1
|
Abiri R, O’Reilly D, Jones AMP. Bottom Cooling During Culture Initiation Increases Survival and Reduces Hyperhydricity in Micropropagated Cannabis Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:886. [PMID: 40265814 PMCID: PMC11945952 DOI: 10.3390/plants14060886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 04/24/2025]
Abstract
Hyperhydricity is characterized by morphological abnormalities and reduced plant vigour. This study investigated the use of a bottom cooling system (creating an approximate 2 °C temperature differential) during culture initiation to evaluate the impact on hyperhydricity in cannabis micropropagation. Nodal explants from two clonal triploid cultivars known to exhibit hyperhydricity, Higher Education 1 (HED-1) and Higher Education 2 (HED-2), were surface sterilized and placed in culture tubes using standard methods. Treatments included bottom cooling, metal pads without bottom cooling, and standard shelving (controls-no pad). Various morphological and physiological traits were assessed, including a detached leave water loss assay, dry mass, chlorophyll content, and survival rate. Plants cultured with bottom cooling showed significantly higher survival rates, healthier appearance, and improved physiological parameters compared to controls. In contrast, many control explants were hyperhydric with translucent and brittle leaves. Quantitative data revealed significant improvements in fresh weight (54.84% for HED-1 and 51.42% for HED-2), dry weight (36% for HED-1 and 8% for HED-2), chlorophyll fluorescence ratios (7.24% for HED-1 and 9.18% for HED-2), chlorophyll content (18.38% for HED-1 and 20.67% for HED-2), and cuticle/stomate function (30% for HED-1 and 27.27% for HED-2) using bottom cooling. Moreover, our morphological observation showed that almost 85% of control plants were hyperhydric, whereas only 10% of the plants cultured with a bottom cooling system were hyperhydric. This study confirmed that bottom cooling helps reduce the rate and impacts of hyperhydricity in cannabis and significantly improves the survival and quality of in vitro plants.
Collapse
|
2
|
Zhao G, Li Y, Jia L, Chen D, Zhang C, Zhang X, Yang F, Zhao T. Towards the Albino Mutant Gene in Malus × Domestica Borkh. PLANTS (BASEL, SWITZERLAND) 2024; 13:3448. [PMID: 39683241 DOI: 10.3390/plants13233448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/24/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Albino mutation is among the most common phenomena that often causes a water imbalance and disturbs physiological functions in higher species of trees. Albinism frequently occurs in hybridized apples, but almost all seedlings die shortly after germination. In this study, a spontaneous albino mutant on Fuji apple trees was obtained. After bud grafting, new albino shoots with greenish-white leaves grew, although they were slender, small, and died easily. Resequencing analysis indicated that a total of 49.37 Gbp clean data of the albino mutant samples was obtained; its Q30 reached 91.43%, the average rate mapped was 93.69%, and genome coverage was 96.47% (at least one base cover). Comparisons of the sequences for the albino mutants revealed 4,817,412 single-nucleotide polymorphisms (SNPs), 721,688 insertion/deletion markers (InDels), and 43,072 structural variations (SVs). The genes with non-synonymous SNPs, InDels, and SVs in CDS were compared with KEGG, GO, COG, NR, and SwissProt databases, and a total of 5700 variant genes were identified. A total of 1377 mutant genes had the GO annotation information. Among these, 1520 mutant genes had the pathway annotation and took part in 123 pathways. A total of 1935 variant genes were functionally classified into 25 COG categories. Further research on these variants could help understand the molecular regulatory mechanism of the apple albino mutant. Similarly, variations in the homologous MdAPG1 (Albino or pale-green mutant 1) gene, which was located on Chromosome 11 and belonged to the S-adenosyl-L-methionine-dependent methyltransferases superfamily, may have led to the generation of this apple albino mutant.
Collapse
Affiliation(s)
- Guodong Zhao
- Changli Institute of Pomology, Hebei Academy of Agricultural and Forestry Science, Qinhuangdao 066600, China
| | - Yang Li
- Changli Institute of Pomology, Hebei Academy of Agricultural and Forestry Science, Qinhuangdao 066600, China
| | - Linguang Jia
- Changli Institute of Pomology, Hebei Academy of Agricultural and Forestry Science, Qinhuangdao 066600, China
| | - Dongmei Chen
- Changli Institute of Pomology, Hebei Academy of Agricultural and Forestry Science, Qinhuangdao 066600, China
| | - Chaohong Zhang
- Changli Institute of Pomology, Hebei Academy of Agricultural and Forestry Science, Qinhuangdao 066600, China
| | - Xinsheng Zhang
- Changli Institute of Pomology, Hebei Academy of Agricultural and Forestry Science, Qinhuangdao 066600, China
| | - Fengqiu Yang
- Changli Institute of Pomology, Hebei Academy of Agricultural and Forestry Science, Qinhuangdao 066600, China
| | - Tongsheng Zhao
- Changli Institute of Pomology, Hebei Academy of Agricultural and Forestry Science, Qinhuangdao 066600, China
| |
Collapse
|
3
|
Xie W, Xu D, Chen F, Wang Z, Luo J, He Y, Zheng Q, Liu C. Integrated Cytological, Physiological, and Transcriptome Analyses Provide Insight into the Albino Phenotype of Chinese Plum ( Prunus salicina). Int J Mol Sci 2023; 24:14457. [PMID: 37833903 PMCID: PMC10573071 DOI: 10.3390/ijms241914457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Albino seedlings that arise during seed reproduction can have a significant impact on plant growth and breeding. In this research, we present the first report of albino occurrences in the seed reproduction process of Prunus salicina and describe the cytological, physiological, and transcriptomic changes observed in albino seedlings. The albino seedlings which were observed in several plum cultivars exhibited abnormal chloroplast ultrastructure and perturbed stomatal structure. Compared to normal seedlings, the photosynthetic pigment contents in albino seedlings decreased by more than 90%, accompanied by significant reductions in several chlorophyll fluorescence parameters. Furthermore, substantially changed photosynthetic parameters indicated that the photosynthetic capacity and stomatal function were impaired in albino seedlings. Additionally, the activities of the antioxidant enzyme were drastically altered against the background of higher proline and lower ascorbic acid in leaves of albino seedlings. A total of 4048 differentially expressed genes (DEGs) were identified through transcriptomic sequencing, and the downregulated DEGs in albino seedlings were greatly enriched in the pathways for photosynthetic antenna proteins and flavonoid biosynthesis. GLK1 and Ftsz were identified as candidate genes responsible for the impaired chloroplast development and division in albino seedlings. Additionally, the substantial decline in the expression levels of examined photosystem-related chloroplast genes was validated in albino seedlings. Our findings shed light on the intricate physiological and molecular mechanisms driving albino plum seedling manifestation, which will contribute to improving the reproductive and breeding efforts of plums.
Collapse
Affiliation(s)
- Weiwei Xie
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.X.); (D.X.); (F.C.); (Z.W.); (J.L.); (Y.H.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Dantong Xu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.X.); (D.X.); (F.C.); (Z.W.); (J.L.); (Y.H.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Fangce Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.X.); (D.X.); (F.C.); (Z.W.); (J.L.); (Y.H.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Zhengpeng Wang
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.X.); (D.X.); (F.C.); (Z.W.); (J.L.); (Y.H.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Jiandong Luo
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.X.); (D.X.); (F.C.); (Z.W.); (J.L.); (Y.H.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Yehua He
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.X.); (D.X.); (F.C.); (Z.W.); (J.L.); (Y.H.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Qianming Zheng
- Institute of Pomology Science, Guizhou Academy of Agricultural Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang 550006, China
| | - Chaoyang Liu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.X.); (D.X.); (F.C.); (Z.W.); (J.L.); (Y.H.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| |
Collapse
|
4
|
Polivanova OB, Bedarev VA. Hyperhydricity in Plant Tissue Culture. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233313. [PMID: 36501352 PMCID: PMC9738826 DOI: 10.3390/plants11233313] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 06/12/2023]
Abstract
Hyperhydricity is the most common physiological disorder in in vitro plant cultivation. It is characterized by certain anatomical, morphological, physiological, and metabolic disturbances. Hyperhydricity significantly complicates the use of cell and tissue culture in research, reduces the efficiency of clonal micropropagation and the quality of seedlings, prevents the adaptation of plants in vivo, and can lead to significant losses of plant material. This review considers the main symptoms and causes of hyperhydricity, such as oxidative stress, impaired nitrogen metabolism, and the imbalance of endogenous hormones. The main factors influencing the level of hyperhydricity of plants in vitro are the mineral and hormonal composition of a medium and cultivation conditions, in particular the aeration of cultivation vessels. Based on these factors, various approaches are proposed to eliminate hyperhydricity, such as varying the mineral and hormonal composition of the medium, the use of exogenous additives, aeration systems, and specific lighting. However, not all methods used are universal in eliminating the symptoms of hyperhydricity. Therefore, the study of hyperhydricity requires a comprehensive approach, and measures aimed at its elimination should be complex and species-specific.
Collapse
|
5
|
Complete Chloroplast Genome Sequences of Four Species in the Caladium Genus: Comparative and Phylogenetic Analyses. Genes (Basel) 2022; 13:genes13122180. [PMID: 36553447 PMCID: PMC9777821 DOI: 10.3390/genes13122180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Caladiums are promising colorful foliage plants due to their dazzling colors of the leaves, veins, stripes, and patches, which are often cultivated in pots or gardens as decorations. Four wild species, including C. bicolor, C. humboldtii, C. praetermissum, and C. lindenii, were employed in this study, where their chloroplast (cp) genomes were sequenced, assembled, and annotated via high-throughput sequencing. The whole cp genome size ranged from 162,776 bp to 168,888 bp, and the GC contents ranged from 35.09% to 35.91%. Compared with the single large copy (LSC) and single small copy (SSC) regions, more conserved sequences were identified in the inverted repeat regions (IR). We further analyzed the different region borders of nine species of Araceae and found the expansion or contraction of IR/SSC regions might account for the cp genome size variation. Totally, 131 genes were annotated in the cp genomes, including 86 protein-coding genes (PCGs), 37 tRNAs, and eight rRNAs. The effective number of codons (ENC) values and neutrality plot analyses provided the foundation that the natural selection pressure could greatly affect the codon preference. The GC3 content was significantly lower than that of GC1 and GC2, and codons ending with A/U had higher usage preferences. Finally, we conducted phylogenetic relationship analysis based on the chloroplast genomes of twelve species of Araceae, in which C. bicolor and C. humboldtii were grouped together, and C. lindenii was furthest from the other three Caladium species occupying a separate branch. These results will provide a basis for the identification, development, and utilization of Caladium germplasm.
Collapse
|
6
|
Li B, Liu T, Ali A, Xiao Y, Shan N, Sun J, Huang Y, Zhou Q, Zhu Q. Complete chloroplast genome sequences of three aroideae species (Araceae): lights into selective pressure, marker development and phylogenetic relationships. BMC Genomics 2022; 23:218. [PMID: 35305558 PMCID: PMC8933883 DOI: 10.1186/s12864-022-08400-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
Background Colocasia gigantea, Caladium bicolor and Xanthosoma sagittifolium are three worldwide famous ornamental and/or vegetable plants in the Araceae family, these species in the subfamily Aroideae are phylogenetically perplexing due to shared interspecific morphological traits and variation. Result This study, for the first time ever, assembled and analyzed complete chloroplast genomes of C. gigantea, C. bicolor and X. sagittifolium with genome sizes of 165,906 bp, 153,149 bp and 165,169 bp in length, respectively. The genomes were composed of conserved quadripartite circular structures with a total of 131 annotated genes, including 8 rRNA, 37 tRNA and 86 protein-coding genes. A comparison within Aroideae showed seven protein-coding genes (accD, ndhF, ndhK, rbcL, rpoC1, rpoC2 and matK) linked to environmental adaptation. Phylogenetic analysis confirmed a close relationship of C. gigantea with C. esculenta and S. colocasiifolia, and the C. bicolor with X. sagittifolium. Furthermore, three DNA barcodes (atpH-atpI + psaC-ndhE, atpH-atpI + trnS-trnG, atpH-atpI + psaC-ndhE + trnS-trnG) harbored highly variable regions to distinguish species in Aroideae subfamily. Conclusion These results would be beneficial for species identification, phylogenetic relationship, genetic diversity, and potential of germplasm resources in Aroideae. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08400-3.
Collapse
|
7
|
Wang HR, Che YH, Huang D, Ao H. Hydrogen sulfide mediated alleviation of cadmium toxicity in Phlox paniculata L. and establishment of a comprehensive evaluation model for corresponding strategy. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1085-1095. [PMID: 32122163 DOI: 10.1080/15226514.2020.1730299] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A laboratory experiment was performed to evaluate the potential role of H2S on cadmium (Cd) toxicity in Phlox paniculata L. Seeds pretreated with 0.3, 0.6, 0.9, and 1.2 mM NaHS as a donor of H2S for 24 h and subsequently exposed to 100, 200, and 300 μM CdCl2 for 26 days had significantly higher germination rate compared with Cd alone. Meanwhile, 2-year-old seedlings sprayed with 0.3, 0.6, and 0.9 μM NaHS were grown in soil with 0.3, 0.6, and 1.2 mg/kg CdCl2, respectively. We observed that H2S decreased Cd accumulation in leaves and elevated Cd concentration in roots. Cd toxicity in seedlings resulted in a substantial increase in Cd-induced overproduction of malondialdehyde (MDA), Cd accumulation, and electrolyte leakage. Meanwhile, addition of NaHS increased photosynthetic performance compared with Cd alone. Exogenous H2S significantly elevated biomass, improved antioxidant enzyme activities, and reduced ABA content compared with Cd alone. H2S also plays an important role in the ABA signaling pathway during stress. Notably, NaHS promoted Cd uptake by Phlox paniculate L. from soil. The prediction model of H2S for increasing plant resistance and reducing soil Cd pollution was established by factor analysis method based on comprehensive evaluation of plant stress physiology.
Collapse
Affiliation(s)
- Hong-Rui Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yan-Hui Che
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Dan Huang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Hong Ao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
8
|
Flinn B, Dale S, Disharoon A, Kresovich S. Comparative Analysis of In Vitro Responses and Regeneration between Diverse Bioenergy Sorghum Genotypes. PLANTS (BASEL, SWITZERLAND) 2020; 9:E248. [PMID: 32075100 PMCID: PMC7076383 DOI: 10.3390/plants9020248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/24/2020] [Accepted: 02/11/2020] [Indexed: 01/09/2023]
Abstract
Sorghum has been considered a recalcitrant plant in vitro and suffers from a lack of regeneration protocols that function broadly and efficiently across a range of genotypes. This study was initiated to identify differential genotype-in vitro protocol responses across a range of bioenergy sorghum parental lines and the common grain sorghum genotype Tx430 in order to characterize response profiles for use in future genetic studies. Two different in vitro protocols, LG and WU, were used for comparisons. Distinct genotype-protocol responses were observed, and the WU protocol performed significantly better for plantlet regeneration. Most bioenergy genotypes performed as well, if not better than Tx430, with Rio and PI329311 as the top regenerating lines. Genotypes displayed protocol-dependent, differential phenolic exudation responses, as indicated by medium browning. During the callus induction phase, genotypes prone to medium browning exhibited a response on WU medium which was either equal or greater than on LG medium. Genotype- and protocol-dependent albino plantlet regeneration was also noted, with three of the bioenergy genotypes showing albino plantlet regeneration. Grassl, Rio and Pink Kafir were susceptible to albino plantlet regeneration, with the response strongly associated with the WU protocol. These bioenergy parental genotypes, and their differential responses under two in vitro protocols, provide tools to further explore and assess the role of genetic loci, candidate genes, and allelic variants in the regulation of in vitro responsiveness in sorghum.
Collapse
Affiliation(s)
- Barry Flinn
- Advanced Plant Technology Program, Clemson University, Clemson, SC 29634, USA;
| | - Savanah Dale
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (S.D.); (A.D.)
| | - Andrew Disharoon
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (S.D.); (A.D.)
| | - Stephen Kresovich
- Advanced Plant Technology Program, Clemson University, Clemson, SC 29634, USA;
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (S.D.); (A.D.)
| |
Collapse
|