1
|
Ye L, Li H, Zhang W, Zhou Y, Lan X, Wang Y. Blue light-emitting diode promotes mineralization of stem cells from the apical papilla via cryptochrome 1/Wnt/β-catenin signaling. J Mol Histol 2025; 56:125. [PMID: 40167571 DOI: 10.1007/s10735-025-10400-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/16/2025] [Indexed: 04/02/2025]
Abstract
This study aimed to determine whether low-intensity blue LED light (4 J/cm2) promotes mineralization of stem cells from the apical papilla (SCAPs) by modulating CRY1 expression and to elucidate the underlying molecular mechanisms. SCAPs identity was validated using flow cytometry. In a controlled experimental design, SCAPs were exposed to blue LED light, followed by quantitative assessment of CRY1 and osteogenic markers (Runx2, OSX, DSPP, DMP-1) via qRT-PCR, Western blotting, and osteogenic staining. To investigate the role of CRY1 in SCAPs osteogenic differentiation, CRY1 was overexpressed using lentiviral transfection. Additionally, the Wnt/β-catenin pathway was analyzed using specific inhibitors (XAV-939) to elucidate the underlying molecular mechanisms. Blue LED irradiation reduced CRY1 mRNA expression to 80% (day 7) and 45% (day 14) of control levels. CRY1 overexpression significantly increased CRY1 mRNA and protein levels (P < 0.001) but decreased ALP activity and ARS staining (P < 0.001). Blue LED treatment restored mineralization parameters to 80% of control levels. Key osteogenic genes (DMP-1, DSPP, Runx2, OSX) showed lower mRNA and protein levels in the CRY1 overexpression group compared to controls. Blue LED exposure increased these levels to 60-74% (mRNA) and 45-67% (protein) of control values. In the Wnt/β-catenin pathway, CRY1 overexpression elevated GSK-3β and reduced p-GSK-3β, β-catenin, and nuclear β-catenin levels. Blue LED treatment restored these levels to 33-54% of control values, indicating pathway activation. Inhibition of the Wnt/β-catenin pathway (using XAV-939) abolished differences in osteogenic gene expression and mineralization between CRY1 overexpression and blue LED-treated groups, confirming its critical role. Blue LED light at 4 J/cm2 enhances SCAPs mineralization by modulating CRY1 expression and activating the Wnt/β-catenin pathway. These findings provide mechanistic insights into photobiomodulation (PBM) in bone regeneration and highlight its potential for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Lin Ye
- Department of Preventive Dentistry, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Hao Li
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Pangang Group General Hospital, Panzhihua, 617023, China
| | - Wantong Zhang
- Department of Preventive Dentistry, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Yan Zhou
- Department of Preventive Dentistry, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Yao Wang
- Department of Preventive Dentistry, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China.
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
2
|
Mohaghegh S, Fathi H, Molaasadollah F, Teimoori M, Chiniforush N, Taghipour N, Shekarchi F, Nokhbatolfoghahaei H. Evaluating the effect of strontium ranelate and photobiomodulation on cementogenic and osteogenic differentiation of buccal fat pad-derived stem cells: An in vitro study. Photochem Photobiol 2024; 100:1419-1430. [PMID: 38234287 DOI: 10.1111/php.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/03/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
This study aimed to analyze the impact of strontium ranelate (Str), photobiomodulation (PBM), or their combination of the proliferation, osteogenic differentiation, and cementogenic differentiation of buccal fat pad-derived stem cells. BFPdSCs were exposed to one of the following interventions: (1) PBM (660 nm), (2) PBM (660 nm) + Str, (3) PBM (880 nm), (4) PBM (880 nm) + Str, (5) Str. All study groups had significantly higher osteogenic differentiation than the control group (p < 0.05), and no significant difference existed between the 660 and 808 nm groups (p = 0.97). Compared to the Str group, 660 nm and 880 nm group samples had significantly lower osteogenic differentiation (p < 0.0001), while other groups did not show a significant difference. Regarding cementogenic differentiation, the 660 nm group showed higher values than the 808 nm group (p < 0.01). Compared with the Str group, 660 nm, 660 nm + Str, and 808 nm + Str groups showed significantly higher gene expression (p < 0.05). In the case of osteogenic differentiation, although photobiomodulation alone had a lower inducing effect than strontium ranelate, combining 808 nm diode lasers and strontium ranelate may provide the best results. Moreover, using a 660 nm diode laser and exposing stem cells to strontium ranelate can be the most effective approach to induce cementogenic differentiation.
Collapse
Affiliation(s)
- S Mohaghegh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - H Fathi
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F Molaasadollah
- Department of Pediatric Dentistry, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Teimoori
- Dental Sciences Research Center, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - N Chiniforush
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - N Taghipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F Shekarchi
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pediatric Dentistry, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - H Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Safari AH, Sadat Mansouri S, Iranpour B, Hodjat M, Hakimiha N. An in vitro study on the effects of photobiomodulation by diode lasers (red, infrared, and red-infrared combination) on periodontal ligament mesenchymal stem cells treated with bisphosphonates. Photochem Photobiol 2024; 100:1399-1407. [PMID: 38217350 DOI: 10.1111/php.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/02/2023] [Accepted: 12/29/2023] [Indexed: 01/15/2024]
Abstract
This study evaluated the effect of photobiomodulation therapy (PBMT) using 660 and 808 nm diode lasers (individual and in combination) on periodontal ligament mesenchymal stem cells (PDLSCs) in the presence of zoledronic acid (ZA). PDLSCs were cultured for 48 h in DMEM complete medium containing 5 μM ZA. PBMT was done three times with a 24-h interval in groups 1 (660 nm, 5 J/cm2), 2 (880 nm, 3 J/cm2), and 3 (660 + 808 nm) either in normal or ZA-treated culture medium. Control groups did not receive PBMT. Twenty-four hours post-irradiation, cell proliferation and expression of RANKL and OPG were assessed using MTT and real-time PCR tests, respectively. The results showed a significant decrease in cell viability in ZA-treated cells (p < 0.001). Additionally, ZA induced the expression of OPG (p = 0.03) while reducing RANKL (p < 0.001). Cell proliferation was significantly increased in 808 and 660 + 808 nm groups. Moreover, all PBMT groups could significantly increase and decrease the RANKL and OPG, respectively, in the presence of ZA (all p < 0.001). A combination of 660 + 808 nm showed the highest effects on both genes. In conclusion, it seems that PBMT can modulate the effects of ZA by inducing PDLSC proliferation and increasing RANKL-to-OPG gene expression ratio.
Collapse
Affiliation(s)
- Amir Hossein Safari
- Department of Periodontology, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeed Sadat Mansouri
- Department of Periodontology, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Babak Iranpour
- Department of Periodontology, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Neda Hakimiha
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Hajihosseintehrani M, Amini A, Heidari M, Gholipourmalekabadi M, Fadaei Fathabady F, Mostafavinia A, Ahmadi H, Khodadadi M, Naser R, Zare F, Alizadeh S, Moeinian N, Chien S, Bayat M. The Application of Photobiomodulation and Stem Cells Seeded on the Scaffold Accelerates the Wound Healing Process in Mice. J Lasers Med Sci 2024; 15:e40. [PMID: 39381785 PMCID: PMC11459249 DOI: 10.34172/jlms.2024.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/08/2024] [Indexed: 10/10/2024]
Abstract
Introduction: The purpose of this research was to test the impact of seeding a hydrogel chitosan scaffold (HCS) with human adipose-derived stem cells (hADSCs) under the influence of photobiomodulation (PBM) on the remodeling step on the wound repairing process in mice. Methods: Thirty mice were randomly assigned to five groups (n=6 per group ): The control group (group 1) consisted of mice without any intervention. In group 2, an HCS was implanted into the wound. In group 3, a combination of HCS+hADSC was inserted into the wound. In group 4, an HCS was inserted into the wound and PBM was applied. In group 5, a combination of HCS+hADSCs was inserted into the wound, followed by PBM treatment. Results: Improvements in the injury closing rate (WCR) and microbial flora were observed in all groups. However, the highest WCRs were observed in group s 5, 4, 3, and 2 (all P values were 0.000). Groups 3-5 showed increased wound strength compared to group s 1 and 2, with group 2 demonstrating better results than group 1 (P values ranged from 0.000 to 0.013). Although group s 3-5 showed increases in certain stereological elements compared to group s 1 and 2, group 2 exhibited superior results in comparison with group 1 (P values ranged from 0.000 to 0.049). Conclusion: The joined use of HCS+hADSCs+PBM significantly accelerated the wound healing process during the maturation phase in healthy mice. This approach demonstrated superior wound healing compared to the use of HCS alone, hADSCs+HCS, or PBM+HCS. The findings suggest an additive effect when HCS+hADSCs+PBM are combined.
Collapse
Affiliation(s)
- Masoumeh Hajihosseintehrani
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Mohammadhossein Heidari
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Mazaher Gholipourmalekabadi
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| | - Fatemeh Fadaei Fathabady
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Atarodalsadat Mostafavinia
- Department of Anatomical Sciences and Cognitive Neuroscience at the Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Maryam Khodadadi
- Xi’an jiaotong University School of Stomatology, Xi’an, Shaanxi Province, China
| | - Reza Naser
- Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Zare
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Sanaz Alizadeh
- Department of Anatomical Sciences and Cognitive Neuroscience at the Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nafiseh Moeinian
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research at the University of Louisville and Noveratech LLC of Louisville in Louisville, KY, USA
| | - Mohammad Bayat
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
- Price Institute of Surgical Research at the University of Louisville and Noveratech LLC of Louisville in Louisville, KY, USA
| |
Collapse
|
5
|
Da Silva D, Crous A, Abrahamse H. Enhancing Osteoblast Differentiation from Adipose-Derived Stem Cells Using Hydrogels and Photobiomodulation: Overcoming In Vitro Limitations for Osteoporosis Treatment. Curr Issues Mol Biol 2024; 46:6346-6365. [PMID: 39057021 PMCID: PMC11276038 DOI: 10.3390/cimb46070379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Osteoporosis represents a widespread and debilitating chronic bone condition that is increasingly prevalent globally. Its hallmark features include reduced bone density and heightened fragility, which significantly elevate the risk of fractures due to the decreased presence of mature osteoblasts. The limitations of current pharmaceutical therapies, often accompanied by severe side effects, have spurred researchers to seek alternative strategies. Adipose-derived stem cells (ADSCs) hold considerable promise for tissue repair, albeit they encounter obstacles such as replicative senescence in laboratory conditions. In comparison, employing ADSCs within three-dimensional (3D) environments provides an innovative solution, replicating the natural extracellular matrix environment while offering a controlled and cost-effective in vitro platform. Moreover, the utilization of photobiomodulation (PBM) has emerged as a method to enhance ADSC differentiation and proliferation potential by instigating cellular stimulation and facilitating beneficial performance modifications. This literature review critically examines the shortcomings of current osteoporosis treatments and investigates the potential synergies between 3D cell culture and PBM in augmenting ADSC differentiation towards osteogenic lineages. The primary objective of this study is to assess the efficacy of combined 3D environments and PBM in enhancing ADSC performance for osteoporosis management. This research is notably distinguished by its thorough scrutiny of the existing literature, synthesis of recent advancements, identification of future research trajectories, and utilization of databases such as PubMed, Scopus, Web of Science, and Google Scholar for this literature review. Furthermore, the exploration of biomechanical and biophysical stimuli holds promise for refining treatment strategies. The future outlook suggests that integrating PBM with ADSCs housed within 3D environments holds considerable potential for advancing bone regeneration efforts. Importantly, this review aspires to catalyse further advancements in combined therapeutic strategies for osteoporosis regeneration.
Collapse
Affiliation(s)
| | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa; (D.D.S.); (A.C.)
| |
Collapse
|
6
|
Chailakhyan R, Grosheva A, Vorobieva N, Yusupov V, Sviridov A. Combined Light and Thermal Stimulation of Bone Marrow Stem Cells. J Lasers Med Sci 2024; 15:e8. [PMID: 39050999 PMCID: PMC11267100 DOI: 10.34172/jlms.2024.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/17/2024] [Indexed: 07/27/2024]
Abstract
Introduction: The purpose of this study is to achieve a significant increase in the proliferative activity of mesenchymal stem cells (MSCs) of the bone marrow (BM) at early passages after laser exposure to a suspension of these cells and to estimate the effect of light and heat components of laser radiation on the proliferation of BM MSCs. Methods: The studies were performed on rats BM MSCs. MSC suspension was placed into the wells and heated by using laser radiation (980 nm wavelength) or a water bath at 70 °C providing similar temperature dynamics. The studies were carried out in 3 comparison groups: (1) control suspension of MSCs, which was not subjected to heating in a water bath or laser exposure; (2) MSC suspension, which was heated for in a water bath; and (3) suspension of MSCs, which was subjected to laser exposure. The exposure times for the 2nd and 3rd experimental groups were 10- 50 seconds. Results: Under optimal parameters of laser action on the suspension of BM MSCs, a six-fold increase in the number of BM MSCs colonies was registered compared to the control. The role of the light and heat components of laser exposure to MSCs was determined by comparable heating of a suspension of BM MSCs in a water bath, at which only a twofold increase in the number of colonies was maximally obtained. Conclusion: The increase in the MSC proliferation activity occurs due to their Thermo-Photobiomodulation. The result obtained is important for practical use in cell transplantation in the treatment of traumatic injuries of bone, cartilage, and tendon tissues when a rapid and multiple increase in the initial number of autologous BM MSCs is required.
Collapse
Affiliation(s)
- Ruben Chailakhyan
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alla Grosheva
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | | | | |
Collapse
|
7
|
Vatandoust D, Ahmadi H, Amini A, Mostafavinia A, Fathabady FF, Moradi A, Fridoni M, Hamblin MR, Ebrahimpour-Malekshah R, Chien S, Bayat M. Photobiomodulation preconditioned diabetic adipose derived stem cells with additional photobiomodulation: an additive approach for enhanced wound healing in diabetic rats with a delayed healing wound. Lasers Med Sci 2024; 39:86. [PMID: 38438583 DOI: 10.1007/s10103-024-04034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
In this preclinical investigation, we examined the effects of combining preconditioned diabetic adipose-derived mesenchymal stem cells (AD-MSCs) and photobiomodulation (PBM) on a model of infected ischemic delayed healing wound (injury), (IIDHWM) in rats with type I diabetes (TIDM). During the stages of wound healing, we examined multiple elements such as stereology, macrophage polarization, and the mRNA expression levels of stromal cell-derived factor (SDF)-1α, vascular endothelial growth factor (VEGF), hypoxia-induced factor 1α (HIF-1α), and basic fibroblast growth factor (bFGF) to evaluate proliferation and inflammation. The rats were grouped into: (1) control group; (2) diabetic-stem cells were transversed into the injury site; (3) diabetic-stem cells were transversed into the injury site then the injury site exposed to PBM; (4) diabetic stem cells were preconditioned with PBM and implanted into the wound; (5) diabetic stem cells were preconditioned with PBM and transferred into the injury site, then the injury site exposed additional PBM. While on both days 4, and 8, there were advanced histological consequences in groups 2-5 than in group 1, we found better results in groups 3-5 than in group 2 (p < 0.05). M1 macrophages in groups 2-5 were lower than in group 1, while groups 3-5 were reduced than in group 2 (p < 0.01). M2 macrophages in groups 2-5 were greater than in group 1, and groups 3-5 were greater than in group 2. (p ≤ 0.001). Groups 2-5 revealed greater expression levels of bFGF, VEGF, SDF- 1α, and HIF- 1α genes than in group 1 (p < 0.001). Overall group 5 had the best results for histology (p < 0.05), and macrophage polarization (p < 0.001). AD-MSC, PBM, and AD-MSC + PBM treatments all enhanced the proliferative stage of injury repairing in the IIDHWM in TIDM rats. While AD-MSC + PBM was well than the single use of AD-MSC or PBM, the best results were achieved with PBM preconditioned AD-MSC, plus additional PBM of the injury.
Collapse
Affiliation(s)
- Dorsa Vatandoust
- Student Research Committee at Shahid Beheshti University of Medical Sciences (SBMU) in, Tehran, Iran
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences, Arabi Ave, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences, Arabi Ave, Iran.
| | - Atarodalsadat Mostafavinia
- Department of Anatomical Sciences and Cognitive Neuroscience at the Faculty of Medicine, Tehran Medical Sciences, Islamic Aza University in Tehran, Tehran, Iran
| | - Fatemeh Fadaei Fathabady
- Student Research Committee at Shahid Beheshti University of Medical Sciences (SBMU) in, Tehran, Iran
| | - Ali Moradi
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences, Arabi Ave, Iran
| | - Mohammadjavad Fridoni
- Department of Biology and Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Michael R Hamblin
- Laser Research Centre at the Faculty of Health Science, University of Johannesburg in Doornfontein 2028, Johannesburg, South Africa
| | | | - Sufan Chien
- Price Institute of Surgical Research at the University of Louisville and Noveratech LLC of Louisville in Louisville, KY, USA.
| | - Mohammad Bayat
- Price Institute of Surgical Research at the University of Louisville and Noveratech LLC of Louisville in Louisville, KY, USA.
| |
Collapse
|
8
|
Waight JL, Arias N, Jiménez-García AM, Martini M. From functional neuroimaging to neurostimulation: fNIRS devices as cognitive enhancers. Behav Res Methods 2024; 56:2227-2242. [PMID: 37507648 PMCID: PMC10990990 DOI: 10.3758/s13428-023-02144-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 07/30/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) relies on near-infrared (NIR) light for changes in tissue oxygenation. For decades, this technique has been used in neuroscience to measure cortical activity. However, recent research suggests that NIR light directed to neural populations can modulate their activity through "photobiomodulation" (PBM). Yet, fNIRS is being used exclusively as a measurement tool. By adopting cognitive tests sensitive to prefrontal functioning, we show that a 'classical' fNIRS device, placed in correspondence of the prefrontal cortices of healthy participants, induces faster RTs and better accuracy in some of the indexes considered. A well-matched control group, wearing the same but inactive device, did not show any improvement. Hence, our findings indicate that the 'standard' use of fNIRS devices generates PBM impacting cognition. The neuromodulatory power intrinsic in that technique has been so far completely overlooked, and future studies will need to take this into account.
Collapse
Affiliation(s)
- Jason Lee Waight
- School of Psychology, University of East London, E15 4LZ, London, UK
| | - Natalia Arias
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK.
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33005, Oviedo, Spain.
- Health Research Institute of the Principality of Asturias (ISPA), 33011, Oviedo, Spain.
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248, Madrid, Spain.
| | - Ana M Jiménez-García
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248, Madrid, Spain
| | - Matteo Martini
- School of Psychology, University of East London, E15 4LZ, London, UK.
- Department of Humanities, Letters, Cultural Heritage and Educational Studies, via Arpi, 71121, Foggia, Italy.
| |
Collapse
|
9
|
Ferro AP, de Jesus Guirro RR, Ferraresi C, Celli J, Orellana MD, de Santis GC, Junior JAF, de Oliveira Guirro EC. Influence of Different Photobiomodulation Parameters on Multi-Potent Adipose Tissue Mesenchymal Cells In Vitro. Photobiomodul Photomed Laser Surg 2024; 42:200-207. [PMID: 38416634 DOI: 10.1089/photob.2023.0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
Objective: Investigating the effect of different parameters of photobiomodulation (PBM) with low-power laser on multi-potent mesenchymal stem cells (MSCs) derived from adipose tissue in terms of proliferation and cell death. Methods: MSCs were submitted to PBM applications with combinations of the following physical parameters: control group (no intervention), wavelengths of 660 and 830 nm; energy of 0.5, 2, and 4 J; and power of 40 and 100 mW. MSC analysis was performed using MetaXpress® software at 24, 48, and 72 h. Results: Irradiation promoted a significant increase in cell proliferation (p < 0.05), with 830 nm laser, 100 mW, with energy of 0.5, 2, and 4 J in relation to the control group at all times. PBM with 660 nm, power of 40 mW, and energy of 0.5, 2, and 4 J produced greater cell death at 24 h compared with the control group. At the time of 72 h, there was no significant difference concerning cell death. Conclusions: According to the results found, we can conclude that both wavelengths were effective; however, the 830 nm laser was more effective in terms of cell proliferation compared with the 660 nm laser. The 660 nm wavelength showed a significant increase in cell death when compared with the 830 nm laser.
Collapse
Affiliation(s)
- Ana Paula Ferro
- Department of Health Sciences, Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rinaldo Roberto de Jesus Guirro
- Department of Health Sciences, Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cleber Ferraresi
- Department of Physical Therapy, Postgraduate Program in Physiotherapy, Federal University of São Carlos, São Paulo, Brazil
| | - Jonathan Celli
- Department of Physics, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Maristela Delgado Orellana
- Department of Cell Biology, Ribeirão Preto Blood Center Foundation, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gil Cunha de Santis
- Department of Cell Therapy, Regional Blood Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jayme Adriano Farina Junior
- Department of Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine Caldeira de Oliveira Guirro
- Department of Health Sciences, Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
10
|
Priyadarshi A, Keshri GK, Gupta A. Dual-NIR wavelength (pulsed 810 nm and superpulsed 904 nm lasers) photobiomodulation therapy synergistically augments full-thickness burn wound healing: A non-invasive approach. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 246:112761. [PMID: 37542937 DOI: 10.1016/j.jphotobiol.2023.112761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
A thermal burn is the most frequent, distressing form of trauma. Globally, there is a critical necessity to explore novel therapeutic strategies for burn wound care. Combination therapy has marked therapeutic efficacy in positively regulating various phases of wound repair. Photobiomodulation (PBM) is a biophysical, non-thermal therapeutic healing modality to treat chronic non-healing wounds. It hypothesized that PBM using combined NIR wavelengths may absorb through different cellular photoacceptors with varying degrees of tissue penetration, which can potentially regulate the pace of healing. Therefore, the current study investigates the efficacy of dual-NIR wavelength treatment employing pulsed 810 nm and superpulsed 904 nm lasers PBM on transdermal burn repair in rats and unveils the associated molecular mechanistic insights. Rats were randomized into five groups: uninjured skin, burn control (sham-exposed), standalone treatment with pulsed 810 nm laser, superpulsed 904 nm laser, and dual combination groups. The present findings revealed that PBM with dual-NIR wavelength synergistically augmented burn wound healing compared to control and standalone treatments. The efficacy of combined treatment was exhibited by significantly enhanced wound area contraction (α-smooth muscle actin), proliferation (PCNA, cytokeratin-14, TGF-β2), angiogenesis (HIF-1α, CD31), ECM accumulation/ organization (collagen type 3, fibronectin), dermal hydration (AQP3), calcium homeostasis (TRPV3, calmodulin), and bioenergetics activation (CCO, AMPK-α, ATP). Collectively, PBM with dual-NIR wavelength (pulsed/ superpulsed-mode) treatment accelerates full-thickness burn wound healing, which could be used as a non-invasive translational approach in clinical significance in conjunction with existing burn wound care management.
Collapse
Affiliation(s)
- Ashok Priyadarshi
- Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110 054, India
| | - Gaurav K Keshri
- Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110 054, India
| | - Asheesh Gupta
- Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110 054, India.
| |
Collapse
|
11
|
Ebrahimpour-Malekshah R, Amini A, Mostafavinia A, Ahmadi H, Zare F, Safaju S, Shahbazi A, Chien S, Rezaei F, Hasan A, Bayat M. The stereological, immunohistological, and gene expression studies in an infected ischemic wound in diabetic rats treated by human adipose-derived stem cells and photobiomodulation. Arch Dermatol Res 2023; 315:1717-1734. [PMID: 36808225 DOI: 10.1007/s00403-023-02563-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/06/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
We investigated the impacts of photobiomodulation (PBM) and human allogeneic adipose-derived stem cells (ha-ADS) together and or alone applications on the stereological parameters, immunohistochemical characterizing of M1 and M2 macrophages, and mRNA levels of hypoxia-inducible factor (HIF-1α), basic fibroblast growth factor (bFGF), vascular endothelial growth factor-A (VEGF-A) and stromal cell-derived factor-1α (SDF-1α) on inflammation (day 4) and proliferation phases (day 8) of repairing tissues in an infected delayed healing and ischemic wound model (IDHIWM) in type 1 diabetic (DM1) rats. DM1 was created in 48 rats and an IDHIWM was made in all of them, and they were distributed into 4 groups. Group1 = control rats with no treatment. Group2 = rats received (10 × 100000 ha-ADS). Group3 = rats exposed to PBM (890 nm, 80 Hz, 3.46 J/cm2). Group4 = rats received both PBM and ha-ADS. On day 8, there were significantly higher neutrophils in the control group than in other groups (p < 0.01). There were substantially higher macrophages in the PBM + ha-ADS group than in other groups on days 4 and 8 (p < 0.001). Granulation tissue volume, on both days 4 and 8, was meaningfully greater in all treatment groups than in the control group (all, p = 0.000). Results of M1 and M2 macrophage counts of repairing tissue in the entire treatment groups were considered preferable to those in the control group (p < 0.05). Regarding stereological and macrophage phenotyping, the results of the PBM + ha-ADS group were better than the ha-ADS and PBM groups. Results of the tested gene expression of repairing tissue on inflammation and proliferation steps in PBM and PBM + ha-ADS groups were meaningfully better than the control and ha-ADS groups (p < 0.05). We showed that PBM, ha-ADS, and PBM plus ha-ADS, hastened the proliferation step of healing in an IDHIWM in rats with DM1 by regulation of the inflammatory reaction, macrophage phenotyping, and augmented granulation tissue formation. In addition PBM and PBM plus ha-ADS protocols hastened and increased mRNA levels of HIF-1α, bFGF, SDF-1α, and VEGF-A. Totally, in terms of stereological and immuno-histological tests, and also gene expression HIF-1α and VEGF-A, the results of PBM + ha-ADS were superior (additive) to PBM, and ha-ADS alone treatments.
Collapse
Affiliation(s)
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atarodalsadat Mostafavinia
- Department of Anatomy, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zare
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sobhan Safaju
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Shahbazi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, Noveratech LLC of Louisville, Louisville, KY, USA
| | - Fatemehalsadat Rezaei
- College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY, 40536, USA
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar.
- Biomedical Research Centre, Qatar University, 2713, Doha, Qatar.
| | - Mohammad Bayat
- Price Institute of Surgical Research, University of Louisville, Noveratech LLC of Louisville, Louisville, KY, USA.
| |
Collapse
|
12
|
Amini A, Ghasemi Moravej F, Mostafavinia A, Ahmadi H, Chien S, Bayat M. Photobiomodulation Therapy Improves Inflammatory Responses by Modifying Stereological Parameters, microRNA-21 and FGF2 Expression. J Lasers Med Sci 2023; 14:e16. [PMID: 37583493 PMCID: PMC10423949 DOI: 10.34172/jlms.2023.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/13/2023] [Indexed: 08/17/2023]
Abstract
Introduction: Photobiomodulation treatment (PBMT) is a relatively invasive method for treating wounds. An appropriate type of PBMT can produce desired and directed cellular and molecular processes. The aim of this study was to investigate the impacts of PBMT on stereological factors, bacterial count, and the expression of microRNA-21 and FGF2 in an infected, ischemic, and delayed wound healing model in rats with type one diabetes mellitus. Methods: A delayed, ischemic, and infected wound was produced on the back skin of all 24 DM1 rats. Then, they were put into 4 groups at random (n=6 per group): 1=Control group day4 (CGday4); 2=Control group day 8 (CGday8); 3=PBMT group day4 (PGday4), in which the rats were exposed to PBMT and killed on day 4; 4=PBMT group day8 (PGday8), in which the rats received PBMT and they were killed on day 8. The size of the wound, the number of microbial colonies, stereological parameters, and the expression of microRNA-21 and FGF2 were all assessed in this study throughout the inflammation (day 4) and proliferation (day 8) stages of wound healing. Results: On days 4 and 8, we discovered that the PGday4 and PGday8 groups significantly improved stereological parameters in comparison with the same CG groups. In terms of ulcer area size and microbiological counts, the PGday4 and PGday8 groups performed much better than the same CG groups. Simultaneously, the biomechanical findings in the PGday4 and PGday8 groups were much more extensive than those in the same CG groups. On days 4 and 8, the expression of FGF2 and microRNA-21 was more in all PG groups than in the CG groups (P<0.01). Conclusion: PBMT significantly speeds up the repair of ischemic and MARS-infected wounds in DM1 rats by lowering microbial counts and modifying stereological parameters, microRNA-21, and FGF2 expression.
Collapse
Affiliation(s)
- Abdollah Amini
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ghasemi Moravej
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atarodalsadat Mostafavinia
- Department of Anatomy, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Ahmadi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, Kentucky, USA
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, Kentucky, USA
| |
Collapse
|
13
|
Fallahi F, Mostafavinia A, Sharifi Z, Mohaghegh Shalmani L, Amini A, Ahmadi H, Omidi H, Hajihosseintehrani M, Bayat S, Hamblin MR, Chien S, Bayat M. Effects of photobiomodulation on mitochondrial function in diabetic adipose-derived stem cells in vitro. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121835. [PMID: 36116412 DOI: 10.1016/j.saa.2022.121835] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Herein are reported the effects of photobiomodulation (PBM) on adenosine triphosphate (ATP) and reactive oxygen species (ROS) quantification and mitochondria membrane potential (MMP) of the mitochondria of diabetic adipose-derived stem cells (ADSCs) in vitro. Additionally, the expression of PTEN-induced kinase 1 (PINK1) and RBR E3 ubiquitin-protein ligase (PARKIN) genes, which are involved in mitochondrial quality, were quantified. First, type one diabetes was induced in 10 rats. The rats were then kept for 1 month, after which fat tissue was excised from subcutaneous regions, and stem cells were selected from the fat, characterized as ADSC, and cultivated and increased in elevated sugar conditions in vitro; these samples were considered diabetic-ADSC. Two groups were formed, namely, diabetic-control-ADSC and PBM-diabetic-ADSC. ATP, ROS quantification, and MMP of mitochondria of diabetic ADSCs in vitro were measured, and the expression of PINK1 and Parkin genes was quantified in vitro. The results revealed that PBM significantly increased ATP quantification (p = 0.05) and MMP activity (p = 0.000) in diabetic-ADSCs in vitro compared to the control diabetic-ADSCs; however, it significantly decreased ROS quantification (p = 0.002) and PINK1(p = 0.003) and PARKIN gene expression (p = 0.046) in diabetic-ADSCs. The current findings indicate for the first time that PBM has the potential to maintain the function and quality of mitochondrial diabetic-ADSCs by significantly increasing ATP quantification and MMP activity in diabetic-ADSCs in vitro while significantly decreasing ROS quantification and PINK1 and PARKIN gene expression, making PBM an attractive candidate for use in improving the efficacy of autologous stem cell remedies for diabetic patients with infected diabetic foot ulcers.
Collapse
Affiliation(s)
- Faezeh Fallahi
- Faculty of Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atarodalsadat Mostafavinia
- Department of Anatomical Sciences & Cognitive Neuroscience, Faculty of Medicine, Tehran Medical sciences, Islamic Azad university, Tehran, Iran
| | - Zahranadia Sharifi
- Faculty of Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Leila Mohaghegh Shalmani
- Faculty of Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Omidi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Hajihosseintehrani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Bayat
- Illinois Institute of Technology, Chicago, IL, USA
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiation Biology Research Center, Iran. University of Medical Sciences, Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, USA.
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, USA
| |
Collapse
|
14
|
Epstein JB, Arany PR, Yost SE, Yuan Y. Medication-Related Osteonecrosis of the Jaw: Successful Medical Management of Complex Maxillary Alveolus with Sinus Involvement. Case Rep Oncol 2023; 16:397-413. [PMID: 37384201 PMCID: PMC10294216 DOI: 10.1159/000529502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/31/2023] [Indexed: 06/30/2023] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) in cancer patients presents a considerable challenge in management. Current management is primarily based on interventions in a limited number of cases assessing a single approach. Medical management typically is reported to include antimicrobial therapy with or without surgery. Advances in the understanding of pathogenesis have led to the investigation of additional medical interventions for early-stage necrosis. We present 3 patients with advanced-stage MRONJ of the maxilla using combined medical modalities including antimicrobial therapy, photobiomodulation therapy, pentoxifylline, vitamin E, and synthetic parathyroid hormone. All patients had a good outcome and avoided surgical intervention. We also report biological and functional imaging that may assist in more effective diagnosis and management of MRONJ. The 3 patients reported suggest that combined medical management should be considered in all cases of MRONJ (including stage III) prior to determining if surgical intervention is required. Functional imaging with a technetium bone scan or positron emission tomography scan correlated with diagnosis and confirmed resolution in patients. We present 3 challenging MRONJ patients that were effectively managed with a combined medical and nonsurgical therapy that demonstrated good clinical outcomes avoiding surgical interventions.
Collapse
Affiliation(s)
- Joel B. Epstein
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Praveen R. Arany
- Department of Oral Biology, Surgery, and Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | - Susan E. Yost
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Yuan Yuan
- Division of Medical Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
15
|
Potential of stem cells for treating infected Diabetic Foot Wounds and Ulcers: a systematic review. Mol Biol Rep 2022; 49:10925-10934. [PMID: 36008608 DOI: 10.1007/s11033-022-07721-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023]
Abstract
Infected diabetic foot ulcers (iDFUs) cause great concern, as they generally heal poorly and are precursive of diabetic-related foot amputation and even death. Scientists have tested various techniques in attempts to ascertain the best treatment for iDFUs; however, the results have remained inconclusive. Stem cell therapy (SCT) appears to improve iDFU through its antimicrobial impacts, yet cogent information regarding the repair of iDFUs with SCT is lacking. Herein, published articles are evaluated to report coherent information about the antimicrobial effects of SCT on the repair of iDFUs in diabetic animals and humans. In this systematic review, we searched the Scopus, Medline, Google Scholar, and Web of Science databases for relevant full-text English language articles published from 2000 to 2022 that described stem cell antimicrobial treatments, infected diabetic wounds, or ulcers. Ultimately, six preclinical and five clinical studies pertaining to the effectiveness of SCT on healing infected diabetic wounds or ulcers were selected. Some of the human studies confirmed that SCT is a promising therapy for diabetic wounds and ulcers. Notably, more controlled studies performed on animal models revealed that stem cells combined with a biostimulator such as photobiomodulation decreased colony forming units and hastened healing in infected diabetic wounds. Moreover, stem cells alone had lower therapeutic impact than when combined with a biostimulant.
Collapse
|
16
|
Bikmulina P, Kosheleva N, Shpichka A, Yusupov V, Gogvadze V, Rochev Y, Timashev P. Photobiomodulation in 3D tissue engineering. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220027VRR. [PMID: 36104833 PMCID: PMC9473299 DOI: 10.1117/1.jbo.27.9.090901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE The method of photobiomodulation (PBM) has been used in medicine for a long time to promote anti-inflammation and pain-resolving processes in different organs and tissues. PBM triggers numerous cellular pathways including stimulation of the mitochondrial respiratory chain, alteration of the cytoskeleton, cell death prevention, increasing proliferative activity, and directing cell differentiation. The most effective wavelengths for PBM are found within the optical window (750 to 1100 nm), in which light can permeate tissues and other water-containing structures to depths of up to a few cm. PBM already finds its applications in the developing fields of tissue engineering and regenerative medicine. However, the diversity of three-dimensional (3D) systems, irradiation sources, and protocols intricate the PBM applications. AIM We aim to discuss the PBM and 3D tissue engineered constructs to define the fields of interest for PBM applications in tissue engineering. APPROACH First, we provide a brief overview of PBM and the timeline of its development. Then, we discuss the optical properties of 3D cultivation systems and important points of light dosimetry. Finally, we analyze the cellular pathways induced by PBM and outcomes observed in various 3D tissue-engineered constructs: hydrogels, scaffolds, spheroids, cell sheets, bioprinted structures, and organoids. RESULTS Our summarized results demonstrate the great potential of PBM in the stimulation of the cell survival and viability in 3D conditions. The strategies to achieve different cell physiology states with particular PBM parameters are outlined. CONCLUSIONS PBM has already proved itself as a convenient and effective tool to prevent drastic cellular events in the stress conditions. Because of the poor viability of cells in scaffolds and the convenience of PBM devices, 3D tissue engineering is a perspective field for PBM applications.
Collapse
Affiliation(s)
- Polina Bikmulina
- Sechenov First Moscow State Medical University, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Moscow, Russia
| | - Nastasia Kosheleva
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| | - Anastasia Shpichka
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| | - Vladimir Yusupov
- Institute of Photon Technologies of FSRC “Crystallography and Photonics” RAS, Troitsk, Russia
| | - Vladimir Gogvadze
- Lomonosov Moscow State University, Faculty of Medicine, Moscow, Russia
- Karolinska Institutet, Institute of Environmental Medicine, Division of Toxicology, Stockholm, Sweden
| | - Yury Rochev
- National University of Ireland, Galway, Galway, Ireland
| | - Peter Timashev
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| |
Collapse
|
17
|
Li M, Zhu Y, Pei Q, Deng Y, Ni T. The 532 nm Laser Treatment Promotes the Proliferation of Tendon-Derived Stem Cells and Upregulates Nr4a1 to Stimulate Tenogenic Differentiation. Photobiomodul Photomed Laser Surg 2022; 40:543-553. [PMID: 35904935 DOI: 10.1089/photob.2022.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: This study aimed to verify the effect of photobiomodulation therapy (PBMT) with a wavelength of 532 nm on the proliferation and differentiation of tendon-derived stem cells (TDSCs) of Sprague-Dawley (SD) rats. Background: The combination of PBMT and stem cell transplantation with TDSCs provides a new treatment strategy for tendon injury. Nevertheless, the effect of PBMT on the biological behavior of TDSCs and its internal mechanisms remain unclear. Methods: TDSCs were isolated from Achilles tendons of SD rats and identified by cell morphology and flow cytometric analysis. Energy density gradient experiment was performed to determine the ideal energy. Then, TDSCs were treated with PBMT using a wavelength of 532 nm at a fluence of 15 J/cm2 in 532 nm laser group, and the TDSC in control group were not treated with 532 nm laser. Cell response after irradiation was observed to ascertain cell morphology and cell proliferation in the 532 nm laser group and the control group. The RNA expression levels of the key genes of TDSC differentiation, including scleraxis (Scx), tenomodulin (Tnmd), Mohawk homeobox (Mkx), Decorin (Dcn), peroxisome proliferator-activated receptor gamma (PPARγ), SRY-box transcription factor 9 (Sox9), and RUNX family transcription factor 2 (Runx2), were detected by reverse transcription-polymerase chain reaction. Then, gene chip microarray was used to detect the expression of differential genes after 532 nm laser intervention in TDSCs, and the target genes were screened out to verify the role in this process in vitro and in vivo. Results: When the 532 nm laser energy density was 15 J/cm2, the proliferation capacity of TDSCs was improved (2.73 ± 0.24 vs. 1.81 ± 0.71, p < 0.05), and the expression of genes related to tenogenic differentiation of TDSCs was significantly increased (p < 0.01). After RNA sequencing and bioinformatics analyses, we speculated that nuclear receptor subfamily 4 group A member 1 (Nr4a1) was involved in the tenogenic differentiation process of TDSCs regulated by 532 nm laser treatment. Subsequent experiments confirmed that Nr4a1 regulated the expression of the tenogenic differentiation genes Scx and Tnmd in TDSCs. Conclusions: A 532 nm laser with 15 J/cm2 regulated the process of TDSC proliferation and upregulated Nr4a1 to stimulate tenogenic differentiation.
Collapse
Affiliation(s)
- Ming Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Zhu
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Pei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhao Deng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Ni
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Khosravipour A, Mostafavinia A, Amini A, Gazor R, Zare F, Fallahnezhad S, Rezaei F, Asgari M, Mohammadian F, Mohsenifar Z, Chien S, Bayat M. Different Protocols of Combined Application of Photobiomodulation In Vitro and In Vivo Plus Adipose-Derived Stem Cells Improve the Healing of Bones in Critical Size Defects in Rat Models. J Lasers Med Sci 2022; 13:e10. [PMID: 35996492 PMCID: PMC9392890 DOI: 10.34172/jlms.2022.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/12/2021] [Indexed: 10/05/2023]
Abstract
Introduction: Long bone segmental deficiencies are challenging complications to treat. Hereby, the effects of the scaffold derived from the human demineralized bone matrix (hDBMS) plus human adipose stem cells (hADSs) plus photobiomodulation (PBM) (in vitro and or in vivo) on the catabolic step of femoral bone repair in rats with critical size femoral defects (CDFDs) were evaluated with stereology and high stress load (HSL) assessment methods. Methods: hADSs were exposed to PBM in vitro; then, the mixed influences of hDBMS+hADS+PBM on CSFDs were evaluated. CSFDs were made on both femurs; then hDBMSs were engrafted into both CSFDs of all rats. There were 6 groups (G)s: G1 was the control; in G2 (hADS), hADSs only were engrafted into hDBMS of CSFD; in G3 (PBM) only PBM therapy for CSFD was provided; in G4 (hADS+PBM in vivo), seeded hADSs on hDBMS of CSFDs were radiated with a laser in vivo; in G5 (hADSs+PBM under in vitro condition), hADSs in a culture system were radiated with a laser, then transferred on hDBMS of CSFDs; and in G6 (hADS+PBM in conditions of in vivo and in vitro), laser-exposed hADSs were transplanted on hDBMS of CSFDs, and then CSFDs were exposed to a laser in vivo. Results: Groups 4, 5, and 6 meaningfully improved HSLs of CSFD in comparison with groups 3, 1, and 2 (all, P=0.001). HSL of G5 was significantly more than G4 and G6 (both, P=0.000). Gs 6 and 4 significantly increased new bone volumes of CSFD compared to Gs 2 (all, P=0.000) and 1 (P=0.001 & P=0.003 respectively). HSL of G 1 was significantly lower than G5 (P=0.026). Conclusion: HSLs of CSFD in rats that received treatments of hDBMS plus hADS plus PBM were significantly higher than treatments with hADS and PBM alone and control groups.
Collapse
Affiliation(s)
- Armin Khosravipour
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atarodalsadat Mostafavinia
- Department of Anatomy, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rouhallah Gazor
- Department of Anatomy, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Zare
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somaye Fallahnezhad
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemehalsadat Rezaei
- University of Kentucky, College of Pharmacy, 789 South Limestone, Lexington, Kentucky 40536, USA
| | - Mehrdad Asgari
- Department of Anatomy, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Mohammadian
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zhaleh Mohsenifar
- Department of Pathology, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, Kentucky, USA
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, Kentucky, USA
| |
Collapse
|
19
|
Photobiomodulation Therapy to Autologous Bone Marrow in Humans Significantly Increases the Concentration of Circulating Stem Cells and Macrophages: A Pilot Study. Photobiomodul Photomed Laser Surg 2022; 40:178-182. [DOI: 10.1089/photob.2021.0123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
20
|
Oyebode OA, Houreld NN. Photobiomodulation at 830 nm Stimulates Migration, Survival and Proliferation of Fibroblast Cells. Diabetes Metab Syndr Obes 2022; 15:2885-2900. [PMID: 36172056 PMCID: PMC9510698 DOI: 10.2147/dmso.s374649] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Photobiomodulation (PBM) promotes diabetic wound healing by favoring cell survival and proliferation. This study aimed to investigate the potential of PBM in stimulating cellular migration, viability, and proliferation using the transforming growth factor-β1 (TGF-β1)/Smad signaling pathway. METHODS The study explored the in vitro effects of near infrared (NIR) light on cell viability (survival) and proliferation as well as the presence of TGF-β1, phosphorylated TGF-β receptor type I (pTGF-βR1) and phosphorylated mothers against decapentaplegic-homolog (Smad)-2/3 (p-Smad2/3) in different fibroblast cell models. RESULTS Results show a significant increase in cellular migration in wounded models, and increased viability and proliferation in irradiated cells compared to their respective controls. An increase in the presence of TGF-β1 in the culture media, a reduction in pTGF-βR1 and a slight presence of p-Smad2/3 was observed in the cells. CONCLUSION These findings show that PBM at 830 nm using a fluence of 5 J/cm2 could induce cell viability, migration and proliferation to favor successful healing of diabetic wounds. This study contributes to the growing body of knowledge on the molecular and cellular effect of PBM and showcases the suitability of PBM at 830 nm in managing diabetic wounds.
Collapse
Affiliation(s)
- Olajumoke Arinola Oyebode
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, Gauteng, South Africa
- Correspondence: Olajumoke Arinola Oyebode, Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, Gauteng, South Africa, Tel + 27781519058, Email
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, Gauteng, South Africa
| |
Collapse
|
21
|
Mostafavinia A, Ahmadi H, Amini A, Roudafshani Z, Hamblin MR, Chien S, Bayat M. The effect of photobiomodulation therapy on antioxidants and oxidative stress profiles of adipose derived mesenchymal stem cells in diabetic rats. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120157. [PMID: 34271236 DOI: 10.1016/j.saa.2021.120157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
We studied the effects of photobiomodulation therapy (PBMT) on adipose-derived mesenchymal stem cells (ADSCs) which were extracted from streptozotocin (STZ) induced diabetic rats. Adipose tissue was extracted from the hypodermis of diabetic rats, and diabetic ADSCs were extracted, characterized, and cultured. There were two in vitro groups: control-diabetic ADSCs, and PBMT-diabeticADSCs. We used 630 nm and 810 nm laser at 1.2 J/cm2 with 3 applications 48 h apart. We measured cell viability, apoptosis, population doubling time (PDT), and reactive oxygen species (ROS) by flow cytometry. Gene expression of antioxidants, including cytosolic copper-zinc superoxide dismutase (SOD1), catalase (CAT), total antioxidant capacity (TAC), and oxidative stress biomarkers (NADPH oxidase 1 and 4) by quantitative real time (qRT) - PCR. In this study, data were analyzed using t-test. Viability of PBMT-diabetic- ADSC group was higher than control- diabetic-ADSC (p = 0.000). PDT and apoptosis of PBMT- diabetic-ADSC group were lower than control-diabetic -ADSC (p = 0.001, p = 0.02). SOD1 expression and TAC of PBMT- diabetic-ADSC group were higher than control -diabetic -ADSC (p = 0.018, p = 0.005). CAT of PBMT -diabetic-ADSC group was higher than control-diabetic -ADSC. ROS, NOX1, and NOX4 of PBMT- diabetic -ADSC group were lower than control-diabetic-ADSC (p = 0.002, p = 0.021, p = 0.017). PBMT may improve diabetic- ADSC function in vitro by increasing levels of cell viability, and gene expression of antioxidant agents (SOD1, CAT, and TAC), and significantly decreasing of levels of PDT, apoptosis, ROS, and gene expression of oxidative stress biomarkers (NOX1 and NOX4).
Collapse
Affiliation(s)
- Atarodsadat Mostafavinia
- Department of Anatomy, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Roudafshani
- Central Lab, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, USA.
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, USA.
| |
Collapse
|
22
|
Effectiveness of preconditioned adipose-derived mesenchymal stem cells with photobiomodulation for the treatment of diabetic foot ulcers: a systematic review. Lasers Med Sci 2021; 37:1415-1425. [PMID: 34697696 DOI: 10.1007/s10103-021-03451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
The primary goal of this systematic review article was to provide an outline of the use of diabetic autologous adipose-derived mesenchymal stem cells (DAAD-MSCs) in the treatment of wounds and ulcers in animal models and patients with diabetes mellitus (DM). The secondary goal was to present the outcomes of pretreatment of diabetic adipose-derived mesenchymal stem cells (DAD-MSCs) with probable different agents in the treatment of diabetic foot ulcers (DFUs) and wounds. In view of possible clinical applications of AD-MSC-mediated cell therapy for DFUs, it is essential to evaluate the influence of DM on AD-MSC functions. Nevertheless, there are conflicting results about the effects of DAAD-MSCs on accelerating wound healing in animals and DM patients. Multistep research of the MEDLINE, PubMed, Embase, Clinicaltrials.gov, Scopus database, and Cochrane databases was conducted for abstracts and full-text scientific papers published between 2000 and 2020. Finally, 5 articles confirmed that the usage of allogeneic or autologous AD-MSCs had encouraging outcomes on diabetic wound healing. One study reported that DM changes AD-MSC function and therapeutic potential, and one article recommended that the pretreatment of diabetic allogeneic adipose-derived mesenchymal stem cells (DAlD-MSCs) was more effective in accelerating diabetic wound healing. Recently, much work has concentrated on evolving innovative healing tactics for hastening the repair of DFUs. While DM alters the intrinsic properties of AD-MSCs and impairs their function, one animal study showed that the pretreatment of DAlD-MSCs in vitro significantly increased the function of DAlD-MSCs compared with DAlD-MSCs without any treatment. Preconditioning diabetic AD-MSCs with pretreatment agents like photobiomodulation (PBM) significantly hastened healing in delayed-healing wounds. It is suggested that further animal and human studies be conducted in order to provide more documentation. Hopefully, these outcomes will help the use of DAAD-MSCs plus PBM as a routine treatment protocol for healing severe DFUs in DM patients.
Collapse
|
23
|
Pinto H, Goñi Oliver P, Sánchez-Vizcaíno Mengual E. The Effect of Photobiomodulation on Human Mesenchymal Cells: A Literature Review. Aesthetic Plast Surg 2021; 45:1826-1842. [PMID: 33616715 DOI: 10.1007/s00266-021-02173-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/03/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Mesenchymal stem cell-based therapy is known to have the potential to induce angiogenesis. However, there are still some limitations regarding their clinical application. Photomodulation/photobiomodulation is non-invasive and non-toxic phototherapy able to stimulate cell viability, proliferation, differentiation, and migration, when the right irradiation parameters are applied. A review of the published articles on human conditioned-by-photobiomodulation mesenchymal cells in an in vitro set up was carried out. Our aim was to describe the studies' results and identify any possible tendency that might highlight the most suitable procedures. METHODS A search in English of the PubMed database was carried out with the search criteria: photobiomodulation or photoactivation or photomodulation, and mesenchymal cells. All irradiations applied in vitro, on human mesenchymal cells, with wavelengths ranged from 600 to 1000 nm. RESULTS The search yielded 42 original articles and five reviews. Finally, 37 articles were selected with a total of 43 procedures. Three procedures (7.0%) from 620 to 625 nm; 26 procedures (60.5%) from 625 to 740 nm; 13 procedures (30.2%) from 740 to 1000 nm; and one procedure (2.3%) with combinations of wavelengths. Of the 43 procedures, 14 assessed cell viability (n = 14/43, 32.6%); 34 cell proliferation (n = 34/43, 79.1%); 19 cell differentiation (n = 19/43, 44.2%); and three cell migration (n = 3/43, 7.0%). CONCLUSIONS Photobiomodulation is a promising technology that can impact on cell viability, differentiation, proliferation, or migration, leading to enhance its regenerative capacity. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Hernán Pinto
- Instituto de Investigaciones Biomédicas i2e3, Santa Coloma de Gramenet, Barcelona, Spain
| | - Paloma Goñi Oliver
- Instituto de Investigaciones Biomédicas i2e3, Santa Coloma de Gramenet, Barcelona, Spain
| | | |
Collapse
|
24
|
Safian F, Ghaffari Novin M, Nazarian H, Shams Mofarahe Z, Abdollahifar MA, Jajarmi V, Karimi S, Kazemi M, Chien S, Bayat M. Photobiomodulation preconditioned human semen protects sperm cells against detrimental effects of cryopreservation. Cryobiology 2021; 98:239-244. [PMID: 33223006 DOI: 10.1016/j.cryobiol.2020.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
The biological consequences of semen samples preconditioning with photobiomodulation (PBM) were studied on human sperm cells post cryopreservation. Donated semen samples were collected from 22 married men with normal sperm parameters according to World Health Organization (WHO) criteria. Included samples were divided into control and PBM-preconditioning (one session, 810 nm, diode laser, and 0.6 J/cm2) groups before cryopreservation procedure. Progressive sperm motility (PSM), morphology, viability, sperm mitochondrial membrane potential(MMP), intracellular reactive oxygen species (ROS) and lipid peroxidation of sperm cells were assessed post thawing. PBM preconditioning of cryopreserved semen samples most prominently increased the PSM percentage 30 min post thawing (p = 0.000).Application of PBM before cryopreservation significantly increased the number of viable spermatozoa (p = 0.000), increased significantly the number of spermatozoa with high MMP (p = 0.004) and decreased significantly the number of spermatozoa with low MMP post-thawing(P = 0. 007)compared to control group. Cryopreserved human sperm cells with PBM preconditioning showed significant decrease in the levels of intracellular ROS (47.66 ± 2.14 versus 60.42 ± 3.16, p = 0.002) and lipid peroxidation (3.06 ± 0.13 versus 3.68 ± 0.27, p = 0.05)compared to control group. Our findings, as the first evidence, indicated that PBM-preconditioning of human semen before cryopreservation provides a real and substantial advantage. This might lead to a novel strategy in improving PBM application in the procedures of assisted reproductive technologies.
Collapse
Affiliation(s)
- Fereshteh Safian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Shams Mofarahe
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sareh Karimi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahsa Kazemi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, Noveratech LLC of Louisville, Louisville, KY, USA.
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Price Institute of Surgical Research, University of Louisville, Noveratech LLC of Louisville, Louisville, KY, USA.
| |
Collapse
|
25
|
Golovynska I, Golovynskyi S, Stepanov YV, Stepanova LI, Qu J, Ohulchanskyy TY. Red and near-infrared light evokes Ca 2+ influx, endoplasmic reticulum release and membrane depolarization in neurons and cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 214:112088. [PMID: 33278762 DOI: 10.1016/j.jphotobiol.2020.112088] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/26/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Low level light therapy uses light of specific wavelengths in red and near-infrared spectral range to treat various pathological conditions. This light is able to modulate biochemical cascade reactions in cells that can have important health implications. In this study, the effect of low intensity light at 650, 808 and 1064 nm on neurons and two types of cancer cells (neuroblastoma and HeLa) is reported, with focus on the photoinduced change of intracellular level of Ca2+ ions and corresponding signaling pathways. The obtained results show that 650 and 808 nm light promotes intracellular Ca2+ elevation regardless of cell type, but with different dynamics due to the specificities of Ca2+ regulation in neurons and cancer cells. Two origins responsible for Ca2+ elevation are determined to be: influx of exogenous Ca2+ ions into cells and Ca2+ release from endoplasmic reticulum. Our investigation of the related cellular processes shows that light-induced membrane depolarization is distinctly involved in the mechanism of Ca2+ influx. Ca2+ release from endoplasmic reticulum activated by reactive oxygen species generation is considered as a possible light-dependent signaling pathway. In contrast to the irradiation with 650 and 808 nm light, no effects are observed under 1064 nm irradiation. We believe that the obtained insights are of high significance and can be useful for the development of drug-free phototherapy.
Collapse
Affiliation(s)
- Iuliia Golovynska
- Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Sergii Golovynskyi
- Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Yurii V Stepanov
- Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Liudmyla I Stepanova
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
| | - Junle Qu
- Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Tymish Y Ohulchanskyy
- Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
26
|
In Vitro Cytological Responses against Laser Photobiomodulation for Periodontal Regeneration. Int J Mol Sci 2020; 21:ijms21239002. [PMID: 33256246 PMCID: PMC7730548 DOI: 10.3390/ijms21239002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Periodontal disease is a chronic inflammatory disease caused by periodontal bacteria. Recently, periodontal phototherapy, treatment using various types of lasers, has attracted attention. Photobiomodulation, the biological effect of low-power laser irradiation, has been widely studied. Although many types of lasers are applied in periodontal phototherapy, molecular biological effects of laser irradiation on cells in periodontal tissues are unclear. Here, we have summarized the molecular biological effects of diode, Nd:YAG, Er:YAG, Er,Cr:YSGG, and CO2 lasers irradiation on cells in periodontal tissues. Photobiomodulation by laser irradiation enhanced cell proliferation and calcification in osteoblasts with altering gene expression. Positive effects were observed in fibroblasts on the proliferation, migration, and secretion of chemokines/cytokines. Laser irradiation suppressed gene expression related to inflammation in osteoblasts, fibroblasts, human periodontal ligament cells (hPDLCs), and endothelial cells. Furthermore, recent studies have revealed that laser irradiation affects cell differentiation in hPDLCs and stem cells. Additionally, some studies have also investigated the effects of laser irradiation on endothelial cells, cementoblasts, epithelial cells, osteoclasts, and osteocytes. The appropriate irradiation power was different for each laser apparatus and targeted cells. Thus, through this review, we tried to shed light on basic research that would ultimately lead to clinical application of periodontal phototherapy in the future.
Collapse
|
27
|
Ahmadi H, Amini A, Fadaei Fathabady F, Mostafavinia A, Zare F, Ebrahimpour-malekshah R, Ghalibaf MN, Abrisham M, Rezaei F, Albright R, Ghoreishi SK, Chien S, Bayat M. Transplantation of photobiomodulation-preconditioned diabetic stem cells accelerates ischemic wound healing in diabetic rats. Stem Cell Res Ther 2020; 11:494. [PMID: 33239072 PMCID: PMC7688005 DOI: 10.1186/s13287-020-01967-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diabetic foot ulcer is the most costly and complex challenge for patients with diabetes. We hereby assessed the effectiveness of different preconditioned adipose-derived mesenchymal stem cells (AD-MSCs) and photobiomodulation protocols on treating an infected ischemic wound in type 1 diabetic rats. METHODS There were five groups of rats: (1) control, (2) control AD-MSCs [diabetic AD-MSCs were transplanted (grafted) into the wound bed], (3) AD-MSC + photobiomodulation in vivo (diabetic AD-MSCs were grafted into the wound, followed by in vivo PBM treatment), (4) AD-MSCs + photobiomodulation in vitro, and (5) AD-MSCs + photobiomodulation in vitro + in vivo. RESULTS Diabetic AD-MSCs preconditioned with photobiomodulation had significantly risen cell function compared to diabetic AD-MSC. Groups 3 and 5 had significantly decreased microbial flora correlated to groups 1 and 2 (all, p = 0.000). Groups 2, 3, 4, and 5 had significantly improved wound closure rate (0.4, 0.4, 0.4, and 0.8, respectively) compared to group 1 (0.2). Groups 2-5 had significantly increased wound strength compared to group 1 (all p = 0.000). In most cases, group 5 had significantly better results than groups 2, 3, and 4. CONCLUSIONS Preconditioning diabetic AD-MSCs with photobiomodulation in vitro plus photobiomodulation in vivo significantly hastened healing in the diabetic rat model of an ischemic infected delayed healing wound.
Collapse
Affiliation(s)
- Houssein Ahmadi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fadaei Fathabady
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atarodsadat Mostafavinia
- Department of Anatomy, Faculty of Medicine, Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Zare
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mustafa Neshat Ghalibaf
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Matin Abrisham
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemehalsadat Rezaei
- University of Kentucky, College of Pharmacy, 789 South Limestone, Lexington, Kentucky 40536 USA
| | | | | | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, KY USA
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, KY USA
| |
Collapse
|
28
|
Wan Z, Zhang P, Lv L, Zhou Y. NIR light-assisted phototherapies for bone-related diseases and bone tissue regeneration: A systematic review. Theranostics 2020; 10:11837-11861. [PMID: 33052249 PMCID: PMC7546009 DOI: 10.7150/thno.49784] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, the rapid development of biomaterials has induced great interest in the precisely targeted treatment of bone-related diseases, including bone cancers, infections, and inflammation. Realizing noninvasive therapeutic effects, as well as improving bone tissue regeneration, is essential for the success of bone‑related disease therapies. In recent years, researchers have focused on the development of stimuli-responsive strategies to treat bone-related diseases and to realize bone regeneration. Among the various external stimuli for targeted therapy, near infrared (NIR) light has attracted considerable interests due to its high tissue penetration capacity, minimal damage toward normal tissues, and easy remote control properties. The main objective of this systematic review was to reveal the current applications of NIR light-assisted phototherapy for bone-related disease treatment and bone tissue regeneration. Database collection was completed by June 1, 2020, and a total of 81 relevant studies were finally included. We outlined the various therapeutic applications of photothermal, photodynamic and photobiomodulation effects under NIR light irradiation for bone‑related disease treatment and bone regeneration, based on the retrieved literatures. In addition, the advantages and promising applications of NIR light-responsive drug delivery systems for spatiotemporal-controlled therapy were summarized. These findings have revealed that NIR light-assisted phototherapy plays an important role in bone-related disease treatment and bone tissue regeneration, with significant promise for further biomedical and clinical applications.
Collapse
|
29
|
Safian F, Ghaffari Novin M, Karimi M, Kazemi M, Zare F, Ghoreishi SK, Bayat M. Photobiomodulation with 810 nm Wavelengths Improves Human Sperms' Motility and Viability In Vitro. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 38:222-231. [DOI: 10.1089/photob.2019.4773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Fereshteh Safian
- Student Research Committee, Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Karimi
- IVF Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Kazemi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fateme Zare
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
30
|
Androsov NS, Matiakin GG, Melenchuk IP, Shumaeva OD, Sushchikhina MA. [Short-term results of radiotherapy of cancer of the tongue and mouth floor mucosa using 60Co and 252Cf]. Lasers Med Sci 1986; 31:3-7. [PMID: 3724383 DOI: 10.1007/s10103-023-03786-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
The authors presented the immediate and 3-year results of interstitial and combined therapy of 90 patients with cancer of the tongue and oral fundus mucosa. 60Co- and 252Cf-sources were employed in interstitial radiotherapy. There were no significant differences in therapeutic efficacy using different radiation sources. Some methodological aspects of administration of interstitial radiotherapy, radiation reactions and complications were covered.
Collapse
|