1
|
Krinochkin A, Valieva M, Starnovskaya E, Slovesnova N, Minin A, Belousova A, Sadieva L, Taniya O, Khasanov A, Novikov A, Bruskov V, Vatolina S, Kopchuk D, Slepukhin P, Sharutin V, Zyryanov G. New Fluorescent Dye for the Detection of Zn 2+ in Living Cells and Fixed Sections of the Rat Pancreas. J Fluoresc 2025; 35:1423-1439. [PMID: 38349481 DOI: 10.1007/s10895-024-03603-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/23/2024] [Indexed: 04/04/2025]
Abstract
We report the synthesis and characterization of a new 4-methoxyphenyl-2,2'-bipyridine-based ligand, such as 12, bearing dipicolylaminomethyl core as a receptor unit, as a probe for the fluorescence "turn-on" detection of Zn2+. Thus, in the presence of Zn2+ the probe 12 exhibited a fluorescence enhancement with a Stokes shift of ~ 180 nm and photoluminescence quantum yields value of ~ 1.0. In addition, 12 exhibited higher binding constant for Zn2+ (~ 2 × 105 M-1) with the LOD reaching the nanomolar level (~ 0.1 × 10-9 M) compare to the previously reported probe 1. The stoichiometry and structure of the [Zn(12)]2+ and [Zn(1)]2+ complexes were supported by XRD analysis, DFT calculations and 1H NMR experiments. It was postulated that, as a result of binding of Zn2+, the sample exhibited a bright "on" state via the PET-ICT processes. Molecular docking studies and confocal fluorescence microscopy experiments demonstrated that the probe 12 could be used for the fluorescence detection of Zn2+ not only in artificially enriched with zinc salts live cells, but also in fixed tissues with cations are in a bound state. The high binding constant of compound 12 to Zn2+ cation allows it to be used for the accurate localization of pancreatic beta cells (islets of Langerhans).
Collapse
Affiliation(s)
- Alexey Krinochkin
- Ural Federal University, 19 Mira Street, 620002, Yekaterinburg, Russia
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Branch of the RAS, 22 S. Kovalevskoy Street, 620219, Yekaterinburg, Russia
| | - Maria Valieva
- Ural Federal University, 19 Mira Street, 620002, Yekaterinburg, Russia
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Branch of the RAS, 22 S. Kovalevskoy Street, 620219, Yekaterinburg, Russia
| | | | - Nataliya Slovesnova
- Ural Federal University, 19 Mira Street, 620002, Yekaterinburg, Russia
- Urals State Medical University, 3 Repina Street, 620028, Yekaterinburg, Russia
| | - Artem Minin
- Ural Federal University, 19 Mira Street, 620002, Yekaterinburg, Russia
- M.N. Miheev Institute of Metal Physics, Ural Branch of the RAS, 18 S. Kovalevskoy Street, 620108, Yekaterinburg, Russia
| | - Anna Belousova
- Institute of Immunology and Physiology, Ural Branch of the RAS, 106 Pervomaiskaya Street, 620049, Yekaterinburg, Russia
| | - Leila Sadieva
- Ural Federal University, 19 Mira Street, 620002, Yekaterinburg, Russia.
| | - Olga Taniya
- Ural Federal University, 19 Mira Street, 620002, Yekaterinburg, Russia
| | - Albert Khasanov
- Ural Federal University, 19 Mira Street, 620002, Yekaterinburg, Russia
| | - Alexander Novikov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034, Saint Petersburg, Russia
| | - Vitaly Bruskov
- Ural Federal University, 19 Mira Street, 620002, Yekaterinburg, Russia
| | - Svetlana Vatolina
- Ural Federal University, 19 Mira Street, 620002, Yekaterinburg, Russia
| | - Dmitry Kopchuk
- Ural Federal University, 19 Mira Street, 620002, Yekaterinburg, Russia
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Branch of the RAS, 22 S. Kovalevskoy Street, 620219, Yekaterinburg, Russia
| | - Pavel Slepukhin
- Ural Federal University, 19 Mira Street, 620002, Yekaterinburg, Russia
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Branch of the RAS, 22 S. Kovalevskoy Street, 620219, Yekaterinburg, Russia
| | - Vladimir Sharutin
- Department of Chemistry, Institute of Natural Sciences, South Ural State University (National Research University), Lenin Avenue 76, 454080, Chelyabinsk, Russia
| | - Grigory Zyryanov
- Ural Federal University, 19 Mira Street, 620002, Yekaterinburg, Russia
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Branch of the RAS, 22 S. Kovalevskoy Street, 620219, Yekaterinburg, Russia
| |
Collapse
|
2
|
Prabakaran G, Xiong H. Unravelling the recent advancement in fluorescent probes for detection against reactive sulfur species (RSS) in foodstuffs and cell imaging. Food Chem 2025; 464:141809. [PMID: 39515154 DOI: 10.1016/j.foodchem.2024.141809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/06/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Sulfur-containing representative HSO3-/SO32-, H2S, and biothiols (Cys, Hcy, and GSH) present in food items and biological organisms have raised substantial global concerns about food safety due to their reactivity and potential health implications. Adhering to international health standards is essential for these compounds; in particular, plenty of challenges exist in ensuring product quality in the beverage industry. Many fluorescent probes are being employed in various spectroscopic techniques and have developed rapidly to selectively detect sulfur-related species in food products and bio-sensing for cell imaging. This comprehensive review provides a detailed overview of a wide range of fluorescent probes designed using different fluorophores for detecting reactive sulfur species (RSS) using spectroscopic techniques. Additionally, the review explores the detection of RSS components (HSO3-/SO32-, H2S, and biothiols) in food products and cell imaging using different cell lines, highlighting the crucial role of fluorescent probes in swiftly detecting these analytes in both natural and biological contexts. Furthermore, the review discusses future trends and perspectives, emphasizing the on-going progress in detecting these analytes in food products and cell imaging using various fluorescent probes.
Collapse
Affiliation(s)
- Gunasekaran Prabakaran
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China; School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
3
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
4
|
Mao Y, Yu Q, Ye T, Xi M, Lai W, Chen Z, Chen K, Li L, Liu H, Wang J. New Rhodamine-based sensor for high-sensitivity fluorescence tracking of Cys and simultaneously colorimetric detection of H 2S. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123589. [PMID: 37922855 DOI: 10.1016/j.saa.2023.123589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Sulfhydryl-containing compounds including cysteine (Cys), homocysteine (Hcy), glutathione (GSH) and hydrogen sulfide (H2S) are involved in many physiological processes. The development of single-molecule optical sensor for the distinguish detection of these bio-thiols is a critical and challenging effort. In this work, we designed a one-step synthesis of the Rhodamine-based sensor FR for specific fluorescent response of Cys and simultaneously colorimetric detection of H2S, in which the aldehyde and fluorine groups act as response sites. Sensor FR displays significant fluorescence enhancement at 565 nm toward Cys with high selectivity and low detection limits (49 nM) due to the low background fluorescent signal of the spirocyclic closed-state in Rhodamine structure. Meantime, after treatment of H2S, the color of the sensor changes significantly from colorless to blue-purple, which can be used as a visual colorimetric method to detect H2S. These response mechanisms were systematically characterized by 1H NMR and Mass spectrometry. Finally, sensor FR could be used to monitor exogenous and endogenous of intracellular Cys changes.
Collapse
Affiliation(s)
- Yanyun Mao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qiangmin Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tianqing Ye
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Man Xi
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Weiping Lai
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Zhixiang Chen
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Kan Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Lei Li
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Jianbo Wang
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
5
|
Gong S, Qin A, Tian J, Li M, Liang Y, Meng Z, Xu X, Wang Z, Wang S. Fluorescent probe for sensitive discrimination of GSH and Hcy/Cys with single-wavelength excitation in biological systems via different emission. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123128. [PMID: 37480806 DOI: 10.1016/j.saa.2023.123128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/24/2023]
Abstract
Biothiols (GSH, Hcy, Cys) are important active sulfur substances in biological systems and widely participate in various physiological processes. The three kinds of biothiols have similar chemical structures, including the sulfhydryl group (-SH) and an amino group (-NH2), so distinguishing two or more of them simultaneously is an important challenge. Herein, a nopinone-based fluorescent probe 3-(3-((4-nitrobenzoxadiazole vinyl) nopinyl difluoride (NF-NBD) was designed to distinguish GSH and Hcy/Cys by generating different fluorescence channels with a single excitation wavelength. The nitrobenzodioxazole (NBD) was introduced in the fluorescent probe by ether bounds that can quench fluorescence and selectively discriminate GSH and Hcy/Cys. After reacting with GSH and Hcy/Cys, NF-NBD exhibited strong fluorescence (green for GSH and yellow for Hcy/Cys). NF-NBD displayed a wide linear range, low detection limit, a rapid response time, and superior selectivity for biothiols. Furthermore, NF-NBD was applied to image and distinguish different biothiols in living cells and zebrafish via different fluorescence signals at a single excitation wavelength.
Collapse
Affiliation(s)
- Shuai Gong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ahui Qin
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jixiang Tian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mingxin Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yueyin Liang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiyuan Meng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xu Xu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shifa Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Wu Y, Ge C, Zhang Y, Wang Y, Zhang D. ICT-based fluorescent probes for intracellular pH and biological species detection. Front Chem 2023; 11:1304531. [PMID: 38107254 PMCID: PMC10722144 DOI: 10.3389/fchem.2023.1304531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
Fluorescent probes, typically based on the intramolecular charge transfer (ICT) mechanism, have received considerable research attention in cell detection due to their non-invasiveness, fast response, easy regulation, high sensitivity, and low damage tolerance for in vivo bio-samples. Generally, intracellular pH and biological species such as various gases, metal ions, and anions constitute the foundation of cells and participate in the basic physiological processes, whose abnormal level can lead to poisoning, cardiovascular disease, and cancer in living organisms. Therefore, monitoring of their quantity plays an essential role in understanding the status of organisms and preventing, diagnosing, and treating diseases. In the last decades, remarkable progress has been made in developing ICT probes for the detection of biological elements. In this review, we highlight the recent ICT probes focusing primarily on the detection of intracellular pH, various gases (H2S, CO, H2O2, and NO), metal ions (Cu2+, Hg2+, Pb2+, Zn2+, and Al3+), and anions (ClO-, CN-, SO3 2-, and F-). In addition, we discuss the issues and limitations of ICT-based fluorescent probes for in vivo detection and explore the clinical translational potential and challenges of these materials, providing valuable guidance and insights for the design of fluorescent materials.
Collapse
Affiliation(s)
- You Wu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| | - Chengyan Ge
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ying Zhang
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| | - Yalong Wang
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Deteng Zhang
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Cai W, Chen X, Xie L, Yu Y, Liu G, Fan C, Pu S. Development of europium(III) complex fluorescent probe for hydrogen sulfide detection and its application in water samples. LUMINESCENCE 2023. [PMID: 37975337 DOI: 10.1002/bio.4628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
Hydrogen sulfide (H2 S) is a crucial endogenous signaling component in organisms that is involved in redox homeostasis and numerous biological processes. Modern medical research has confirmed that hydrogen sulfide plays an important role in the pathogenesis of many diseases. Herein, a fluorescent probe Eu(ttbd)3 abt based on europium(III) complex was designed and synthesized for the detection of H2 S. Eu(ttbd)3 abt exhibited significant quenching for H2 S at long emission wavelength (625 nm), with rapid detection ability (less than 2 min), high sensitivity [limit of detection (LOD) = 0.41 μM], and massive Stokes shift (300 nm). Additionally, this probe showed superior selectivity for H2 S despite the presence of other possible interference species such as biothiols. Furthermore, the probe Eu(ttbd)3 abt was successfully applied to detect H2 S in water samples.
Collapse
Affiliation(s)
- Wenjuan Cai
- Jiangxi Key Laboratory of Organic Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Xiaoxia Chen
- Jiangxi Key Laboratory of Organic Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Ling Xie
- Jiangxi Key Laboratory of Organic Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yanhong Yu
- Jiangxi Key Laboratory of Organic Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Shouzhi Pu
- Department of Ecology and Environment, Yuzhang Normal University, Nanchang, China
| |
Collapse
|
8
|
Liu H, Xing H, Gao Z, You M, Li B, Feng X, Zhou B, Cong Z, Zhu J, Jin M. A single-wavelength excited NIR fluorescence probe for distinguishing GSH/H 2S and Cys/Hcy in living cells and zebrafish through separated dual-channels. Talanta 2023; 254:124153. [PMID: 36493568 DOI: 10.1016/j.talanta.2022.124153] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Biothiols and hydrogen sulfide, as critical sulfur-containing reactive substances, serve essential functions in various human pathological processes, making it challenging to simultaneously distinguish them due to their similar reactivity and structures (-SH). Here, we rationalized the development of a single-wavelength excitation near-infrared (NIR) fluorescence probe, FC-NBD, for distinguishing GSH/H2S and Cys/Hcy by separated fluorescence dual channels. In this probe, FC-NBD, composed of coumarin-benzopyrylium derivatives linked with nitro benzoxadiazole (NBD) via ether bonds, could quantitatively and selectively distinguish GSH/H2S and Cys/Hcy with a low limit of detection (LOD) of 0.199/0.177 μM and 0.106/0.076 μM, respectively. As expected, under single-wavelength excitation (470 nm), FC-NBD demonstrated distinctly separable green and NIR fluorescence emissions towards Cys/Hcy at 550 and 660 nm, but only exhibited a noticeable NIR fluorescence emission towards GSH/H2S at 660 nm. Moreover, FC-NBD could simultaneously visualize and discriminate GSH/H2S and Cys/Hcy in living cells as well as zebrafish through green and NIR channels at a single excitation wavelength.
Collapse
Affiliation(s)
- Haibo Liu
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolinwei, Nanjing, 210094, PR China
| | - Haizhu Xing
- Department of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Dadao, Nanjing, 210023, PR China
| | - Zhigang Gao
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolinwei, Nanjing, 210094, PR China
| | - Min You
- Department of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Dadao, Nanjing, 210023, PR China
| | - Bin Li
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolinwei, Nanjing, 210094, PR China
| | - Xuyu Feng
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolinwei, Nanjing, 210094, PR China
| | - Baojing Zhou
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, 200 Xiaolinwei, Nanjing, 210094, PR China
| | - Zhongjian Cong
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, 200 Xiaolinwei, Nanjing, 210094, PR China
| | - Jing Zhu
- Department of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Dadao, Nanjing, 210023, PR China.
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolinwei, Nanjing, 210094, PR China.
| |
Collapse
|
9
|
Słowiński D, Świerczyńska M, Romański J, Podsiadły R. HPLC Study of Product Formed in the Reaction of NBD-Derived Fluorescent Probe with Hydrogen Sulfide, Cysteine, N-acetylcysteine, and Glutathione. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238305. [PMID: 36500398 PMCID: PMC9736530 DOI: 10.3390/molecules27238305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
Hydrogen sulfide (H2S) and its bioderivatives analogs, such as L-cysteine (L-Cys) and glutathione (GSH), are ubiquitous biological thiols in the physiological and pathological processes of living systems. Their aberrant concentration levels are associated with many diseases. Although several NBD-based fluorescence probes have been developed to detect biological thiols, the HPLC-detection of H2S, GSH, L-Cys, and N-acetylcysteine-specific products has not been described. Herein, a novel NBD-derived pro-coumarin probe has been synthesized and used to develop a new strategy for the triple mode detection of H2S and such thiols as GSH, L-Cys, and NAC. Hydrogen sulfide and those biothiols at physiological pH release fluorescent coumarin from the probe and cause a significant fluorescence enhancement at 473 nm. The appropriate NBD-derived product for H2S, L-Cys, GSH, and NAC has a different color and retention time that allows distinguishing these biological thiols meaning the probe has a great possibility in the biological application. Fluorescent imaging combined with colorimetric and HPLC detection of H2S/biothiol-specific product(s) brings a potential tool for confirming the presence of biological thiols and determining concentrations in various aqueous biological samples.
Collapse
Affiliation(s)
- Daniel Słowiński
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Małgorzata Świerczyńska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Jarosław Romański
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
- Correspondence:
| |
Collapse
|
10
|
Lu X, Zhan Y, He W. Recent development of small-molecule fluorescent probes based on phenothiazine and its derivates. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112528. [PMID: 35907277 DOI: 10.1016/j.jphotobiol.2022.112528] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 05/20/2023]
Abstract
Fluorescence probes, as analytical tools with the ability to perform rapid and sensitive detection of target analytes, have made outstanding contributions to environmental analysis and bioassays. Considering the expanding developments in these areas, fluorophores play a key role in the de-sign of fluorescence probes. Compared to classical fluorophores, phenothiazines with elec-tron-rich characteristics have been widely applied to construct electron donor-acceptor dyes, which exhibit outstanding performance in both fluorimetric and colorimetric analysis. In addition, these probes also exhibit the pronounced ability in both solution and solid-state, achieving portable detection for environmental analysis. In this review, we summarize recent advances in the performance of phenothiazine-based fluorescent probes for detecting various analytes, especially in cations, anions, ROS/RSS, enzyme and other small molecules. The general design rules, response mechanisms and practical applications of the probes are analyzed, followed by a discussion of exiting challenges and future research perspectives. It is hoped that this review will provide a few strategies for the development of phenothiazine-based fluorescent probes.
Collapse
Affiliation(s)
- Xianlin Lu
- School of Pharmacy, The Air Force Medical University, Xi'an 710032, PR China
| | - Yu Zhan
- School of Pharmacy, The Air Force Medical University, Xi'an 710032, PR China
| | - Wei He
- School of Pharmacy, The Air Force Medical University, Xi'an 710032, PR China.
| |
Collapse
|