1
|
Brown C, Bilynsky CSM, Gainey M, Young S, Kitchin J, Wayne EC. Exploratory mapping of tumor associated macrophage nanoparticle article abstracts using an eLDA topic modeling machine learning approach. PLoS One 2024; 19:e0304505. [PMID: 38889180 PMCID: PMC11185481 DOI: 10.1371/journal.pone.0304505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
The role of macrophages in regulating the tumor microenvironment has spurned the exponential generation of nanoparticle targeting technologies. With the large amount of literature and the speed at which it is generated it is difficult to remain current with the most up-to-date literature. In this study we performed a topic modeling analysis of 854 abstracts of peer-reviewed literature for the most common usages of nanoparticle targeting of tumor associated macrophages (TAMs) in solid tumors. The data spans 20 years of literature, providing a broad perspective of the nanoparticle strategies. Our topic model found 6 distinct topics: Immune and TAMs, Nanoparticles, Imaging, Gene Delivery and Exosomes, Vaccines, and Multi-modal Therapies. We also found distinct nanoparticle usage, tumor types, and therapeutic trends across these topics. Moreover, we established that the topic model could be used to assign new papers into the existing topics, thereby creating a Living Review. This type of "birds-eye-view" analysis provides a useful assessment tool for exploring new and emerging themes within a large field.
Collapse
Affiliation(s)
- Chloe Brown
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Colette S. M. Bilynsky
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Melanie Gainey
- Carnegie Mellon University Libraries, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Sarah Young
- Carnegie Mellon University Libraries, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - John Kitchin
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Elizabeth C. Wayne
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
2
|
Zhang Y, Sun C. Current status, challenges and prospects of antifouling materials for oncology applications. Front Oncol 2024; 14:1391293. [PMID: 38779096 PMCID: PMC11109453 DOI: 10.3389/fonc.2024.1391293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Targeted therapy has become crucial to modern translational science, offering a remedy to conventional drug delivery challenges. Conventional drug delivery systems encountered challenges related to solubility, prolonged release, and inadequate drug penetration at the target region, such as a tumor. Several formulations, such as liposomes, polymers, and dendrimers, have been successful in advancing to clinical trials with the goal of improving the drug's pharmacokinetics and biodistribution. Various stealth coatings, including hydrophilic polymers such as PEG, chitosan, and polyacrylamides, can form a protective layer over nanoparticles, preventing aggregation, opsonization, and immune system detection. As a result, they are classified under the Generally Recognized as Safe (GRAS) category. Serum, a biological sample, has a complex composition. Non-specific adsorption of chemicals onto an electrode can lead to fouling, impacting the sensitivity and accuracy of focused diagnostics and therapies. Various anti-fouling materials and procedures have been developed to minimize the impact of fouling on specific diagnoses and therapies, leading to significant advancements in recent decades. This study provides a detailed analysis of current methodologies using surface modifications that leverage the antifouling properties of polymers, peptides, proteins, and cell membranes for advanced targeted diagnostics and therapy in cancer treatment. In conclusion, we examine the significant obstacles encountered by present technologies and the possible avenues for future study and development.
Collapse
Affiliation(s)
| | - Congcong Sun
- University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Brown C, Bilynsky C, Gainey M, Young S, Kitchin J, Wayne E. Meta-analysis of macrophage nanoparticle targeting across blood and solid tumors using an eLDA Topic modeling Machine Learning approach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547096. [PMID: 37425888 PMCID: PMC10327218 DOI: 10.1101/2023.06.29.547096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The role of macrophages in regulating the tumor microenvironment has spurned the exponential generation of nanoparticle targeting technologies. With the large amount of literature and the speed at which it is generated it is difficult to remain current with the most up-to-date literature. In this study we performed a topic modeling analysis of the most common usages of nanoparticle targeting of macrophages in solid tumors. The data spans 20 years of literature, providing an extensive meta-analysis of the nanoparticle strategies. Our topic model found 6 distinct topics: Immune and TAMs, Nanoparticles, Imaging, Gene Delivery and Exosomes, Vaccines, and Multi-modal Therapies. We also found distinct nanoparticle usage, tumor types, and therapeutic trends across these topics. Moreover, we established that the topic model could be used to assign new papers into the existing topics, thereby creating a Living Review. This type of meta-analysis provides a useful assessment tool for aggregating data about a large field.
Collapse
|
4
|
Meghana Navada K, Nagaraja GK, Neetha D'Souza J, Kouser S, Ranjitha R, Ganesha A, Manasa DJ. Synthesis of Phyto-functionalized nano hematite for lung cancer suppressive activity and Paracetamol sensing by electrochemical studies. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Thangudu S, Huang EY, Su CH. Safe magnetic resonance imaging on biocompatible nanoformulations. Biomater Sci 2022; 10:5032-5053. [PMID: 35858468 DOI: 10.1039/d2bm00692h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Magnetic resonance imaging (MRI) holds promise for the early clinical diagnosis of various diseases, but most clinical MR techniques require the use of a contrast medium. Several nanomaterial (NM) mediated contrast agents (CAs) are widely used as T1- and T2-based MR contrast agents for clinical and non-clinical applications. Unfortunately, most NM-based CAs are toxic or non-biocompatible, restricting their practical/clinical applications. Therefore, the development of nontoxic and biocompatible CAs for clinical MRI diagnosis is highly desired. To this end, several biocompatible and biomimetic strategies have been developed to offer long blood circulation time, significant biocompatibility, in vivo biodistribution and high contrast ability for efficient imaging. However, detailed review reports on biocompatible NMs, specifically for MR imaging have not yet been summarized. Thus, in the present review we summarize various surface coating strategies (such as polymers, proteins, cell membranes, etc.) to achieve biocompatible NPs, providing a detailed discussion of advances and future prospects for safe MRI imaging.
Collapse
Affiliation(s)
- Suresh Thangudu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - Eng-Yen Huang
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan. .,Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
6
|
An Overview of Gadolinium-Based Oxide and Oxysulfide Particles: Synthesis, Properties, and Biomedical Applications. CRYSTALS 2021. [DOI: 10.3390/cryst11091094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the last decade, the publications presenting novel physical and chemical aspects of gadolinium-based oxide (Gd2O3) and oxysulfide (Gd2O2S) particles in the micro- or nano-scale have increased, mainly stimulated by the exciting applications of these materials in the biomedical field. Their optical properties, related to down and upconversion phenomena and the ability to functionalize their surface, make them attractive for developing new probes for selective targeting and emergent bioimaging techniques, either for biomolecule labeling or theranostics. Moreover, recent reports have shown interesting optical behavior of these systems influenced by the synthesis methods, dopant amount and type, particle shape and size, and surface functionality. Hence, this review presents a compilation of the latest works focused on evaluating the optical properties of Gd2O3 and Gd2O2S particles as a function of their physicochemical and morphological properties; and also on their novel applications as MRI contrast agents and drug delivery nanovehicles, discussed along with their administration routes, biodistribution, cytotoxicity, and clearance mechanisms. Perspectives for this field are also identified and discussed.
Collapse
|
7
|
Antifouling Strategies of Nanoparticles for Diagnostic and Therapeutic Application: A Systematic Review of the Literature. NANOMATERIALS 2021; 11:nano11030780. [PMID: 33803884 PMCID: PMC8003124 DOI: 10.3390/nano11030780] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Nanoparticles (NPs) are promising platforms for the development of diagnostic and therapeutic tools. One of the main hurdle to their medical application and translation into the clinic is the fact that they accumulate in the spleen and liver due to opsonization and scavenging by the mononuclear phagocyte system. The “protein corona” controls the fate of NPs in vivo and becomes the interface with cells, influencing their physiological response like cellular uptake and targeting efficiency. For these reasons, the surface properties play a pivotal role in fouling and antifouling behavior of particles. Therefore, surface engineering of the nanocarriers is an extremely important issue for the design of useful diagnostic and therapeutic systems. In recent decades, a huge number of studies have proposed and developed different strategies to improve antifouling features and produce NPs as safe and performing as possible. However, it is not always easy to compare the various approaches and understand their advantages and disadvantages in terms of interaction with biological systems. Here, we propose a systematic study of literature with the aim of summarizing current knowledge on promising antifouling coatings to render NPs more biocompatible and performing for diagnostic and therapeutic purposes. Thirty-nine studies from 2009 were included and investigated. Our findings have shown that two main classes of non-fouling materials (i.e., pegylated and zwitterionic) are associated with NPs and their applications are discussed here highlighting pitfalls and challenges to develop biocompatible tools for diagnostic and therapeutic uses. In conclusion, although the complexity of biofouling strategies and the field is still young, the collective data selected in this review indicate that a careful tuning of surface moieties is a pivotal step to lead NPs through their future clinical applications.
Collapse
|
8
|
Zeng Y, Li H, Li Z, Luo Q, Zhu H, Gu Z, Zhang H, Gong Q, Luo K. Engineered gadolinium-based nanomaterials as cancer imaging agents. APPLIED MATERIALS TODAY 2020; 20:100686. [DOI: 10.1016/j.apmt.2020.100686] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|