1
|
Rippa M, Di Mola I, Ottaiano L, Cozzolino E, Mormile P, Mori M. Infrared Thermography Monitoring of Durum and Common Wheat for Adaptability Assessing and Yield Performance Prediction. PLANTS (BASEL, SWITZERLAND) 2024; 13:836. [PMID: 38592920 PMCID: PMC10974194 DOI: 10.3390/plants13060836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Wheat is one of the most cultivated cereals thanks to both its nutritional value and its versatility to technological transformation. Nevertheless, the growth and yield of wheat, as well as of the other food crops, can be strongly limited by many abiotic and biotic stress factors. To face this need, new methodological approaches are required to optimize wheat cultivation from both a qualitative and quantitative point of view. In this context, crop analysis based on imaging techniques has become an important tool in agriculture. Thermography is an appealing method that represents an outstanding approach in crop monitoring, as it is well suited to the emerging needs of the precision agriculture management strategies. In this work, we performed an on-field infrared monitoring of several durum and common wheat varieties to evaluate their adaptability to the internal Mediterranean area chosen for cultivation. Two new indices based on the thermal data useful to estimate the agronomical response of wheat subjected to natural stress conditions during different phenological stages of growth have been introduced. The comparison with some productive parameters collected at harvest highlighted the correlation of the indices with the wheat yield (ranging between p < 0.001 and p < 0.05), providing interesting information for their early prediction.
Collapse
Affiliation(s)
- Massimo Rippa
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello” of National Research Council of Italy (CNR ISASI), Via Campi Flegrei 34, 80072 Pozzuoli, Naples, Italy;
| | - Ida Di Mola
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy; (I.D.M.); (L.O.); (M.M.)
| | - Lucia Ottaiano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy; (I.D.M.); (L.O.); (M.M.)
| | - Eugenio Cozzolino
- Council for Agricultural Research and Economics (CREA)—Research Center for Cereal and Industrial Crops, 81100 Caserta, Italy;
| | - Pasquale Mormile
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello” of National Research Council of Italy (CNR ISASI), Via Campi Flegrei 34, 80072 Pozzuoli, Naples, Italy;
| | - Mauro Mori
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy; (I.D.M.); (L.O.); (M.M.)
| |
Collapse
|
2
|
Wen T, Li JH, Wang Q, Gao YY, Hao GF, Song BA. Thermal imaging: The digital eye facilitates high-throughput phenotyping traits of plant growth and stress responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165626. [PMID: 37481085 DOI: 10.1016/j.scitotenv.2023.165626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Plant phenotyping is important for plants to cope with environmental changes and ensure plant health. Imaging techniques are perceived as the most critical and reliable tools for studying plant phenotypes. Thermal imaging has opened up new opportunities for nondestructive imaging of plant phenotyping. However, a comprehensive summary of thermal imaging in plant phenotyping is still lacking. Here we discuss the progress and future prospects of thermal imaging for assessing plant growth and stress responses. First, we classify thermal imaging into ground-based and aerial platforms based on their adaptability to different experimental environments (including laboratory, greenhouse, and field). It is convenient to collect phenotypic information of different dimensions. Second, in order to enhance the efficiency of thermal image processing, automatic algorithms based on deep learning are employed instead of traditional manual methods, greatly reducing the time cost of experiments. Considering its ease of implementation, handling and instant response, thermal imaging has been widely used in research on environmental stress, crop yield, and seed vigor. We have found that thermal imaging can detect thermal energy dissipation caused by living organisms (e.g., pests, viruses, bacteria, fungi, and oomycetes), enabling early disease diagnosis. It also recognizes changes leaf surface temperatures resulting from reduced transpiration rates caused by nutrient deficiency, drought, salinity, or freezing. Furthermore, thermal imaging predicts crop yield under different water states and forecasts the viability of dormant seeds after water absorption by monitoring temperature changes in the seeds. This work will assist biologists and agronomists in studying plant phenotypes and serve a guide for breeders to develop high-yielding, stress-tolerant, and superior crops.
Collapse
Affiliation(s)
- Ting Wen
- National Key Laboratory of Green Pesticide, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Jian-Hong Li
- National Key Laboratory of Green Pesticide, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Qi Wang
- State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, PR China.
| | - Yang-Yang Gao
- National Key Laboratory of Green Pesticide, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Ge-Fei Hao
- National Key Laboratory of Green Pesticide, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Bao-An Song
- National Key Laboratory of Green Pesticide, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
3
|
Rippa M, Pagliarulo V, Napolitano F, Valente T, Russo P. Infrared Imaging Analysis of Green Composite Materials during Inline Quasi-Static Flexural Test: Monitoring by Passive and Active Approaches. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3081. [PMID: 37109918 PMCID: PMC10144683 DOI: 10.3390/ma16083081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Composite materials have been used for many years in a wide variety of sectors starting from aerospace and nautical up to more commonly used uses such as bicycles, glasses, and so on. The characteristics that have made these materials popular are mainly their low weight, resistance to fatigue, and corrosion. In contrast to the advantages, however, it should be noted that the manufacturing processes of composite materials are not eco-friendly, and their disposal is rather difficult. For these reasons, in recent decades, the use of natural fibers has gained increasing attention, allowing the development of new materials sharing the same advantages with conventional composite systems while respecting the environment. In this work, the behavior of totally eco-friendly composite materials during flexural tests has been studied through infrared (IR) analysis. IR imaging is a well-known non-contact technique and represents a reliable means of providing low-cost in situ analysis. According to this method, the surface of the sample under investigation is monitored, under natural conditions or after heating, by recording thermal images with an appropriate IR camera. Here, the results achieved for jute- and basalt-based eco-friendly composites through the use of both passive and active IR imaging approaches are reported and discussed, showing the possibilities of use also in an industrial environment.
Collapse
Affiliation(s)
- Massimo Rippa
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, National Research Council, 80078 Pozzuoli, NA, Italy
| | - Vito Pagliarulo
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, National Research Council, 80078 Pozzuoli, NA, Italy
| | - Francesco Napolitano
- Institute for Polymers, Composites and Biomaterials, National Research Council, 80078 Pozzuoli, NA, Italy
| | - Teodoro Valente
- Institute for Polymers, Composites and Biomaterials, National Research Council, 80078 Pozzuoli, NA, Italy
- Department of Chemical Engineering Materials Environment and UdR INSTM, Sapienza-Università di Roma, 00185 Rome, Italy
| | - Pietro Russo
- Institute for Polymers, Composites and Biomaterials, National Research Council, 80078 Pozzuoli, NA, Italy
| |
Collapse
|
4
|
Rippa M, Pasqualini A, Curcio R, Mormile P, Pane C. Active vs. Passive Thermal Imaging for Helping the Early Detection of Soil-Borne Rot Diseases on Wild Rocket [ Diplotaxis tenuifolia (L.) D.C.]. PLANTS (BASEL, SWITZERLAND) 2023; 12:1615. [PMID: 37111839 PMCID: PMC10141070 DOI: 10.3390/plants12081615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
Cultivation of wild rocket [Diplotaxis tenuifolia (L.) D.C.] as a baby-leaf vegetable for the high-convenience food chain is constantly growing due to its nutritional and taste qualities. As is well known, these crops are particularly exposed to soil-borne fungal diseases and need to be effectively protected. At present, wild rocket disease management is performed by using permitted synthetic fungicides or through the application of agro-ecological and biological methods that must be optimized. In this regard, the implementation of innovative digital-based technologies, such as infrared thermography (IT), as supporting systems to decision-making processes is welcome. In this work, leaves belonging to wild rocket plants inoculated with the soil-borne pathogens Rhizoctonia solani Kühn and Sclerotinia sclerotiorum (Lib.) de Bary were analyzed and monitored by both active and passive thermographic methods and compared with visual detection. A comparison between the thermal analysis carried out in both medium (MWIR)- and long (LWIR)-wave infrared was made and discussed. The results achieved highlight how the monitoring based on the use of IT is promising for carrying out an early detection of the rot diseases induced by the investigated pathogens, allowing their detection in 3-6 days before the canopy is completely wilted. Active thermal imaging has the potential to detect early soil-borne rotting diseases.
Collapse
Affiliation(s)
- Massimo Rippa
- Institute of Applied Sciences and Intelligent System “E. Caianiello” of CNR, 80078 Pozzuoli, NA, Italy; (R.C.)
| | - Andrea Pasqualini
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Orticoltura e Florovivaismo, 84098 Pontecagnano Faiano, SA, Italy; (A.P.); (C.P.)
| | - Rossella Curcio
- Institute of Applied Sciences and Intelligent System “E. Caianiello” of CNR, 80078 Pozzuoli, NA, Italy; (R.C.)
| | - Pasquale Mormile
- Institute of Applied Sciences and Intelligent System “E. Caianiello” of CNR, 80078 Pozzuoli, NA, Italy; (R.C.)
| | - Catello Pane
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Orticoltura e Florovivaismo, 84098 Pontecagnano Faiano, SA, Italy; (A.P.); (C.P.)
| |
Collapse
|
5
|
Rippa M, Battaglia V, Cermola M, Sicignano M, Lahoz E, Mormile P. Monitoring of the copper persistence on plant leaves using pulsed thermography. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:160. [PMID: 35137266 PMCID: PMC8825608 DOI: 10.1007/s10661-022-09807-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/22/2022] [Indexed: 05/14/2023]
Abstract
Copper-based fungicides are largely used in agriculture in the control of a wide range of plant diseases. Applied on plants, they remain deposited on leaf surfaces and are not absorbed into plant tissues. Because of accumulation problems and their ecotoxicological profiles in the soil, their use needs to be monitored and controlled, also by using modern technologies to better optimize the efficacy rendering minimum the amount of copper per season used. In this work, we test a novel approach based on pulsed thermography to evaluate the persistence of the copper on plant leaves so that the time between two applications should be the minimum needs. We monitored the thermal response observed on different treatments of both grapevine and tobacco plants over a 3-week period. Our experimental results demonstrate that the new methodological approach based on pulsed thermography can be an effective tool to evaluate in real time the presence of copper on differently treated plants allowing a tentative quantification and, therefore, to optimize its use in the agricultural practices, according also to the European Regulation n. 1107/2009.
Collapse
Affiliation(s)
- Massimo Rippa
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello" of CNR, via Campi Flegrei, 34, Pozzuoli (Na), 80072, Italy.
| | - Valerio Battaglia
- CREA - Research Centre for Cereal and Industrial Crops, via Torrino, 2, Caserta, 81100, Italy
| | - Michele Cermola
- CREA - Research Centre for Cereal and Industrial Crops, via Torrino, 2, Caserta, 81100, Italy
| | - Mariarosaria Sicignano
- CREA - Research Centre for Cereal and Industrial Crops, via Torrino, 2, Caserta, 81100, Italy
| | - Ernesto Lahoz
- CREA - Research Centre for Cereal and Industrial Crops, via Torrino, 2, Caserta, 81100, Italy
| | - Pasquale Mormile
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello" of CNR, via Campi Flegrei, 34, Pozzuoli (Na), 80072, Italy
| |
Collapse
|
6
|
Abstract
In the last few years, large efforts have been made to develop new methods to optimize stress detection in crop fields. Thus, plant phenotyping based on imaging techniques has become an essential tool in agriculture. In particular, leaf temperature is a valuable indicator of the physiological status of plants, responding to both biotic and abiotic stressors. Often combined with other imaging sensors and data-mining techniques, thermography is crucial in the implementation of a more automatized, precise and sustainable agriculture. However, thermal data need some corrections related to the environmental and measuring conditions in order to achieve a correct interpretation of the data. This review focuses on the state of the art of thermography applied to the detection of biotic stress. The work will also revise the most important abiotic stress factors affecting the measurements as well as practical issues that need to be considered in order to implement this technique, particularly at the field scale.
Collapse
|