1
|
Salari V, Seshan V, Frankle L, England D, Simon C, Oblak D. Imaging Ultraweak Photon Emission from Living and Dead Mice and from Plants under Stress. J Phys Chem Lett 2025:4354-4362. [PMID: 40272092 DOI: 10.1021/acs.jpclett.4c03546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
The phenomenon of biological ultraweak photon emission (UPE), that is, extremely low-intensity emission (10-103 photons cm-2 s-1) in the spectral range of 200-1000 nm, has been observed in all living systems that have been examined. Here, we report experiments that exemplify the ability of novel imaging systems to detect variations in UPE for a set of physiologically important scenarios. We use electron-multiplying charge-coupled device (EMCCD) and charge-coupled device (CCD) cameras to capture single visible-wavelength photons with low noise and quantum efficiencies higher than 90%. Our investigation reveals significant contrast between the UPE from live vs dead mice. In plants, we observed that an increase in the temperature and injuries both caused an increase in UPE intensity. Moreover, chemical treatments modified the UPE emission characteristics of plants, particularly the application of a local anesthetic (benzocaine) to injury, which showed the highest emission among the compounds tested. As a result, UPE imaging provides the possibility of non-invasive label-free imaging of vitality in animals and the responses of plants to stress.
Collapse
Affiliation(s)
- V Salari
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - V Seshan
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - L Frankle
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Translational Biosciences, Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - D England
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - C Simon
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - D Oblak
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
2
|
Babcock NS. Open quantum systems theory of ultraweak ultraviolet photon emissions: Revisiting Gurwitsch's onion experiment as a prototype for quantum biology. Comput Struct Biotechnol J 2024; 26:78-91. [PMID: 39717158 PMCID: PMC11664013 DOI: 10.1016/j.csbj.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/25/2024] Open
Abstract
A century ago it was discovered that metabolic processes in living cells emit a spectrum of very low intensity radiation. This was based on observations that radiant energy from proliferating cells can amplify the rate of cell division in other nearby cellular life. Although metabolic radiation is now thoroughly documented in research on ultraweak photon emissions (UPE), the original finding that UPE can enhance mitogenesis remains controversial. This controversy is addressed by establishing a physical basis for phenomenological observations that biological UPE can amplify mitogenesis in living cells. Enhanced mitosis is rationalized as a resonance effect based on open quantum systems theory using Fano and Feshbach's methods. This application of quantum theory to biology has important consequences for understanding health, medicine, and principles of living matter.
Collapse
Affiliation(s)
- Nathan S. Babcock
- Quantum Biology Laboratory, Howard University, 2400 6th St. NW, Washington, D.C., 20059, United States of America
| |
Collapse
|
3
|
Djumaeva N. A successful application of information technologies in the treatment of multiple sclerosis: a case report. J Med Case Rep 2024; 18:561. [PMID: 39582025 PMCID: PMC11587738 DOI: 10.1186/s13256-024-04909-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/10/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Multiple sclerosis is a chronic disease of the central nervous system characterized by inflammation, neurodegeneration, and failure of the central nervous system's repair mechanisms. The role of infectious agents against the background of genetic predisposition is currently considered a possible pathogenesis factor of this disease. CASE PRESENTATION We report the case of a 52-year-old white (Russian) female musician with 15-year history of relapsing-remitting multiple sclerosis who had repeatedly received conventional therapy without much benefit. In 2017, she was admitted to the outpatient department of the Institute of Virology, where she was treated with erythromycin and acyclovir (tablet forms), which were not applied in the traditional way but through the "device for transfer of information from the drug to the human body." The received effect led to suppression of the disease activity, a significant reduction in the symptoms of the disease, prevention of further increase in neurological manifestations of the disease, and improvement in the dynamics of the manifestation of the disease according to brain magnetic resonance imaging. CONCLUSION The described case report is innovative and presents for the first time the results of a noninvasive approach to the treatment of a patient with multiple sclerosis in whom information about various medications was introduced into different parts of the body, including the brain. The results obtained may indicate a possible role of infectious agents in the genesis of multiple sclerosis. It indicates a potential impact on them by using a "device for transfer of information from the drug to the human body." The study was conducted in accordance with the principles of the Declaration of Helsinki. It was approved by the Institutional Review Board of the Research Institute of Virology of Uzbekistan (no. 12/8-1500, 1/3/2017).
Collapse
Affiliation(s)
- Naylya Djumaeva
- Microbiology, Infectious and Parasitic Diseases, The Research Institute of Virology of the National Specialized Scientific and Practical Medical Center for Epidemiology, 7A Yangi Shahar Street, 100194, Tashkent, Uzbekistan.
| |
Collapse
|
4
|
Sefati N, Esmaeilpour T, Salari V, Zarifkar A, Dehghani F, Ghaffari MK, Zadeh-Haghighi H, Császár N, Bókkon I, Rodrigues S, Oblak D. Monitoring Alzheimer's disease via ultraweak photon emission. iScience 2024; 27:108744. [PMID: 38235338 PMCID: PMC10792242 DOI: 10.1016/j.isci.2023.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/06/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024] Open
Abstract
In an innovative experiment, we detected ultraweak photon emission (UPE) from the hippocampus of male rat brains and found significant correlations between Alzheimer's disease (AD), memory decline, oxidative stress, and UPE intensity. These findings may open up novel methods for screening, detecting, diagnosing, and classifying neurodegenerative diseases, particularly AD. The study suggests that UPE from the brain's neural tissue can serve as a valuable indicator. It also proposes the development of a minimally invasive brain-computer interface (BCI) photonic chip for monitoring and diagnosing AD, offering high spatiotemporal resolution of brain activity. The study used a rodent model of sporadic AD, demonstrating that STZ-induced sAD resulted in increased hippocampal UPE, which was associated with oxidative stress. Treatment with donepezil reduced UPE and improved oxidative stress. These findings support the potential utility of UPE as a screening and diagnostic tool for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Niloofar Sefati
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Esmaeilpour
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Salari
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Quantum Alberta, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Asadollah Zarifkar
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Dehghani
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Khorsand Ghaffari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Quantum Alberta, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary AB T2N 1N4, Canada
| | | | - István Bókkon
- Psychosomatic Outpatient Clinics, Budapest, Hungary
- Vision Research Institute, Neuroscience and Consciousness Research Department, Lowell, MA, USA
| | - Serafim Rodrigues
- MCEN Team, Basque Center for Applied Mathematics, Bilbao, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Daniel Oblak
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Quantum Alberta, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
5
|
Nascimento NS, Torres-Obreque KM, Oliveira CA, Rabelo J, Baby AR, Long PF, Young AR, Rangel-Yagui CDO. Enzymes for dermatological use. Exp Dermatol 2024; 33:e15008. [PMID: 38284197 DOI: 10.1111/exd.15008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/18/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
Skin is the ultimate barrier between body and environment and prevents water loss and penetration of pathogens and toxins. Internal and external stressors, such as ultraviolet radiation (UVR), can damage skin integrity and lead to disorders. Therefore, skin health and skin ageing are important concerns and increased research from cosmetic and pharmaceutical sectors aims to improve skin conditions and provide new anti-ageing treatments. Biomolecules, compared to low molecular weight drugs and cosmetic ingredients, can offer high levels of specificity. Topically applied enzymes have been investigated to treat the adverse effects of sunlight, pollution and other external agents. Enzymes, with a diverse range of targets, present potential for dermatological use such as antioxidant enzymes, proteases and repairing enzymes. In this review, we discuss enzymes for dermatological applications and the challenges associated in this growing field.
Collapse
Affiliation(s)
- Natália Santos Nascimento
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Karin Mariana Torres-Obreque
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Camila Areias Oliveira
- Laboratory of Analytical Validation and Development, Fundação Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil
| | - Jheniffer Rabelo
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - André Rolim Baby
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Paul F Long
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Antony R Young
- St John's Institute of Dermatology, King's College London, London, UK
| | - Carlota de Oliveira Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Institute of Pharmaceutical Science, King's College London, London, UK
| |
Collapse
|
6
|
Aryan A, Aghajanpour F, Dashtdar M, Hejazi F, Salimi M, Afshar A, Soltani R, Seyed Hasani AH, Aliaghaei A, Abbaszadeh HA, Mahmoodi H, Zahedi L, Abdollahifar MA, Fadaei Fathabadi F. Exploring Intercellular Dynamics: Ultra-Weak Biophoton Emission as a Novel Indicator of Altered Cell Functions and Disease in Oligospermia Mice. J Lasers Med Sci 2023; 14:e65. [PMID: 38318218 PMCID: PMC10843233 DOI: 10.34172/jlms.2023.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/12/2023] [Indexed: 02/07/2024]
Abstract
Introduction: Biophoton emission, the spontaneous release of photons from living cells, has emerged as an attractive field of research in the study of biological systems. Scientists have recently discovered that changes in biophoton emission could serve as potential indicators of pathological conditions. This intriguing phenomenon suggests that cells might communicate and interact with each other through the exchange of these faint but significant light signals. Therefore, the present study introduces intercellular relationships with biophoton release to detect normal and abnormal cell functions to further achieve cellular interactions by focusing on cell and cell arrangement in disease conditions. Methods: Twenty male mice were assigned to control and busulfan groups. Five weeks after the injection of busulfan, the testis was removed, and then the stereological techniques and TUNEL assay were applied to estimate the histopathology of the testis tissue sections. Results: The findings revealed that the ultra-weak biophoton emission in the control group was significantly lower than in the busulfan group. The oligospermia mice model showed that it significantly changed the spatial arrangement of testicular cells and notably decreased the testis volume, length of seminiferous tubules, and the number of testicular cells. The results of the TUNEL assay showed that the percentage of apoptotic cells significantly increased in the busulfan group. Conclusion: The ultra-weak biophoton emission from testis tissue was reduced in oligospermia mice. As a result, the decline of ultra-weak biophoton can indicate a change in cell arrangement, a decrease in intercellular interaction, and eventually disease.
Collapse
Affiliation(s)
- Arefeh Aryan
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical, Sciences, Tehran, Iran
- Anatomy Department, School of Medicine, Rasht University of Medical Sciences, Gilan, Iran
| | - Fakhroddin Aghajanpour
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical, Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Hejazi
- Department of Advanced Technology, Shiraz University, Shiraz, Iran
| | - Maryam Salimi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azar Afshar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Soltani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahad Hasan Seyed Hasani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat-Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical, Sciences, Tehran, Iran
| | - Hasan Mahmoodi
- Department of Physics, Shahid Beheshti University, Tehran, Iran
| | - Leila Zahedi
- Department of Physical Electronics, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Mohammad-Amin Abdollahifar
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical, Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fadaei Fathabadi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical, Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Poplová M, Prasad A, Van Wijk E, Pospíšil P, Cifra M. Biological Auto(chemi)luminescence Imaging of Oxidative Processes in Human Skin. Anal Chem 2023; 95:14853-14860. [PMID: 37753614 DOI: 10.1021/acs.analchem.3c01566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Oxidative processes in all types of organisms cause the chemical formation of electronically excited species, with subsequent ultraweak photon emission termed biological auto(chemi)luminescence (BAL). Imaging this luminescence phenomenon using ultrasensitive devices could potentially enable monitoring of oxidative stress in optically accessible areas of the human body, such as skin. Although oxidative stress induced by UV light has been explored, for chemically induced stress, there is no in vivo-quantified imaging of oxidative processes in human skin using BAL under the controlled extent of oxidative stress conditions. Furthermore, the mechanisms and dynamics of BAL from the skin have not been fully explored. Here, we demonstrate that different degrees of chemically induced oxidative stress on the skin can be spatially resolved quantitatively through noninvasive label-free BAL imaging. Additionally, to gain insight into the underlying mechanisms, a minimal chemical model of skin based on a mixture of lipid, melanin, and water was developed and used to show that it can be used to reproduce essential features of the response of real skin to oxidative stress. Our results contribute to novel, noninvasive photonic label-free methods for quantitative sensing of oxidative processes and oxidative stress.
Collapse
Affiliation(s)
- Michaela Poplová
- Institute of Photonics and Electronics, The Czech Academy of Sciences, Prague 182 00, Czechia
- Faculty of Electrical Engineering, Czech Technical University in Prague, Prague 166 27, Czechia
| | - Ankush Prasad
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czechia
| | - Eduard Van Wijk
- Meluna Research Business & Science Park Wageningen, Agro Business Park, 10 6708 PW Wageningen, Netherlands
| | - Pavel Pospíšil
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czechia
| | - Michal Cifra
- Institute of Photonics and Electronics, The Czech Academy of Sciences, Prague 182 00, Czechia
| |
Collapse
|
8
|
Blue light-induced lipid oxidation and the antioxidant property of hypotaurine: evaluation via measuring ultraweak photon emission. Photochem Photobiol Sci 2023; 22:345-356. [PMID: 36271182 DOI: 10.1007/s43630-022-00319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/07/2022] [Indexed: 10/24/2022]
Abstract
The effects of blue light on human body have attracted attention. The human skin in contact with the outside environment is often exposed to blue light, and the effects of this exposure remain to be fully determined. Therefore, in this study, we investigated the effect of blue light, at the intensity typically found in sunlight, on lipids in the skin from an oxidation perspective. Peroxide value (POV) and ultraweak photon emission (UPE) measurements were conducted to evaluate lipid oxidation. Our results confirmed that blue light irradiation induced lipid oxidation, similar to ultraviolet A (UVA) irradiation. Also, the effects of various reagents on the blue light-induced UPE were evaluated; however, the results differed from those of the DPPH radical-scavenging ability. We speculated that this is due to the difference in the evaluation principle; nevertheless, among reagents, hypotaurine not only showed a high antioxidant effect but was also more effective against blue light-induced oxidation than UVA. Based on the difference in the antioxidant effect of the lipid sample in this study, the oxidation reaction induced by blue light may be different from the UVA-induced reaction. Our study provides new insights into the effects of blue light on lipids in the human skin, thereby promoting research regarding photooxidation.
Collapse
|
9
|
Tsuchida K, Sakiyama N, Ogura Y, Kobayashi M. Skin lightness affects ultraviolet A-induced oxidative stress: Evaluation using ultraweak photon emission measurement. Exp Dermatol 2023; 32:146-153. [PMID: 36256509 DOI: 10.1111/exd.14690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/03/2022] [Accepted: 10/16/2022] [Indexed: 11/30/2022]
Abstract
The human skin is usually exposed to ultraviolet A (UVA) in the sunlight and experiences oxidative stress associated with skin disorders and aging. Although oxidative stress caused by UVA exposure is assumed to be dependent on skin colour, few studies have demonstrated this dependency. We investigated the effects of skin colour on UVA-induced oxidative stress using ultraweak photon emission (UPE) generated from the skin during oxidation processes. The UPE intensities of skin samples were detected using a photomultiplier tube every second without any labelling. We irradiated skin tissue of different colours with UVA and measured UPE over time. UVA-induced UPE could be detected from immediately after irradiation to 2 h after irradiation, indicating persistent oxidative stress. Skin lightness (L*) positively correlates with UPE intensity. Lighter-coloured skin exhibited more UVA-induced UPE, indicating higher oxidative stress. Additionally, oxidative stress persisted significantly more in lighter skin compared with darker skin. Skin tissues exhibited pigment darkening after UVA irradiation. Our results suggest that skin lightness affects oxidative stress induced by UV irradiation. Our study demonstrated the relationship between skin lightness and UVA-induced oxidative stress for the first time and offers new photodermatological insights into the human skin.
Collapse
Affiliation(s)
| | | | - Yuki Ogura
- Shiseido Co., Ltd., MIRAI Technology Institute, Yokohama, Japan
| | - Masaki Kobayashi
- Graduate Department of Electronics, Tohoku Institute of Technology, Sendai, Japan
| |
Collapse
|
10
|
Naumova EV, Vladimirov YA, Tuchin VV, Namiot VA, Volodyaev IV. Methods of Studying Ultraweak Photon Emission from Biological Objects: III. Physical Methods. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Naumova EV, Vladimirov YA, Beloussov LV, Tuchin VV, Volodyaev IV. Methods of Studying Ultraweak Photon Emission from Biological Objects: I. History, Types and Properties, Fundamental and Application Significance. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921050158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
12
|
Gabe Y, Takeda K, Tobiishi M, Kikuchi S, Tsuda K, Haryuu Y, Nakajima Y, Inomata Y, Nakamura S, Murase D, Tokunaga S, Miyaki M, Takahashi Y. Evaluation of subclinical chronic sun damage in the skin via the detection of long-lasting ultraweak photon emission. Skin Res Technol 2021; 27:1064-1071. [PMID: 33998715 DOI: 10.1111/srt.13059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND It is well known that solar radiation accelerates skin photoaging. To evaluate subclinical photodamage in the skin especially from the early phase of ultraviolet (UV)-induced damage, we have focused on ultraweak photon emission (UPE), also called biophotons. Our previous study reported that the amount of long-lasting UPE induced by UV, predominantly from lipid peroxidation, is a valuable indicator to assess cutaneous photodamage even at a suberythemal dose, although it was only applied to evaluate acute UV damage. The aim of this study was to further investigate whether long-lasting UPE could also be a useful marker to assess subclinical chronic sun damage in the course of skin photoaging. MATERIALS AND METHODS Forty-three Japanese females in their 20s were recruited and were divided into two groups according to their history of sun exposure based on a questionnaire (high- and low-sun-exposure groups). Several skin properties on the cheek and outer forearm were measured in addition to UV-induced UPE. RESULTS Among the skin properties measured, water content, average skin roughness, and the lateral packing of lipids in the stratum corneum were significantly deteriorated in the high-sun-exposure group as were changes in some skin photoaging scores such as pigmented spots and wrinkles. In addition, those skin properties were correlated with the UPE signals, suggesting the possible impact of oxidative stress on chronic skin damage. CONCLUSION Subtle oxidative stress detected by long-lasting UPE may contribute to subclinical cutaneous damage at the beginning phase of chronic sun exposure, which potentially enhances skin photoaging over a lifetime.
Collapse
Affiliation(s)
- Yu Gabe
- Biological Science Research, Kao Corporation, Odawara, Japan
| | | | - Megumi Tobiishi
- Biological Science Research, Kao Corporation, Odawara, Japan
| | - Sho Kikuchi
- Skin Care Research, Kao Corporation, Sumida, Japan
| | - Koki Tsuda
- Analytical Science Research, Kao Corporation, Japan, Haga
| | | | | | | | - Shun Nakamura
- Analytical Science Research, Kao Corporation, Japan, Haga
| | - Daiki Murase
- Biological Science Research, Kao Corporation, Odawara, Japan
| | | | | | | |
Collapse
|
13
|
Zapata F, Pastor-Ruiz V, Ortega-Ojeda F, Montalvo G, Ruiz-Zolle AV, García-Ruiz C. Human ultra-weak photon emission as non-invasive spectroscopic tool for diagnosis of internal states - A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112141. [PMID: 33540236 DOI: 10.1016/j.jphotobiol.2021.112141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/08/2021] [Accepted: 01/25/2021] [Indexed: 11/27/2022]
Abstract
In the knowledge that human ultra-weak photon emission (UPE) is mainly due to the metabolic oxidative stress processes that the skin cells undergo in the presence of reactive oxygen species (ROS), external stressors (like UV radiation), but also internal stressors (like diseases or brain activity) might strongly influence the UPE. This manuscript revises the scientific advances focused on the influence of internal factors on the human UPE. According to literature, the UPE seems to be influenced by some diseases (including diabetes, hemiparesis, protoporphyria, or a typical cold), and even by the cerebral intention/relaxation (brain activity/meditation). These allow to consider UPE as a natural and promising non-invasive spectroscopic tool for helping during the diagnosis of a variety of illnesses or stress- / mood-state disorders. Nonetheless, further research is required for answering some still unresolved controversial points.
Collapse
Affiliation(s)
- Félix Zapata
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Madrid, Spain; Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, Campus Espinardo, 30100 Murcia, Spain
| | - Victoria Pastor-Ruiz
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Madrid, Spain
| | - Fernando Ortega-Ojeda
- Department of Physics and Mathematics, University of Alcalá, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Madrid, Spain; University Institute of Research in Police Sciences (IUICP), University of Alcalá, Libreros 27, 28801, Alcalá de Henares, Madrid, Spain
| | - Gemma Montalvo
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Madrid, Spain; University Institute of Research in Police Sciences (IUICP), University of Alcalá, Libreros 27, 28801, Alcalá de Henares, Madrid, Spain
| | | | - Carmen García-Ruiz
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Madrid, Spain; University Institute of Research in Police Sciences (IUICP), University of Alcalá, Libreros 27, 28801, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
14
|
Ultraviolet A irradiation induces ultraweak photon emission with characteristic spectral patterns from biomolecules present in human skin. Sci Rep 2020; 10:21667. [PMID: 33303911 PMCID: PMC7728812 DOI: 10.1038/s41598-020-78884-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/01/2020] [Indexed: 11/26/2022] Open
Abstract
Oxidative stress is associated with photoaging of the skin as well as with skin cancer, and is therefore, critical to monitor. Ultraweak photon emission (UPE) is extremely weak light generated during the oxidative process in the living body and has been used as a non-invasive and label-free marker for the evaluation of oxidative stress. However, the mechanism of UPE generation is not clear. Therefore, we aimed to elucidate the molecular mechanism underlying UPE generation by analyzing the spectra of UPE generated from biomolecules in the skin during ultraviolet A (UVA) exposure. The spectra of UVA-induced UPE generated from linoleic acid, linolenic acid, elastin, phospholipids, and 5,6-dihydroxyindole-2-carboxylic acid were measured, and the spectrum of human skin tissue was also obtained. The spectral patterns varied for the different biomolecules and the peaks were distinct from those of the skin tissue. These results suggested that the UPE generated from skin tissue is a collection of light emitted by biomolecules. Moreover, we proposed that UPE is generated through a photosensitization reaction and energy transfer. The identified characteristic spectral patterns of UPE can be useful to elucidate UVA-induced oxidative stress in the skin, with implications for prevention and treatment of photoaging and skin diseases.
Collapse
|
15
|
Gabe Y, Murase D, Kasamatsu S, Osanai O, Takahashi Y, Hachiya A. Exploitation of long-lasting ultraweak photon emission to estimate skin photodamage after ultraviolet exposure. Skin Res Technol 2020; 27:309-315. [PMID: 33022822 DOI: 10.1111/srt.12944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/05/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Establishing a noninvasive method to estimate skin damage immediately after ultraviolet (UV) exposure is required to minimize the anticipated severe symptoms triggered by early phase UV-induced reactions in the skin. To develop a suitable method, we focused on ultraweak photon emission (UPE) immediately after UV exposure to characterize the relationship of UPE to skin photodamage caused by the UV exposure. MATERIALS AND METHODS Analysis of the correlation between UV-induced UPE and erythema formation characterized by skin redness was conducted in a clinical study. To clarify the source of UPE, time-dependent lipid oxidation was analyzed in human epidermal keratinocytes in vitro using a fluorescence indicator as well as the lipid hydroperoxide (LPO) assay. RESULTS The average amount of UV-induced long-lasting UPE per second, especially from 1 to 3 minutes compared to other time periods after the UV radiation, increased in a dose-dependent manner and was highly correlated with the intensity of cutaneous redness 24 hours after UV exposure. In addition, cellular examinations elucidated that both the long-lasting UPE signals and the increased amounts of LPO 2 minutes after UV radiation were significantly suppressed by Trolox (a vitamin E derivative), which has been shown to inhibit UV-induced erythema formation in human skin. CONCLUSION Long-lasting UPE generated between 1 and 3 minutes immediately after UV exposure, which is associated with LPO production, is a valuable indicator to estimate and/or avoid severe cutaneous photodamage.
Collapse
Affiliation(s)
- Yu Gabe
- Biological Science Research, Kao Corporation, Odawara, Japan
| | - Daiki Murase
- Biological Science Research, Kao Corporation, Odawara, Japan
| | | | - Osamu Osanai
- Sensory Science Research, Kao Corporation, Sumida, Japan
| | | | - Akira Hachiya
- Planning and Implementation, Kao Corporation, Sumida, Japan
| |
Collapse
|
16
|
Piao D. On the stress-induced photon emission from organism: I, will the scattering-limited delay affect the temporal course? SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03346-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
17
|
Piao D. On the stress-induced photon emission from organism: II, how will the stress-transfer kinetics affect the photo-genesis? SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03347-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
18
|
Van Wijk R, Van Wijk EP, Pang J, Yang M, Yan Y, Han J. Integrating Ultra-Weak Photon Emission Analysis in Mitochondrial Research. Front Physiol 2020; 11:717. [PMID: 32733265 PMCID: PMC7360823 DOI: 10.3389/fphys.2020.00717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
Once regarded solely as the energy source of the cell, nowadays mitochondria are recognized to perform multiple essential functions in addition to energy production. Since the discovery of pathogenic mitochondrial DNA defects in the 1980s, research advances have revealed an increasing number of common human diseases, which share an underlying pathogenesis involving mitochondrial dysfunction. A major factor in this dysfunction is reactive oxygen species (ROS), which influence the mitochondrial-nuclear crosstalk and the link with the epigenome, an influence that provides explanations for pathogenic mechanisms. Regarding these mechanisms, we should take into account that mitochondria produce the majority of ultra-weak photon emission (UPE), an aspect that is often ignored - this type of emission may serve as assay for ROS, thus providing new opportunities for a non-invasive diagnosis of mitochondrial dysfunction. In this article, we overviewed three relevant areas of mitochondria-related research over the period 1960-2020: (a) respiration and energy production, (b) respiration-related production of free radicals and other ROS species, and (c) ultra-weak photon emission in relation to ROS and stress. First, we have outlined how these research areas initially developed independently of each other - following that, our review aims to show their stepwise integration during later stages of development. It is suggested that a further stimulation of research on UPE may have the potential to enhance the progress of modern mitochondrial research and its integration in medicine.
Collapse
Affiliation(s)
- Roeland Van Wijk
- Meluna Research, Department of Biophotonics, Geldermalsen, Netherlands
| | | | - Jingxiang Pang
- Key Laboratory for Biotech-Drugs of National Health Commission, Shandong Medicinal Biotechnology Center, Jinan, China
- Shandong First Medical University, Jinan, China
- Shandong Academy of Medical Sciences, Jinan, China
| | - Meina Yang
- Key Laboratory for Biotech-Drugs of National Health Commission, Shandong Medicinal Biotechnology Center, Jinan, China
- Shandong First Medical University, Jinan, China
- Shandong Academy of Medical Sciences, Jinan, China
| | - Yu Yan
- Meluna Research, Department of Biophotonics, Geldermalsen, Netherlands
| | - Jinxiang Han
- Key Laboratory for Biotech-Drugs of National Health Commission, Shandong Medicinal Biotechnology Center, Jinan, China
- Shandong First Medical University, Jinan, China
- Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
19
|
Oxidative stress in human facial skin observed by ultraweak photon emission imaging and its correlation with biophysical properties of skin. Sci Rep 2020; 10:9626. [PMID: 32541901 PMCID: PMC7295759 DOI: 10.1038/s41598-020-66723-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/26/2020] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress is associated with skin ageing and disease in humans. However, it is difficult to evaluate the effects of oxidative stress on the skin in vivo using conventional invasive methods. In this study, we performed two-dimensional imaging of ultra-weak photon emission (UPE) generated by excited species in oxidative reaction to determine regional variations in oxidative stress in human facial skin and analysed the relationship between UPE intensity and biophysical properties in vivo. UPE imaging of the facial skin of volunteers revealed regional variations in oxidative stress. The nose, its surrounding regions, and the area between eyebrows showed higher UPE intensity than other facial regions, indicating high oxidative stress in these regions. In contrast, only the region surrounding the eyes showed age-related alterations in UPE intensity; moreover, wrinkle score in these regions was correlated with UPE intensity. These results suggest that oxidative stress in the skin induces wrinkle formation. UPE intensity was correlated with porphyrin score in the skin; however, no correlation was observed between UPE intensity and skin colour parameters. This study provides insights into the treatment of facial skin areas vulnerable to ageing and helps improve our understanding of topical skin diseases related to oxidative stress.
Collapse
|