1
|
Arrigo A, Cremona O, Aragona E, Casoni F, Consalez G, Dogru RM, Hauck SM, Antropoli A, Bianco L, Parodi MB, Bandello F, Grosche A. Müller cells trophism and pathology as the next therapeutic targets for retinal diseases. Prog Retin Eye Res 2025; 106:101357. [PMID: 40254246 DOI: 10.1016/j.preteyeres.2025.101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
Müller cells are a crucial retinal cell type involved in multiple regulatory processes and functions that are essential for retinal health and functionality. Acting as structural and functional support for retinal neurons and photoreceptors, Müller cells produce growth factors, regulate ion and fluid homeostasis, and facilitate neuronal signaling. They play a pivotal role in retinal morphogenesis and cell differentiation, significantly contributing to macular development. Due to their radial morphology and unique cytoskeletal organization, Müller cells act as optical fibers, efficiently channeling photons directly to the photoreceptors. In response to retinal damage, Müller cells undergo specific gene expression and functional changes that serve as a first line of defense for neurons, but can also lead to unwarranted cell dysfunction, contributing to cell death and neurodegeneration. In some species, Müller cells can reactivate their developmental program, promoting retinal regeneration and plasticity-a remarkable ability that holds promising therapeutic potential if harnessed in mammals. The crucial and multifaceted roles of Müller cells-that we propose to collectively call "Müller cells trophism"-highlight the necessity of maintaining their functionality. Dysfunction of Müller cells, termed "Müller cells pathology," has been associated with a plethora of retinal diseases, including age-related macular degeneration, diabetic retinopathy, vitreomacular disorders, macular telangiectasia, and inherited retinal dystrophies. In this review, we outline how even subtle disruptions in Müller cells trophism can drive the pathological cascade of Müller cells pathology, emphasizing the need for targeted therapies to preserve retinal health and prevent disease progression.
Collapse
Affiliation(s)
- Alessandro Arrigo
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Ottavio Cremona
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Emanuela Aragona
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Filippo Casoni
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giacomo Consalez
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rüya Merve Dogru
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, 80939, Germany
| | - Alessio Antropoli
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Bianco
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Francesco Bandello
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
2
|
Marchese NA, Ríos MN, Guido ME. Müller glial cell photosensitivity: a novel function bringing higher complexity to vertebrate retinal physiology. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
3
|
Swelling and membrane potential dynamics of glial Müller cells. Biosystems 2022; 221:104772. [PMID: 36113739 DOI: 10.1016/j.biosystems.2022.104772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/20/2022] [Accepted: 08/27/2022] [Indexed: 11/21/2022]
Abstract
Presently a detailed biophysical model describing reversible and irreversible swelling dynamics of Müller cells (MC) is reported. The model includes a biophysical block of ionic and neutral species transport via MC membrane, water transport induced by osmotic pressure and pressure generated by membrane deformations, MC membrane potential and membrane mechanical properties. The model describes reversible and irreversible MC swelling (MCS) using the same set of parameters. The model was used in fitting available experimental data, and produced numerical values of previously unknown model parameters, including those describing mechanical properties of Müller cell membrane (MCM) with respect to bending and stretching. Numerical experiments simulating MC swelling showed complex oscillation dynamics of the relevant parameters in physiological initial conditions. In particular, MC membrane potential (ΔΨMC) demonstrated complex oscillation dynamics, which may be described by a superposition of several oscillations with their periods in the milliseconds, 100-ms and seconds time ranges. Dynamics of reversible and irreversible MCS, and the transition criteria from reversible to irreversible MCS modes were determined in model simulations.
Collapse
|
4
|
Khmelinskii I, Makarov V. Intermediate filaments are natural energy conductors in live cells. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Research on a Framework for Sustainable Campus Eco-Architecture Selection: Taking a Taiwan High School as an Example. SUSTAINABILITY 2022. [DOI: 10.3390/su14106265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the advancement of human science and technology, the continuous increase in the construction and functional improvement of campus buildings and school teaching infrastructure cannot avoid adverse impacts on the overall environment. Therefore, sustainability assessments of buildings are indispensable for the sustainable development of the surrounding region. The main goal of the sustainable design of campus buildings is to reduce the depletion of key resources, such as water and energy, as well as to lower carbon emissions; this, in turn, creates a safe and effective campus environment. Comprehensive assessments of campus buildings have become critical to achieving national and regional sustainability. Therefore, this study compiles a set of building construction indicators suitable for a framework for high school campus architecture and ecological development in Taiwan, conforms these indicators to climatic characteristics, and considers an evaluation model for sustainable building concepts. This research uses the Fuzzy Delphi Method (FDM) and the Fuzzy Analysis Hierarchical Procedure Method (FAHP) to gather data using expert questionnaires. We examine three relevant factors: (1) the main factor, campus space architecture, is the most important measure of sustainable buildings; (2) the second factor is the campus ecological environment; (3) the third measure of the sustainable campus buildings is a healthy environment. The top 20 elements of the sustainable campus building evaluation index were obtained through FAHP analysis, with an overall cumulative weight value of 81.06%. This research may provide a resource allocation reference for government bodies or the construction industry, assisting them in building sustainable buildings in the future.
Collapse
|
6
|
Carpi-Santos R, de Melo Reis RA, Gomes FCA, Calaza KC. Contribution of Müller Cells in the Diabetic Retinopathy Development: Focus on Oxidative Stress and Inflammation. Antioxidants (Basel) 2022; 11:617. [PMID: 35453302 PMCID: PMC9027671 DOI: 10.3390/antiox11040617] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
Diabetic retinopathy is a neurovascular complication of diabetes and the main cause of vision loss in adults. Glial cells have a key role in maintenance of central nervous system homeostasis. In the retina, the predominant element is the Müller cell, a specialized cell with radial morphology that spans all retinal layers and influences the function of the entire retinal circuitry. Müller cells provide metabolic support, regulation of extracellular composition, synaptic activity control, structural organization of the blood-retina barrier, antioxidant activity, and trophic support, among other roles. Therefore, impairments of Müller actions lead to retinal malfunctions. Accordingly, increasing evidence indicates that Müller cells are affected in diabetic retinopathy and may contribute to the severity of the disease. Here, we will survey recently described alterations in Müller cell functions and cellular events that contribute to diabetic retinopathy, especially related to oxidative stress and inflammation. This review sheds light on Müller cells as potential therapeutic targets of this disease.
Collapse
Affiliation(s)
- Raul Carpi-Santos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (R.C.-S.); (F.C.A.G.)
| | - Ricardo A. de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Flávia Carvalho Alcantara Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (R.C.-S.); (F.C.A.G.)
| | - Karin C. Calaza
- Instituto de Biologia, Departamento de Neurobiologia, Universidade Federal Fluminense, Niteroi 24210-201, RJ, Brazil
| |
Collapse
|
8
|
Khmelinskii I, Makarov VI. Reaction coupling in ADH1A alcohol dehydrogenase enzyme by exciplex formation with adenosine diphosphate moderated by low-energy electronic excited states. Phys Rev E 2021; 103:052405. [PMID: 34134225 DOI: 10.1103/physreve.103.052405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/16/2021] [Indexed: 01/01/2023]
Abstract
Two commonly accepted theories about enzymes were revisited. The first states that adenosine triphosphate (ATP)-stored energy is only released when the substrate is in place, because the substrate changes the enzyme structure when it is bound to the enzyme. In fact, as demonstrated and discussed presently, no structural changes are required, and ATP-stored energy is released when it can be used. The second states that ATP-released energy moves along the enzyme molecule in the form of molecular vibrations (Davydov's vibrational solitons). In fact, as reported presently, energy released upon ATP hydrolysis moves in the form of excited-state electrons (excitons), with no molecular vibrations involved. The relevant experimental evidence was obtained for the human ADH1A alcohol dehydrogenase enzyme. Spontaneous ATP hydrolysis in the absence of substrate was apparently prevented by electronically excited enzyme + adenosine diphosphate (ADP) + inorganic phosphate (P) complex (exciplex) formed upon ATP hydrolysis. This exciplex kept ADP + P bound and in place for the inverse reaction, until the excess energy was dissipated in the enzyme-catalyzed reaction or by energy transfer to a suitable acceptor. Additionally, and contrary to textbooks, ADH1A has required ATP, working orders of magnitude faster in its presence.
Collapse
Affiliation(s)
- Igor Khmelinskii
- Universidade do Algarve, FCT, DQB, and CEOT, 8005-139 Faro, Portugal
| | - Vladimir I Makarov
- University of Puerto Rico, Rio Piedras Campus, PO Box 23343, San Juan, Puerto Rico 00931-3343, USA
| |
Collapse
|
9
|
Khmelinskii I, Makarov VI. Energy transfer along Müller cell intermediate filaments isolated from porcine retina: I. Excitons produced by ADH1A dimers upon simultaneous hydrolysis of two ATP molecules. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119361. [PMID: 33418473 DOI: 10.1016/j.saa.2020.119361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
IR exciton propagation was explored in Müller cell (MC) intermediate filaments (IFs) filling a capillary matrix. These IFs have been isolated from porcine retina using different methods, while their properties were almost identical. Therefore, IFs isolated from the whole retinas were used presently. IR excitons were generated by IR radiation at 2 μm wavelength, or by enzymatic ATP hydrolysis, with the energy transferred to IFs. Excitons produced by ATP hydrolysis required simultaneous energy contribution of two ATP molecules, indicating simultaneous hydrolysis of two ATP molecules in the naturally dimeric human alcohol dehydrogenase enzyme (ADH1A). ATP hydrolysis was thus catalyzed by ADH1A…NAD+ enzymatic complexes absorbed at the IF extremities protruding out of the capillary matrix. The IR emission spectra of excitons were dependent on the exciton generation method. We believe this resulted from the exciton energy distribution varying in function of the generation method used. The latter seems reasonable, given the very long excited-state lifetimes, implying low nonradiative relaxation rates. The energy liberated by ATP hydrolysis has been measured directly in these experiments, for the first time. The results demonstrate that contrary to the predictions of equilibrium thermodynamics, the liberated energy is independent on the ATP/ADP concentration ratio, indicating that non-equilibrium reactions take place. Time-resolved experiments with excitons produced by pulsed IR radiation evaluated characteristic exciton propagation and emission times. For the first time, biexcitonic processes were observed in biological objects, whereby simultaneous hydrolysis of two ATP molecules bound to the same dimeric ADH1A molecule generated excitons carrying twice the energy liberated by hydrolysis of a single ATP molecule. The results reported indicate that ATP-liberated energy may be transmitted along natural polypeptide nanofibers in vivo, within and between live cells. These ideas could promote new understanding of the biophysics of life.
Collapse
Affiliation(s)
- Igor Khmelinskii
- Universidade do Algarve, FCT-DQB and CEOT, 8005-139 Faro, Portugal
| | | |
Collapse
|