1
|
Roy PP, Leonardo C, Orcutt K, Oberg C, Scholes GD, Fleming GR. Infrared Signatures of Phycobilins within the Phycocyanin 645 Complex. J Phys Chem B 2023; 127:4460-4469. [PMID: 37192324 DOI: 10.1021/acs.jpcb.3c01352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aquatic photosynthetic organisms evolved to use a variety of light frequencies to perform photosynthesis. Phycobiliprotein phycocyanin 645 (PC645) is a light-harvesting complex in cryptophyte algae able to transfer the absorbed green solar light to other antennas with over 99% efficiency. The infrared signatures of the phycobilin pigments embedded in PC645 are difficult to access and could provide useful information to understand the mechanism behind the high efficiency of energy transfer in PC645. We use visible-pump IR-probe and two-dimensional electronic vibrational spectroscopy to study the dynamical evolution and assign the fingerprint mid-infrared signatures to each pigment in PC645. Here, we report the pigment-specific vibrational markers that enable us to track the spatial flow of excitation energy between the phycobilin pigment pairs. We speculate that two high-frequency modes (1588 and 1596 cm-1) are involved in the vibronic coupling leading to fast (<ps) and direct energy transfer from the highest to lowest exciton, bypassing the intermediate excitons.
Collapse
Affiliation(s)
- Partha Pratim Roy
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Cristina Leonardo
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Catrina Oberg
- Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08540, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08540, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Bhikharee D, Rhyman L, Ramasami P. Computational study of the interaction of the psychoactive amphetamine with 1,2-indanedione and 1,8-diazafluoren-9-one as fingerprinting reagents. RSC Adv 2023; 13:4077-4088. [PMID: 36756547 PMCID: PMC9890558 DOI: 10.1039/d2ra07044h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
In this study, we used computational methods to investigate the interaction of amphetamine (AMP) with 1,2-indanedione (IND) and 1,8-diazafluoren-9-one (DFO) so as to understand whether AMP can be detected in latent fingerprints using either of these reagents. The results show that the binding energies of AMP with IND and DFO were enhanced by the presence of amino acid from -9.29 to -12.35 kcal mol-1 and -7.98 to -10.65 kcal mol-1, respectively. The physical origins of these interactions could be better understood by symmetry-adapted perturbation theory. The excited state properties of the binding structures with IND demonstrate distinguishable absorption peaks in the UV-vis spectra but zero fluorescence. Furthermore, the UV-vis spectra of the possible reaction products between AMP and the reagents reveal absorption peaks in the visible spectrum. Therefore, we could predict that reaction of AMP with IND would be observable by a reddish colour while with DFO, a colour change to violet is expected. To conclude, the reagents IND and DFO may be used to detect AMP by UV-vis spectroscopy and if their reactions are allowed, the reagents may then act as a potentially rapid, affordable and easy colorimetric test for AMP in latent fingerprints without destruction of the fingerprint sample.
Collapse
Affiliation(s)
- Divya Bhikharee
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius Réduit 80837 Mauritius
| | - Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius Réduit 80837 Mauritius
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius Réduit 80837 Mauritius
- Department of Chemistry, University of South Africa Private Bag X6 Florida 1710 South Africa
| |
Collapse
|
3
|
Cp*Ir complex with mesobiliverdin ligand isolated from Thermoleptolyngbya sp. O-77. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Staheli CF, Barney J, Clark TR, Bowles M, Jeppesen B, Oblinsky DG, Steffensen MB, Dean JC. Spectroscopic and Photophysical Investigation of Model Dipyrroles Common to Bilins: Exploring Natural Design for Steering Torsion to Divergent Functions. Front Chem 2021; 9:628852. [PMID: 33681146 PMCID: PMC7925881 DOI: 10.3389/fchem.2021.628852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
Biliproteins are a unique class of photosynthetic proteins in their diverse, and at times, divergent biophysical function. The two contexts of photosynthetic light harvesting and photoreception demonstrate characteristically opposite criteria for success, with light harvesting demanding structurally-rigid chromophores which minimize excitation quenching, and photoreception requiring structural flexibility to enable conformational isomerization. The functional plasticity borne out in these two biological contexts is a consequence of the structural plasticity of the pigments utilized by biliproteins―linear tetrapyrroles, or bilins. In this work, the intrinsic flexibility of the bilin framework is investigated in a bottom-up fashion by reducing the active nuclear degrees of freedom through model dipyrrole subunits of the bilin core and terminus free of external protein interactions. Steady-state spectroscopy was carried out on the dipyrrole (DPY) and dipyrrinone (DPN) subunits free in solution to characterize their intrinsic spectroscopic properties including absorption strengths and nonradiative activity. Transient absorption (TA) spectroscopy was utilized to determine the mechanism and kinetics of nonradiative decay of the dipyrrole subunits, revealing dynamics dominated by rapid internal conversion with some Z→E isomerization observable in DPY. Computational analysis of the ground state conformational landscapes indicates enhanced complexity in the asymmetric terminal subunit, and the prediction was confirmed by heterogeneity of species and kinetics observed in TA. Taken together, the large oscillator strengths (f ∼ 0.6) of the dipyrrolic derivatives and chemically-efficient spectral tunability seen through the ∼100 nm difference in absorption spectra, validate Nature's "selection" of multi-pyrrole pigments for light capture applications. However, the rapid deactivation of the excited state via their natural torsional activity when free in solution would limit their effective biological function. Comparison with phytochrome and phycocyanin 645 crystal structures reveals binding motifs within the in vivo bilin environment that help to facilitate or inhibit specific inter-pyrrole twisting vital for protein operation.
Collapse
Affiliation(s)
- Clayton F Staheli
- Department of Physical Science, Southern Utah University, Cedar City, UT, United States
| | - Jaxon Barney
- Department of Physical Science, Southern Utah University, Cedar City, UT, United States.,Department of Chemistry, The Pennsylvania State University, State College, PA, United States
| | - Taime R Clark
- Department of Physical Science, Southern Utah University, Cedar City, UT, United States
| | - Maxwell Bowles
- Department of Physical Science, Southern Utah University, Cedar City, UT, United States.,Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| | - Bridger Jeppesen
- Department of Physical Science, Southern Utah University, Cedar City, UT, United States
| | - Daniel G Oblinsky
- Department of Chemistry, Princeton University, Princeton, NJ, United States
| | - Mackay B Steffensen
- Department of Physical Science, Southern Utah University, Cedar City, UT, United States
| | - Jacob C Dean
- Department of Physical Science, Southern Utah University, Cedar City, UT, United States
| |
Collapse
|
5
|
Patkowski K. Recent developments in symmetry‐adapted perturbation theory. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1452] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Konrad Patkowski
- Department of Chemistry and Biochemistry Auburn University Auburn Alabama
| |
Collapse
|
6
|
Tomić BT, Abraham CS, Pelemiš S, Armaković SJ, Armaković S. Fullerene C 24 as a potential carrier of ephedrine drug - a computational study of interactions and influence of temperature. Phys Chem Chem Phys 2019; 21:23329-23337. [PMID: 31616869 DOI: 10.1039/c9cp04534a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interactions between fullerene C24 and a frequently used supplement for sport activities, ephedrine (EPH), have been studied in detail by a combination of density functional theory (DFT), time dependent DFT (TD-DFT) calculations, the symmetry-adapted perturbation theory (SAPT) approach and molecular dynamics (MD) simulations. Information about interaction energies and non-covalent interactions formed between C24 and EPH have been obtained by DFT calculations. TD-DFT calculations have been used in order to obtain UV/vis spectra and to check whether the presence of the EPH molecule produces significant changes in the spectrum. The SAPT approach has been employed in order to decompose the interaction energy into components and therefore to better understand the physical origins of interaction between C24 and EPH. Last, but not least, MD simulations have been used in order to track the influence of temperature on the interactions between C24 and EPH.
Collapse
Affiliation(s)
- Bogdan T Tomić
- Educons University, Faculty of Sport and Tourism - TIMS, Radnička 30a, 21000 Novi Sad, Serbia
| | | | | | | | | |
Collapse
|
7
|
Patel HM, Roszak AW, Madamwar D, Cogdell RJ. Crystal structure of phycocyanin from heterocyst-forming filamentous cyanobacterium Nostoc sp. WR13. Int J Biol Macromol 2019; 135:62-68. [DOI: 10.1016/j.ijbiomac.2019.05.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
|
8
|
Toa ZSD, deGolian MH, Jumper CC, Hiller RG, Scholes GD. Consistent Model of Ultrafast Energy Transfer in Peridinin Chlorophyll-a Protein Using Two-Dimensional Electronic Spectroscopy and Förster Theory. J Phys Chem B 2019; 123:6410-6420. [DOI: 10.1021/acs.jpcb.9b04324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zi S. D. Toa
- Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08540, United States
| | - Mary H. deGolian
- Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08540, United States
| | - Chanelle C. Jumper
- Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08540, United States
| | - Roger G. Hiller
- Department of Biology, Faculty of Science and Engineering, Macquarie University, Sydney NSW 2109, Australia
| | - Gregory D. Scholes
- Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08540, United States
| |
Collapse
|