1
|
Shi D, Li Y, Tian M, Xue M, Wang J, An H. Nanomaterials-Based Drug Delivery Systems for Therapeutic Applications in Osteoporosis. Adv Biol (Weinh) 2025:e2400721. [PMID: 40195930 DOI: 10.1002/adbi.202400721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/04/2025] [Indexed: 04/09/2025]
Abstract
The etiology of osteoporosis is rooted in the disruption of the intricate equilibrium between bone formation and bone resorption processes. Nevertheless, the conventional anti-osteoporotic medications and hormonal therapeutic regimens currently employed in clinical practice are associated with a multitude of adverse effects, thereby constraining their overall therapeutic efficacy and potential. Recently, nanomaterials have emerged as a promising alternative due to their minimal side effects, efficient drug delivery, and ability to enhance bone formation, aiding in restoring bone balance. This review delves into the fundamental principles of bone remodeling and the bone microenvironment, as well as current clinical treatment approaches for osteoporosis. It subsequently explores the research status of nanomaterial-based drug delivery systems for osteoporosis treatment, encompassing inorganic nanomaterials, organic nanomaterials, cell-mimicking carriers and exosomes mimics and emerging therapies targeting the osteoporosis microenvironment. Finally, the review discusses the potential of nanomedicine in treating osteoporosis and outlines the future trajectory of this burgeoning field. The aim is to provide a comprehensive reference for the application of nanomaterial-based drug delivery strategies in osteoporosis therapy, thereby fostering further advancements and innovations in this critical area of medical research.
Collapse
Affiliation(s)
- Donghong Shi
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Hebei University of Technology, Tianjin, 300401, P. R. China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Yuling Li
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Meng Tian
- Hebei Tourism College, Hebei, Chengde, 067000, P. R. China
| | - Mengge Xue
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Jinping Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Hailong An
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Hebei University of Technology, Tianjin, 300401, P. R. China
| |
Collapse
|
2
|
Du J, Wang Y, Wu C, Zhang X, Zhang X, Xu X. Targeting bone homeostasis regulation: potential of traditional Chinese medicine flavonoids in the treatment of osteoporosis. Front Pharmacol 2024; 15:1361864. [PMID: 38628649 PMCID: PMC11018902 DOI: 10.3389/fphar.2024.1361864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
Osteoporosis is a systemic metabolic disease characterized by disrupted bone formation/resorption and homeostasis. Flavonoids extracted from traditional Chinese medicinal plants regulate bone homeostasis by intervening in differentiating bone marrow mesenchymal stem cells, balancing the bone immune system, inhibiting oxidative stress response, and reversing iron overload. The target molecules and signaling pathways, such as Wnt/β-catenin and OPG/RANKL/RANK, directly affect osteoblast/osteoclast activity, exhibiting significant potential in the treatment of OP. Therefore, this study presents a systematic review of the recent literature to provide comprehensive information on the traditional Chinese medicine flavonoids involved in the regulation of bone homeostasis. Also, the molecular mechanisms and pharmacological uses of these metabolites are summarized, and their clinical translation and development potential are discussed.
Collapse
Affiliation(s)
- Jiazhe Du
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yincang Wang
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Chengliang Wu
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyu Zhang
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiaofeng Zhang
- Teaching and Research Section of Orthopedics and Traumatology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xilin Xu
- Department of Orthopedics, The Third Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Chitosan-based biomaterials for the treatment of bone disorders. Int J Biol Macromol 2022; 215:346-367. [PMID: 35718150 DOI: 10.1016/j.ijbiomac.2022.06.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 12/22/2022]
Abstract
Bone is an alive and dynamic organ that is well-differentiated and originated from mesenchymal tissues. Bone undergoes continuous remodeling during the lifetime of an individual. Although knowledge regarding bones and their disorders has been constantly growing, much attention has been devoted to effective treatments that can be used, both from materials and medical performance points of view. Polymers derived from natural sources, for example polysaccharides, are generally biocompatible and are therefore considered excellent candidates for various biomedical applications. This review outlines the development of chitosan-based biomaterials for the treatment of bone disorders including bone fracture, osteoporosis, osteoarthritis, arthritis rheumatoid, and osteosarcoma. Different examples of chitosan-based formulations in the form of gels, micro/nanoparticles, and films are discussed herein. The work also reviews recent patents and important developments related to the use of chitosan in the treatment of bone disorders. Although most of the cited research was accomplished before reaching the clinical application level, this manuscript summarizes the latest achievements within chitosan-based biomaterials used for the treatment of bone disorders and provides perspectives for future scientific activities.
Collapse
|
4
|
Insight into the antifungal effect of chitosan-conjugated metal oxide nanoparticles decorated on cellulosic foam filter for water filtration. Int J Food Microbiol 2022; 372:109677. [DOI: 10.1016/j.ijfoodmicro.2022.109677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/13/2022] [Accepted: 04/06/2022] [Indexed: 11/21/2022]
|
5
|
Highly Efficient Humidity Sensor Based on Sulfuric Acid Doped Polyaniline-Copper Oxide Composites. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2021. [DOI: 10.1007/s40995-021-01201-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Cang D, Zou G, Yang C, Shen X, Li F, Wu Y, Ji B. Dencichine prevents ovariectomy-induced bone loss and inhibits osteoclastogenesis by inhibiting RANKL-associated NF-κB and MAPK signaling pathways. J Pharmacol Sci 2021; 146:206-215. [PMID: 34116734 DOI: 10.1016/j.jphs.2021.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/05/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
AIMS To investigate the effect of dencichine on osteoclastogenesis in vivo and in vitro. METHODS RANKL-induced osteoclastogenesis were treated with different concentrations of dencichine. Pit forming assays were applied to evaluate the degree of bone resorption. Osteoclastogenic markers were detected by real-time quantitative PCR (RT-qPCR) and Western blot. Micro CT was conducted to investigate the effects of dencichine on osteoclastogenesis in ovariectomized (OVX) mice. RESULTS Dencichine suppressed osteoclastogenesis through the inhibition of phosphorylation of p65, p50 (NF-κB pathway), p38, ERK and JNK (MAPKs pathway) in vitro. Furthermore, dencichine inhibited the function of osteoclasts in a dose-dependent manner. In addition, the expression levels of the nuclear factor of activated T cells 1 (NFATc1) and osteoclastogenesis markers were decreased by dencichine, including MMP-9, Cathepsin K (CTSK), Tartrate-Resistant Acid Phosphatase (TRAP), C-FOS, dendritic cell specific transmembrane protein (DC-STAMP). In vivo data proved that dencichine alleviated ovariectomy-induced bone loss and osteoclastogenesis in mice. CONCLUSION Our results demonstrate that dencichine alleviates OVX-induced bone loss in mice and inhibits RANKL-mediated osteoclastogenesis via inhibition of NF-κB and MAPK pathways in vitro, suggesting that dencichine might serve as a promising candidate for treatment of bone loss diseases, including PMOP and rheumatoid arthritis.
Collapse
Affiliation(s)
- Dingwei Cang
- Department of Orthopaedics, Yancheng City No.1 People's Hospital, Yancheng, Jiangsu 224006, China
| | - Guoyou Zou
- Department of Orthopaedics, Yancheng City No.1 People's Hospital, Yancheng, Jiangsu 224006, China
| | - Chi Yang
- Department of R& D, Rochen Pharma Co., Ltd, Shanghai 201514, China
| | - Xiaofei Shen
- Department of Orthopaedics, Yancheng City No.1 People's Hospital, Yancheng, Jiangsu 224006, China
| | - Feng Li
- Department of Orthopaedics, Yancheng City No.1 People's Hospital, Yancheng, Jiangsu 224006, China
| | - Ya Wu
- Department of Orthopaedics, Yancheng City No.1 People's Hospital, Yancheng, Jiangsu 224006, China.
| | - Biao Ji
- Department of Orthopaedics, Yancheng City No.1 People's Hospital, Yancheng, Jiangsu 224006, China.
| |
Collapse
|
7
|
A New Hope in Spinal Degenerative Diseases: Piezo1. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6645193. [PMID: 33575334 PMCID: PMC7857891 DOI: 10.1155/2021/6645193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/09/2021] [Indexed: 12/19/2022]
Abstract
As a newly discovered mechanosensitive ion channel protein, the piezo1 protein participates in the transmission of mechanical signals on the cell membrane and plays a vital role in mammalian biomechanics. Piezo1 has attracted widespread attention since it was discovered in 2010. In recent years, studies on piezo1 have gradually increased and deepened. In addition to the discovery that piezo1 is expressed in the respiratory, cardiovascular, gastrointestinal, and urinary systems, it is also stably expressed in cells such as mesenchymal stem cells (MSCs), osteoblasts, osteoclasts, chondrocytes, and nucleus pulposus cells that constitute vertebral bodies and intervertebral discs. They can all receive external mechanical stimulation through the piezo1 protein channel to affect cell proliferation, differentiation, migration, and apoptosis to promote the occurrence and development of lumbar degenerative diseases. Through reviewing the relevant literature of piezo1 in the abovementioned cells, this paper discusses the effect of piezo1 protein expression under mechanical stress stimuli on spinal degenerative disease, providing the molecular basis for the pathological mechanism of spinal degenerative disease and also a new basis, ideas, and methods for the prevention and treatment of this degenerative disease.
Collapse
|
8
|
Zhi X, Fang C, Gu Y, Chen H, Chen X, Cui J, Hu Y, Weng W, Zhou Q, Wang Y, Wang Y, Jiang H, Li X, Cao L, Chen X, Su J. Guaiacol suppresses osteoclastogenesis by blocking interactions of RANK with TRAF6 and C-Src and inhibiting NF-κB, MAPK and AKT pathways. J Cell Mol Med 2020; 24:5122-5134. [PMID: 32185887 PMCID: PMC7205840 DOI: 10.1111/jcmm.15153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/31/2019] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Angelica sinensis (AS; Dang Gui), a traditional Chinese herb, has for centuries been used for the treatment of bone diseases, including osteoporosis and osteonecrosis. However, the effective ingredient and underlying mechanisms remain elusive. Here, we identified guaiacol as the active component of AS by two‐dimensional cell membrane chromatography/C18 column/time‐of‐flight mass spectrometry (2D CMC/C18 column/TOFMS). Guaiacol suppressed osteoclastogenesis and osteoclast function in bone marrow monocytes (BMMCs) and RAW264.7 cells in vitro in a dose‐dependent manner. Co‐immunoprecipitation indicated that guaiacol blocked RANK‐TRAF6 association and RANK‐C‐Src association. Moreover, guaiacol prevented phosphorylation of p65, p50, IκB (NF‐κB pathway), ERK, JNK, c‐fos, p38 (MAPK pathway) and Akt (AKT pathway), and reduced the expression levels of Cathepsin K, CTR, MMP‐9 and TRAP. Guaiacol also suppressed the expression of nuclear factor of activated T‐cells cytoplasmic 1(NFATc1) and the RANKL‐induced Ca2+ oscillation. In vivo, it ameliorated ovariectomy‐induced bone loss by suppressing excessive osteoclastogenesis. Taken together, our findings suggest that guaiacol inhibits RANKL‐induced osteoclastogenesis by blocking the interactions of RANK with TRAF6 and C‐Src, and by suppressing the NF‐κB, MAPK and AKT signalling pathways. Therefore, this compound shows therapeutic potential for osteoclastogenesis‐related bone diseases, including postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Xin Zhi
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China.,Basic Medical School, Naval Military Medical University, Shanghai, China
| | - Chao Fang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai, China
| | - Huiwen Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Xiaofei Chen
- School of Pharmacy, Naval Military Medical University, Shanghai, China
| | - Jin Cui
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Yan Hu
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Weizong Weng
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Qirong Zhou
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Yajun Wang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Yao Wang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Hao Jiang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Xiaoqun Li
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China.,Basic Medical School, Naval Military Medical University, Shanghai, China
| | - Liehu Cao
- Department of Orthopedics Trauma, Shanghai Luodian Hospital, Shanghai, China
| | - Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China.,Department of Chemistry, Fudan University, Shanghai, China
| | - Jiacan Su
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China.,China-South Korea Bioengineering Center, Shanghai, China
| |
Collapse
|