1
|
Kazempour H, Teymouri F, Khatami M, Hosseini SN. Computational modelling of the therapeutic outputs of photodynamic therapy on spheroid-on-chip models. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112960. [PMID: 38991293 DOI: 10.1016/j.jphotobiol.2024.112960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024]
Abstract
Photodynamic therapy (PDT) is a medical radio chemotherapeutic method that uses light, photosensitizing agents, and oxygen to produce cytotoxic compounds, which eliminate malignant cells. Recently, Microfluidic systems have been used to analyse photosensitizers (PSs) due to their potential to replicate in vivo environments. While prior studies have established a strong correlation between reacted singlet oxygen concentration and PDT-induced cellular death, the effects that the ambient fluid flow might have on the concentration of oxygen and PS have been disregarded in many, which limits the reliability of the results. Herein, we coupled the transport of oxygen and PS throughout the ambient medium and within the spheroidal multicellular aggregate to initially study the profiles of oxygen and PS concentration alongside PDT-induced cellular death throughout the spheroid before and after radiation. The attained results indicate that the PDT-induced cellular death initiates on the surface of the spheroids and subsequently spreads to the neighbouring regions, which is in great accordance with experimental results. Afterward, the effects that drug-light interval (DLI), fluence rate, PS composition, microchannel height, and inlet flow rate have on the therapeutic outcomes are studied. The findings show that adequate DLI is critical to ensure uniform distribution of PS throughout the medium, and a value of 5 h was found to be sufficient. The composition of PS is critical, as ALA-PpIX induces earlier cell death but accelerates oxygen consumption, especially in the outer layers, depriving the inner layers of oxygen necessary for PDT, which in turn disrupts and prolongs the exposure time compared to mTHPC and Photofrin. Despite the fluence rate directly influencing the singlet oxygen generation rate, increasing the fluence rate by 189 mW/cm2 would not significantly benefit us. Microwell height and inlet flow rate involve competing phenomena-increasing height or decreasing flow reduces oxygen supply and increases PS "washout" and its concentration.
Collapse
Affiliation(s)
- Hossein Kazempour
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Fatemeh Teymouri
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Maryam Khatami
- Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
2
|
Conrado PCV, Vaine AA, Arita GS, Sakita KM, Gonçalves RS, Caetano W, de Souza M, Baesso ML, Malacarne LC, Razzolini E, Vicente VA, Kioshima ES, de Mendonça PDSB. Promising onychomycosis treatment with hypericin-mediated photodynamic therapy: case reports. Photodiagnosis Photodyn Ther 2023; 42:103498. [PMID: 36882144 DOI: 10.1016/j.pdpdt.2023.103498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Onychomycosis (OM) is a common nail plate disorder caused by dermatophyte molds, yeasts, and non-dermatophyte molds, which use keratin in the nail plate as an energy source. OM is characterized by dyschromia, increased nail thickness, subungual hyperkeratosis, and onychodystrophy, and is typically treated with conventional antifungals despite frequent reports of toxicity, fungal resistance, and OM recurrence. Photodynamic therapy (PDT) with hypericin (Hyp) as a photosensitizer (PS) stands out as a promising therapeutic modality. When excited by a specific wavelength of light and in the presence of oxygen, to lead to photochemical and photobiological reactions on the selected targets. METHODS OM diagnosis was made in three suspected cases, and the causative agents were identified by classical and molecular methods, and confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). Susceptibility of planktonic cells of the clinical isolates to conventional antifungals and PDT-Hyp was evaluated, and photoacoustic spectroscopy (PAS) of Hyp permeation in nail fragments ex vivo was analyzed. Furthermore, the patients opted to undergo PDT-Hyp treatment and were subsequently followed up. The protocol was approved by the human ethics committee (CAAE, number 14107419.4.0000.0104). RESULTS The etiological agents of OM in patients ID 01 and ID 02 belonged to the Fusarium solani species complex, being identified as Fusarium keratoplasticum (CMRP 5514) and Fusarium solani (CMRP 5515), respectively. For patient ID 03, the OM agent was identified as Trichophyton rubrum (CMRP 5516). PDT-Hyp demonstrated a fungicidal effect in vitro, with reductions of ≥3 log10 (p<0.0051 and p<0.0001), and the PAS analyses indicated that Hyp could completely permeate through both healthy and OM-affected nails. After four sessions of PDT-Hyp, mycological cure was observed in all three cases, and after seventh months, clinical cure was confirmed. PDT-Hyp showed satisfactory results in terms of efficacy and safety, and thus can be considered a promising therapy for the clinical treatment of OM.
Collapse
Affiliation(s)
- Pollyanna Cristina Vincenzi Conrado
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana, Brazil
| | | | - Glaucia Sayuri Arita
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana, Brazil
| | - Karina Mayumi Sakita
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana, Brazil
| | | | - Wilker Caetano
- Department of Chemistry, State University of Maringa, Parana, Brazil
| | - Monique de Souza
- Department of Physics, State University of Maringa, Parana, Brazil
| | | | | | - Emanuel Razzolini
- Department of Pathology Basic, Federal University of Parana State, Curitiba, Parana, Brazil
| | | | - Erika Seki Kioshima
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana, Brazil
| | - Patrícia de Souza Bonfim de Mendonça
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana, Brazil.
| |
Collapse
|
3
|
Kareliotis G, Tremi I, Kaitatzi M, Drakaki E, Serafetinides AA, Makropoulou M, Georgakilas AG. Combined radiation strategies for novel and enhanced cancer treatment. Int J Radiat Biol 2020; 96:1087-1103. [PMID: 32602416 DOI: 10.1080/09553002.2020.1787544] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Numerous studies focus on cancer therapy worldwide, and although many advances have been recorded, the complexity of the disease dictates thinking out of the box to confront it. This study reviews some of the currently available ionizing (IR) and non-ionizing radiation (NIR)-based treatment methods and explores their possible combinations that lead to synergistic, multimodal approaches with promising therapeutic outcomes. Traditional techniques, like radiotherapy (RT) show decent results, although they cannot spare 100% the healthy tissues neighboring with the cancer ones. Targeted therapies, such as proton and photodynamic therapy (PT and PDT, respectively) present adequate outcomes, even though each one has its own drawbacks. To overcome these limitations, the combination of therapeutic modalities has been proposed and has already been showing promising results. At the same time, the recent advances in nanotechnology in the form of nanoparticles enhance cancer therapy, making multimodal treatments worthy of exploring and studying. The combination of RT and PDT has reached the level of clinical trials and is showing promising results. Moreover, in vitro and in vivo studies of nanoparticles with PDT have also provided beneficial results concerning enhanced radiation treatments. In any case, novel and multimodal approaches have to be adopted to achieve personalized, enhanced and effective cancer treatment.
Collapse
Affiliation(s)
- Georgios Kareliotis
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Ioanna Tremi
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Myrsini Kaitatzi
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Eleni Drakaki
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Alexandros A Serafetinides
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Mersini Makropoulou
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Alexandros G Georgakilas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| |
Collapse
|
4
|
Spring BQ, Lang RT, Kercher EM, Rizvi I, Wenham RM, Conejo-Garcia JR, Hasan T, Gatenby RA, Enderling H. Illuminating the Numbers: Integrating Mathematical Models to Optimize Photomedicine Dosimetry and Combination Therapies. FRONTIERS IN PHYSICS 2019; 7:46. [PMID: 31123672 PMCID: PMC6529192 DOI: 10.3389/fphy.2019.00046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cancer photomedicine offers unique mechanisms for inducing local tumor damage with the potential to stimulate local and systemic anti-tumor immunity. Optically-active nanomedicine offers these features as well as spatiotemporal control of tumor-focused drug release to realize synergistic combination therapies. Achieving quantitative dosimetry is a major challenge, and dosimetry is fundamental to photomedicine for personalizing and tailoring therapeutic regimens to specific patients and anatomical locations. The challenge of dosimetry is perhaps greater for photomedicine than many standard therapies given the complexity of light delivery and light-tissue interactions as well as the resulting photochemistry responsible for tumor damage and drug-release, in addition to the usual intricacies of therapeutic agent delivery. An emerging multidisciplinary approach in oncology utilizes mathematical and computational models to iteratively and quantitively analyze complex dosimetry, and biological response parameters. These models are parameterized by preclinical and clinical observations and then tested against previously unseen data. Such calibrated and validated models can be deployed to simulate treatment doses, protocols, and combinations that have not yet been experimentally or clinically evaluated and can provide testable optimal treatment outcomes in a practical workflow. Here, we foresee the utility of these computational approaches to guide adaptive therapy, and how mathematical models might be further developed and integrated as a novel methodology to guide precision photomedicine.
Collapse
Affiliation(s)
- Bryan Q. Spring
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, United States
- Department of Physics, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Ryan T. Lang
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, United States
- Department of Physics, Northeastern University, Boston, MA, United States
| | - Eric M. Kercher
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, United States
- Department of Physics, Northeastern University, Boston, MA, United States
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Robert M. Wenham
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - José R. Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Robert A. Gatenby
- Department of Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|