1
|
Kejík Z, Hajduch J, Abramenko N, Vellieux F, Veselá K, Fialová JL, Petrláková K, Kučnirová K, Kaplánek R, Tatar A, Skaličková M, Masařík M, Babula P, Dytrych P, Hoskovec D, Martásek P, Jakubek M. Cyanine dyes in the mitochondria-targeting photodynamic and photothermal therapy. Commun Chem 2024; 7:180. [PMID: 39138299 PMCID: PMC11322665 DOI: 10.1038/s42004-024-01256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Mitochondrial dysregulation plays a significant role in the carcinogenesis. On the other hand, its destabilization strongly represses the viability and metastatic potential of cancer cells. Photodynamic and photothermal therapies (PDT and PTT) target mitochondria effectively, providing innovative and non-invasive anticancer therapeutic modalities. Cyanine dyes, with strong mitochondrial selectivity, show significant potential in enhancing PDT and PTT. The potential and limitations of cyanine dyes for mitochondrial PDT and PTT are discussed, along with their applications in combination therapies, theranostic techniques, and optimal delivery systems. Additionally, novel approaches for sonodynamic therapy using photoactive cyanine dyes are presented, highlighting advances in cancer treatment.
Collapse
Affiliation(s)
- Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Frédéric Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | | | - Kateřina Petrláková
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Ameneh Tatar
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Michal Masařík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| |
Collapse
|
2
|
Fialova JL, Hönigova K, Raudenska M, Miksatkova L, Zobalova R, Navratil J, Šmigová J, Moturu TR, Vicar T, Balvan J, Vesela K, Abramenko N, Kejik Z, Kaplanek R, Gumulec J, Rosel D, Martasek P, Brábek J, Jakubek M, Neuzil J, Masarik M. Pentamethinium salts suppress key metastatic processes by regulating mitochondrial function and inhibiting dihydroorotate dehydrogenase respiration. Biomed Pharmacother 2022; 154:113582. [DOI: 10.1016/j.biopha.2022.113582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022] Open
|
3
|
Talianová V, Kejík Z, Kaplánek R, Veselá K, Abramenko N, Lacina L, Strnadová K, Dvořánková B, Martásek P, Masařík M, Megová MH, Bušek P, Křížová J, Zdražilová L, Hansíková H, Vlčák E, Filimonenko V, Šedo A, Smetana K, Jakubek M. New-Generation Heterocyclic Bis-Pentamethinium Salts as Potential Cytostatic Drugs with Dual IL-6R and Mitochondria-Targeting Activity. Pharmaceutics 2022; 14:pharmaceutics14081712. [PMID: 36015338 PMCID: PMC9416741 DOI: 10.3390/pharmaceutics14081712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
IL-6 signaling is involved in the pathogenesis of a number of serious diseases, including chronic inflammation and cancer. Targeting of IL-6 receptor (IL-6R) by small molecules is therefore an intensively studied strategy in cancer treatment. We describe the design, synthesis, and characteristics of two new bis-pentamethinium salts 5 and 6 (meta and para) bearing indole moieties. Molecular docking studies showed that both compounds have the potential to bind IL-6R (free energy of binding −9.5 and −8.1 kcal/mol). The interaction with IL-6R was confirmed using microscale thermophoresis analyses, which revealed that both compounds had strong affinity for the IL-6R (experimentally determined dissociation constants 26.5 ± 2.5 nM and 304 ± 27.6 nM, respectively). In addition, both compounds were cytotoxic for a broad spectrum of cancer cell lines in micromolar concentrations, most likely due to their accumulation in mitochondria and inhibition of mitochondrial respiration. In summary, the structure motif of bis-pentamethinium salts represents a promising starting point for the design of novel multitargeting compounds with the potential to inhibit IL-6 signaling and simultaneously target mitochondrial metabolism in cancer cells.
Collapse
Affiliation(s)
- Veronika Talianová
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| | - Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| | - Lukáš Lacina
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, CZ-120 00 Prague, Czech Republic
- Department of Dermatovenerology, First Faculty of Medicine, Charles University and General University Hospital, CZ-128 08 Prague, Czech Republic
| | - Karolína Strnadová
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, CZ-120 00 Prague, Czech Republic
| | - Barbora Dvořánková
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, CZ-120 00 Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| | - Michal Masařík
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
- Department of Pathological Physiology and Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Magdalena Houdová Megová
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, CZ-120 00 Prague, Czech Republic
| | - Petr Bušek
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, CZ-120 00 Prague, Czech Republic
| | - Jana Křížová
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| | - Lucie Zdražilová
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| | - Hana Hansíková
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| | - Erik Vlčák
- Institute of Molecular Genetics, Academy of Sciences, CZ-140 00 Prague, Czech Republic
| | - Vlada Filimonenko
- Institute of Molecular Genetics, Academy of Sciences, CZ-140 00 Prague, Czech Republic
| | - Aleksi Šedo
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, CZ-120 00 Prague, Czech Republic
| | - Karel Smetana
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, CZ-120 00 Prague, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| |
Collapse
|
4
|
Chinigò G, Gonzalez-Paredes A, Gilardino A, Barbero N, Barolo C, Gasco P, Fiorio Pla A, Visentin S. Polymethine dyes-loaded solid lipid nanoparticles (SLN) as promising photosensitizers for biomedical applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120909. [PMID: 35093822 DOI: 10.1016/j.saa.2022.120909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Polymethine dyes (PMD) have proved to be excellent candidates in the biomedical field for potential applications in both diagnostic and therapeutic. However, PMD application in biomedicine is hindered by their poor solubility and stability in physiological conditions. Therefore, the incorporation of these dyes in nanosystems could be important to prevent the formation of dye aggregates in aqueous environment and to protect their photophysical characteristics. In the present work, two PMD based on the benzoindolenine ring (bromine benzo-cyanine-C4 and bromine benzo-squaraine-C4) were incorporated into Solid Lipid Nanoparticles (SLN) to solubilize and stabilize them in aqueous solutions. Obtained SLN showed a high incorporation efficiency for both PMD (≈90%) and not only preserved their spectroscopic properties in the NIR region even under physiological conditions but also improved them. Viability assays showed good biocompatibility of both empty and loaded nanocarriers while the cellular uptake and intracellular localization showed the effective internalization in MCF-7 cells, with a partial mitochondrial localization for CY-SLN. Moreover, in vitro phototoxicity assay showed that cyanine loaded-SLN (CY-SLN) is more photoactive than the free dye.
Collapse
Affiliation(s)
- Giorgia Chinigò
- University of Torino, Department of Life Sciences and Systems Biology, Via Accademia Albertina 13, 10123 Turin, Italy.
| | | | - Alessandra Gilardino
- University of Torino, Department of Life Sciences and Systems Biology, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Nadia Barbero
- University of Torino, Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, Via Quarello 15a, 10135 Turin, Italy
| | - Claudia Barolo
- University of Torino, Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, Via Quarello 15a, 10135 Turin, Italy; ICxT Interdepartmental Centre, Lungo Dora Siena 100, 10153 Turin, Italy
| | - Paolo Gasco
- Nanovector Srl, Via Livorno 60, 10144 Turin, Italy
| | - Alessandra Fiorio Pla
- University of Torino, Department of Life Sciences and Systems Biology, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Sonja Visentin
- University of Torino, Department of Molecular Biotechnology and Health Science, via Quarello 15a, 10135 Turin, Italy
| |
Collapse
|
5
|
Wang K, Yu B, Pathak JL. An update in clinical utilization of photodynamic therapy for lung cancer. J Cancer 2021; 12:1154-1160. [PMID: 33442413 PMCID: PMC7797657 DOI: 10.7150/jca.51537] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer-related death worldwide, with nearly 1.8 million-diagnosis and 1.59 million deaths. Surgery, radiotherapy, and chemotherapy in individual or combination are commonly used to treat lung cancers. Photodynamic therapy (PDT) is a highly selective method for the destruction of cancer cells by exerting cytotoxic activity on malignant cells. PDT has been the subject of numerous clinical studies and has proven to be an effective strategy for cancer therapy. Clinical studies revealed that PDT could prolong survival in patients with inoperable cancers and significantly improve quality of life. For inoperable lung cancer cases, PDT could be an effective therapy. Despite the clinical success reported, PDT is still currently underutilized to treat lung cancer and other tumors. PTD is still a new treatment approach for lung cancer mainly due to the lack of enough clinical research evaluating its' effectiveness and side effects. In this review, we discuss the current prospects and future potentials of PDT in lung cancer treatment.
Collapse
Affiliation(s)
- Kai Wang
- International Medicine Center, Tianjin Hospital, 406 south of JieFang road, HeXi District, Tianjin, China
| | - Boxin Yu
- International Medicine Center, Tianjin Hospital, 406 south of JieFang road, HeXi District, Tianjin, China
| | - Janak L. Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| |
Collapse
|