1
|
Swain S, Patra S, Panigrahi S, Biswal A, Mohapatra P, Swain SK. Rhodamine B embedded silver nanogranules for selective sensing of l-cysteine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125722. [PMID: 39832474 DOI: 10.1016/j.saa.2025.125722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/21/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Sensing of amino acid serves as the frontier research area for early diagnosis and monitoring various diseases. Among various amino acids, the sensing of L-Cysteine is much important for detection of human diseases like neurotoxic effect and coronary heart disease which arises due to excess of L-Cysteine. To address this, we propose a very simple method of L-Cys sensing via fluorescence "TURN ON" mechanism involving silver centred Rhodamine B nanogranules (AgNPs/RhB) stabilized via electrostatic interaction. The as-synthesized nanocomposite fluorescence probe shows highly selective sensing towards L-Cysteine aided by the preferential formation of stable covalent linkage between AgNPs and thiol group of L-Cys which is supported by FTIR and XPS study. The superior selectivity of L-Cysteine in presence of other amino acids and interactive ions with a limit of detection (LOD) of 1.084 µM and working linear range of 100-2200 µM makes the study a useful addition to the existing literature. The responsiveness of nanogranules to extreme conditions of ionic strength and pH further establishes its stability and suitability for present application. Moreover, the excellent recovery percentages obtained in real human serum samples establishes its effectiveness in diagnostic fields.
Collapse
Affiliation(s)
- Susobhan Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018 Odisha, India
| | - Swapnita Patra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018 Odisha, India
| | - Swikruti Panigrahi
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018 Odisha, India
| | - Anuradha Biswal
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018 Odisha, India
| | - Priyaranjan Mohapatra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018 Odisha, India
| | - Sarat K Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018 Odisha, India.
| |
Collapse
|
2
|
Li J, Xue X, Xin F, Xing M, Pang Q, Wang H, Tian Y. Rapid detection of microalgae cells based on upconversion nanoprobes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3271-3277. [PMID: 38738547 DOI: 10.1039/d4ay00387j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The quantification of microalgae cells is crucial for the treatment of ships' ballast water. However, achieving rapid detection of microalgae cells remains a substantial challenge. Here, we develop a new method for rapid and effective detection of microalgae concentration by utilizing upconversion nanoprobes (UCNPs) of NaYF4:Er3+,Tm3+. Three ligands, carboxylated methoxypolyethylene glycols with 5000 and 2000 molecular weights (mPEG-COOH-5, mPEG-COOH-2) and D-gluconic acid sodium salt (DGAS), were used to convert hydrophobic UCNPs into a hydrophilic state through modification. The results show that the mPEG-COOH-5 modified UCNPs present the highest stability in an aqueous solution. Fourier Transform Infrared Spectroscopy (FTIR) measurements reveal the presence of a significant number of -COOH functional groups on UCNPs after the mPEG-COOH-5 modification. These -COOH groups enhance the hydrophilicity and biocompatibility of UCNPs. The soluble UCNPs were directly mixed with microalgae, and the upconversion luminescence (UCL) spectra of the UCNPs were recorded immediately after thorough shaking. This greatly reduces the measurement time and could realize rapid onboard detection. In this sensing procedure, the UCNPs with red UCL functioned as energy donors, while microalgae with red absorption served as an energy acceptor. The UCL gradually diminishes with an increase in microalgae concentration based on the inner filter effect, thus establishing a relationship between UCL and microalgae concentration. The accuracy of the detection is further validated through the traditional microscope counting method. These findings pave the way for a novel rapid strategy to assess microalgae concentration using UCNPs.
Collapse
Affiliation(s)
- Jiayao Li
- School of Science, Dalian Maritime University, Dalian 116026, China.
| | - Xiaohong Xue
- School of Science, Dalian Maritime University, Dalian 116026, China.
| | - Fangyun Xin
- School of Science, Dalian Maritime University, Dalian 116026, China.
| | - Mingming Xing
- School of Science, Dalian Maritime University, Dalian 116026, China.
| | - Qiang Pang
- School of Science, Dalian Maritime University, Dalian 116026, China.
| | - Hong Wang
- School of Science, Dalian Maritime University, Dalian 116026, China.
| | - Ying Tian
- School of Science, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
3
|
Wang Y, Zhang S, Liu T, Chen J, Yuan B, Lu C, Bo X, Xu Z. A Red-Emission Fluorescent Probe for Intracellular Biothiols and Hydrogen Sulfide Imaging in Living Cells. Molecules 2024; 29:1572. [PMID: 38611851 PMCID: PMC11013660 DOI: 10.3390/molecules29071572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
This research centers on the development and synthesis of a longwave fluorescence probe, labeled as 60T, designed for the simultaneous detection of hydrogen sulfide, cysteine/homocysteine, and glutathione. The probe showcases a swift response, good linearity range, and heightened sensitivity, boasting that the detection limits of the probe for Cys, Hcy, GSH and H2S were 0.140, 0.202, 0.259 and 0.396 μM, respectively. Notably, its efficacy in monitoring thiol status changes in live MCF-7 cells is underscored by a substantial decrease in fluorescence intensity upon exposure to the thiol trapping reagent, N-ethyl maleimide (NEM). With an impressive red emission signal at 630 nm and a substantial Stokes shift of 80 nm, this probe exhibits remarkable sensitivity and selectivity for biothiols and H2S, indicating promising applications in the diagnosis and surgical navigation of relevant cancers.
Collapse
Affiliation(s)
- Yuanfan Wang
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou 221004, China
| | - Shengxiang Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China (Z.X.)
| | - Tianle Liu
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou 221004, China
| | - Junning Chen
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China (Z.X.)
| | - Bingrui Yuan
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou 221004, China
| | - Cuntao Lu
- Department of Breast Surgery, Xuzhou Central Hospital, Xuzhou 221004, China
| | - Xiumei Bo
- School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhou Xu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China (Z.X.)
| |
Collapse
|
4
|
Ma Y, Mei H, Li Y, Zhou P, Mao G, Wang H, Wang X. A novel raiometric fluorescence probe based on silicon quantum dots and copper nanoclusters for visual assay of l-cysteine in milks. Food Chem 2022; 379:132155. [DOI: 10.1016/j.foodchem.2022.132155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/01/2022] [Accepted: 01/11/2022] [Indexed: 12/17/2022]
|
5
|
“Turn on” Fluorescence Sensor of Glutathione Based on Inner Filter Effect of Co-Doped Carbon Dot/Gold Nanoparticle Composites. Int J Mol Sci 2021; 23:ijms23010190. [PMID: 35008614 PMCID: PMC8745766 DOI: 10.3390/ijms23010190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
Glutathione (GSH) is a thiol that plays a significant role in nutrient metabolism, antioxidant defense and the regulation of cellular events. GSH deficiency is related to variety of diseases, so it is useful to develop novel approaches for GSH evaluation and detection. In this study we used nitrogen and phosphorus co-doped carbon dot-gold nanoparticle (NPCD–AuNP) composites to fabricate a simple and selective fluorescence sensor for GSH detection. We employed the reductant potential of the nitrogen and phosphorus co-doped carbon dots (NPCDs) themselves to form AuNPs, and subsequently NPCD–AuNP composites from Au3+. The composites were characterized by using a range of spectroscopic and electron microscopic techniques, including electrophoretic light scattering and X-ray diffraction. The overlap of the fluorescence emission spectrum of NPCDs and the absorption spectrum of AuNPs resulted in an effective inner filter effect (IFE) in the composite material, leading to a quenching of the fluorescence intensity. In the presence of GSH, the fluorescence intensity of the composite was recovered, which increased proportionally to increasing the GSH concentration. In addition, our GSH sensing method showed good selectivity and sensing potential in human serum with a limit of detection of 0.1 µM and acceptable results.
Collapse
|
6
|
Hu X, Huang Y, Yin H, Dai L, Tian Y. DNA‐Based
Architectures for
in situ
Target Biomolecule Analysis in Confined Nano‐space
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaoxue Hu
- Shenzhen Research Institute Nanjing University Shenzhen Guangdong 518000 China
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, Nanjing University Nanjing Jiangsu 210093 China
| | - Yide Huang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, Nanjing University Nanjing Jiangsu 210093 China
| | - Hao Yin
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, Nanjing University Nanjing Jiangsu 210093 China
| | - Lizhi Dai
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, Nanjing University Nanjing Jiangsu 210093 China
| | - Ye Tian
- Shenzhen Research Institute Nanjing University Shenzhen Guangdong 518000 China
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, Nanjing University Nanjing Jiangsu 210093 China
| |
Collapse
|
7
|
Zhang GQ, Zhang XY, Luo YX, Li YS, Zhao Y, Gao XF. A flow injection fluorescence "turn-on" sensor for the determination of metformin hydrochloride based on the inner filter effect of nitrogen-doped carbon dots/gold nanoparticles double-probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119384. [PMID: 33422879 DOI: 10.1016/j.saa.2020.119384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/30/2020] [Accepted: 12/21/2020] [Indexed: 05/20/2023]
Abstract
In this paper, an ultrasensitive and rapid "turn-on" fluorescence sensor, integrating flow-injection (FI) with nitrogen-doped carbon dots/gold nanoparticles (N-CDs/AuNPs) double-probe is established for the determination of metformin hydrochloride (MET) in biological fluids. The sensing strategy involves the weak inner filter effect between AuNPs and N-CDs due to aggregation products of MET with AuNPs. Unfortunately, the degree of AuNPs aggregation is difficult to control through manual assays, resulting in intolerable measurement error that limits further applications. However, the proposed method overcomes the above problem, and significantly lowers the consumption of expensive reagents (AuNPs: about 60 μL per test). Under optimal conditions, the fluorescence intensity at 400 nm excitation and 505 nm emission wavelengths display a linear correlation with MET concentration (5-100 μg L-1) and the limit of detection is 2.32 μg L-1 (3.3 S/k). The advantages of the presented method include high sensitivity, rapid speed (60 sample h-1), good accuracy and precision (RSD ≤ 2.1%, n = 11) and low cost. Since MET is the first-line hypoglycemic agent in patients with type II diabetes, this method can preliminarily determine MET content in urine samples, giving satisfactory results.
Collapse
Affiliation(s)
- Guo-Qi Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xu-Yan Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ya-Xiong Luo
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yong-Sheng Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yang Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiu-Feng Gao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Akrivi E, Kappi F, Gouma V, Vlessidis AG, Giokas DL, Kourkoumelis N. Biothiol modulated growth and aggregation of gold nanoparticles and their determination in biological fluids using digital photometry. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119337. [PMID: 33360206 DOI: 10.1016/j.saa.2020.119337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
This work describes a novel and easy to use method for the determination of biologically important thiols that relies on their ability to inhibit the catalytic enlargement of AuNP seeds in the presence of ACl4- ions and trigger their aggregation. UV-vis spectroscopic monitoring of the plasmon resonance bands of the formed AuNPs showed that the spectral and color transitions depend both on the concentration and the structure of biothiols. The colorimetric changes induced by biothiols were quantified in the concentration range from 5 to 300 μM in the RGB color system with digital photometry using a commercially available flatbed scanner as detector. On the basis of these results, the applicability of the method was tested to the determination of glutathione in red blood cells and cysteine in blood plasma with satisfactory recoveries (88.7-96.5%), low detection limits (1.0 μM), good selectivity against major biomolecules under physiologically relevant conditions and satisfactory reproducibility (<8%). The method requires minimum technical expertise, is easy to use and is performed without scientific equipment, holding promise as a simple assay of biothiol testing even by non-experts.
Collapse
Affiliation(s)
- Elli Akrivi
- Department of Medical Physics, School of Health Sciences, University of Ioannina, Greece; Neurology Clinic, University Hospital of Ioannina, Greece
| | - Foteini Kappi
- Department of Chemistry, School of Natural Sciences, University of Ioannina, Greece
| | - Vasiliki Gouma
- Department of Chemistry, School of Natural Sciences, University of Ioannina, Greece
| | | | - Dimosthenis L Giokas
- Department of Chemistry, School of Natural Sciences, University of Ioannina, Greece.
| | - Nikolaos Kourkoumelis
- Department of Medical Physics, School of Health Sciences, University of Ioannina, Greece.
| |
Collapse
|