangzhou P.R.China
| | - Yan‐Yue Lou
- College of Pharmaceutical ScienceZhejiang University of Technology 18, Chaowang Road, Hangzhou P.R.China
| | - Song‐Bo Kou
- College of Pharmaceutical ScienceZhejiang University of Technology 18, Chaowang Road, Hangzhou P.R.China
| | - Zhen‐Yi Lin
- College of Pharmaceutical ScienceZhejiang University of Technology 18, Chaowang Road, Hangzhou P.R.China
| | - Jie‐Hua Shi
- College of Pharmaceutical ScienceZhejiang University of Technology 18, Chaowang Road, Hangzhou P.R.China
| |
Collapse
|