1
|
Li J, Yang T, Zeng G, An L, Jiang J, Ao Z, Ma J. Ozone- and Hydroxyl Radical-Induced Degradation of Micropollutants in a Novel UVA-LED-Activated Periodate Advanced Oxidation Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18607-18616. [PMID: 36745772 DOI: 10.1021/acs.est.2c06414] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, novel light emitting diode (LED)-activated periodate (PI) advanced oxidation process (AOP) at an irradiation wavelength in the ultraviolet A range (UVA, UVA-LED/PI AOP) was developed and investigated using naproxen (NPX) as a model micropollutant. The UVA-LED/PI AOP remarkably enhanced the degradation of NPX and seven other selected micropollutants with the observed pseudo-first-order rate constants ranging from 0.069 ± 0.001 to 4.50 ± 0.145 min-1 at pH 7.0, demonstrating a broad-spectrum micropollutant degradation ability. Lines of evidence from experimental analysis and kinetic modeling confirmed that hydroxyl radical (•OH) and ozone (O3) were the dominant species generated in UVA-LED/PI AOP, and they contributed evenly to NPX degradation. Increasing the pH and irradiation wavelength negatively affected NPX degradation, and this could be well explained by the decreased quantum yield (ΦPI) of PI. The degradation kinetics of NPX by the UVA-LED/PI AOP in the presence of water matrices (i.e., chloride, bicarbonate, and humic acid) and in real waters were examined, and the underlying mechanisms were illustrated. A total of nine transformation products were identified from NPX oxidation by the UVA-LED/PI AOP, mainly via hydroxylation, dealkylation, and oxidation pathways. The UVA-LED/PI AOP proposed might be a promising technology for the treatment of micropollutants in aqueous solutions. The pivotal role of ΦPI during light photolysis of PI may guide the future design of light-assisted PI AOPs.
Collapse
Affiliation(s)
- Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai519087, People's Republic of China
| | - Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen529020, People's Republic of China
| | - Ge Zeng
- School of Biotechnology and Health Science, Wuyi University, Jiangmen529020, People's Republic of China
| | - Linqian An
- School of Biotechnology and Health Science, Wuyi University, Jiangmen529020, People's Republic of China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou510006, People's Republic of China
| | - Zhimin Ao
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai519087, People's Republic of China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin150090, People's Republic of China
| |
Collapse
|
2
|
Eslami A, Mehdipour F, Feizi R, Ghanbari F, Lin KYA, Bagheri A, Madihi-Bidgoli S. Periodate activation by concurrent utilization of UV and US for the degradation of para-nitrophenol in water: A synergistic approach. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1247-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
3
|
Niu L, Zhang K, Jiang L, Zhang M, Feng M. Emerging periodate-based oxidation technologies for water decontamination: A state-of-the-art mechanistic review and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116241. [PMID: 36137453 DOI: 10.1016/j.jenvman.2022.116241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
With the ever-increasing severity of the ongoing water crisis, it is of great significance to develop efficient, eco-friendly water treatment technologies. As an emerging oxidant in the advanced oxidation processes (AOPs), periodate (PI) has received worldwide attention owing to the advantages of superior stability, susceptible activation capability, and high efficiency for decontamination. This is the first review that conducts a comprehensive analysis of the mechanism, pollutant transformation pathway, toxicity evolution, barriers, and future directions of PI-based AOPs based on the scientific information and experimental data reported in recent years. The pollutant elimination in PI-based AOPs was mainly attributed to the in situ generate reactive oxygen species (e.g., •OH, O(3P), 1O2, and O2•-), reactive iodine species (e.g., IO3• and IO4•), and high-valent metal-oxo species with exceptionally high reactivity. These reactive species were derived from the PI activated by the external energy, metal activators, alkaline, freezing, hydroxylamine, H2O2, etc. It is noteworthy that direct electron transport could also dominate the decontamination in carbon-based catalyst/PI systems. Furthermore, PI was transformed to iodate (IO3-) stoichiometrically via an oxygen-atom transfer process in most PI-based AOPs systems. However, the production of I2, I-, and HOI was sometimes inevitable. Furthermore, the transformation pathway of typical micropollutants was clarified, and the in silico QSAR-based prediction results indicated that most transformation products retained biodegradation recalcitrance and multi-endpoint toxicity. The barriers faced by the PI-based AOPs were also clarified with potential solutions. Finally, future perspectives and research directions are highlighted based on the current state of PI-based AOPs. This review enhances our in-depth understanding of PI-based AOPs for pollutant elimination and identifies future research needs to focus on the reduction of toxic byproducts.
Collapse
Affiliation(s)
- Lijun Niu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Kaiting Zhang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Linke Jiang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Menglu Zhang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China; China Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University), Fuzhou, 350007, China.
| | - Mingbao Feng
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
4
|
Periodate activation for degradation of organic contaminants: Processes, performance and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Fetimi A, Merouani S, Khan MS, Asghar MN, Yadav KK, Jeon BH, Hamachi M, Kebiche-Senhadji O, Benguerba Y. Modeling of Textile Dye Removal from Wastewater Using Innovative Oxidation Technologies (Fe(II)/Chlorine and H 2O 2/Periodate Processes): Artificial Neural Network-Particle Swarm Optimization Hybrid Model. ACS OMEGA 2022; 7:13818-13825. [PMID: 35559190 PMCID: PMC9088958 DOI: 10.1021/acsomega.2c00074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
An efficient optimization technique based on a metaheuristic and an artificial neural network (ANN) algorithm has been devised. Particle swarm optimization (PSO) and ANN were used to estimate the removal of two textile dyes from wastewater (reactive green 12, RG12, and toluidine blue, TB) using two unique oxidation processes: Fe(II)/chlorine and H2O2/periodate. A previous study has revealed that operating conditions substantially influence removal efficiency. Data points were gathered for the experimental studies that developed our ANN-PSO model. The PSO was used to determine the optimum ANN parameter values. Based on the two processes tested (Fe(II)/chlorine and H2O2/periodate), the proposed hybrid model (ANN-PSO) has been demonstrated to be the most successful in terms of establishing the optimal ANN parameters and brilliantly forecasting data for RG12 and TP elimination yield with the coefficient of determination (R2) topped 0.99 for three distinct ratio data sets.
Collapse
Affiliation(s)
- Abdelhalim Fetimi
- Laboratoire
des Procédés Membranaires et des Techniques de Séparation
et de Récupération, Faculté de Technologie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Slimane Merouani
- Laboratory
of Environmental Process Engineering, Department of Chemical Engineering,
Faculty of Process Engineering, University
Constantine 3 − Salah Boubnider, P.O. Box 72, 25000 Constantine, Algeria
| | - Mohd Shahnawaz Khan
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Nadeem Asghar
- Department
of Medical Biology, University of Québec
at Trois-Rivieres, Trois-Rivieres, Québec G9A 5H7, Canada
| | - Krishna Kumar Yadav
- Faculty
of Science and Technology, Madhyanchal Professional
University, Ratibad, Bhopal 462044, India
| | - Byong-Hun Jeon
- Department
of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Mourad Hamachi
- Laboratoire
des Procédés Membranaires et des Techniques de Séparation
et de Récupération, Faculté de Technologie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Ounissa Kebiche-Senhadji
- Laboratoire
des Procédés Membranaires et des Techniques de Séparation
et de Récupération, Faculté de Technologie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Yacine Benguerba
- Department
of Process Engineering, Faculty of Technology, University Ferhat ABBAS Setif-1, 19000 Setif, Algeria
| |
Collapse
|
6
|
Djaballah ML, Merouani S, Bendjama H, Hamdaoui O. Development of a free radical-based kinetics model for the oxidative degradation of chlorazol black in aqueous solution using periodate photoactivated process. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Haddad A, Merouani S, Hannachi C, Hamdaoui O, Hamrouni B. Intensification of light green SF yellowish (LGSFY) photodegradion in water by iodate ions: Iodine radicals implication in the degradation process and impacts of water matrix components. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:1219-1227. [PMID: 30586808 DOI: 10.1016/j.scitotenv.2018.10.183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 06/09/2023]
Abstract
The results of this work showed that UV/IO3- oxidation process supplies good performance in the degradation of light green SF yellowish (LGSFY) dye in deionized water. This process generated reactive iodine radicals that make the degradation much faster than the sole UV irradiation. The assistance of UV-irradiation by 10 mM of iodate increased the LGSFY removal after 10 min from 36% to 90% for C0 = 10 mg/L and from 18% to 85% for C0 = 20 mg/L. In parallel, a 2.5 and 4.72-fold increase in the LGSFY initial degradation rate, as compared with UV alone, were recorded for, respectively, 10 and 20 mg/L of LGSFY. IO2 and IO played the most important role in the degradation of LGSFY by the UV/IO3- process. The degradation was not affected by the presence of chloride and nitrate ions even at high dosage levels (up to 0.1 M), whereas sulfate ions reduced the valuable effect of iodate to the half when they are present at 0.1 M. Correspondingly, humic acids, at usual concentrations as those measured in natural waters, did not affect significantly the LGSFY degradation upon photoactivated iodate process. These results revealed, in one part, that iodine radicals are selective oxidants and, in another part, that the process is likely to remove organic dyes from natural water which often contains mineral constitutes and humic substances.
Collapse
Affiliation(s)
- Amal Haddad
- Laboratory of Environmental Engineering, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar - Annaba University, 23000 Annaba, Algeria; Desalination and Water Treatment Research Unit, Faculty of Sciences, University of Tunis El Manar, Tunis, Tunisia
| | - Slimane Merouani
- Laboratory of Environmental Engineering, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar - Annaba University, 23000 Annaba, Algeria; Department of Chemical Engineering, Faculty of Process Engineering, Salah Boubnider University - Constantine 3, 25000 Constantine, Algeria.
| | - Chiraz Hannachi
- Desalination and Water Treatment Research Unit, Faculty of Sciences, University of Tunis El Manar, Tunis, Tunisia
| | - Oualid Hamdaoui
- Laboratory of Environmental Engineering, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar - Annaba University, 23000 Annaba, Algeria
| | - Béchir Hamrouni
- Desalination and Water Treatment Research Unit, Faculty of Sciences, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
8
|
Bendjama H, Merouani S, Hamdaoui O, Bouhelassa M. Efficient degradation method of emerging organic pollutants in marine environment using UV/periodate process: Case of chlorazol black. MARINE POLLUTION BULLETIN 2018; 126:557-564. [PMID: 28978408 DOI: 10.1016/j.marpolbul.2017.09.059] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/23/2017] [Accepted: 09/25/2017] [Indexed: 05/12/2023]
Abstract
Sea has historically been subject to high anthropogenic pressures of direct and indirect loads of emerging organic pollutants (EOPs) from intensive industrial and agricultural activities. Photoactivated periodate (UV/IO4-) is an innovative oxidation technique that was never tested in seawater as pollutants matrix. In this work, we attempted to investigate the treatment of seawater contaminated with chlorazol black (CB) dye, as a model of EOPs, using photoactivated periodate process. It was found that periodate (0.5mM) assisted-UV treatment of CB (20mgL-1) in seawater resulted in 13.16-fold increase in the initial degradation rate, compared to UV alone, and 82% of CB was removed after 40min face to 38% under UV alone. The beneficial effect of UV/IO4- treatment is strongly dependent on operational parameters. More interestingly, SDS surfactant, as an organic matter, did not affect the degradation process, making UV/IO4- a promising technique for treating seawater contaminated with EOPs.
Collapse
Affiliation(s)
- Hafida Bendjama
- Laboratory of Environmental Process Engineering, Faculty of Process Engineering, University Salah Boubnider - Constantine 3, 25000 Constantine, Algeria
| | - Slimane Merouani
- Laboratory of Environmental Process Engineering, Faculty of Process Engineering, University Salah Boubnider - Constantine 3, 25000 Constantine, Algeria; Laboratory of Environmental Engineering, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar - Annaba University, 23000 Annaba, Algeria.
| | - Oualid Hamdaoui
- Laboratory of Environmental Engineering, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar - Annaba University, 23000 Annaba, Algeria
| | - Mohamed Bouhelassa
- Laboratory of Environmental Process Engineering, Faculty of Process Engineering, University Salah Boubnider - Constantine 3, 25000 Constantine, Algeria
| |
Collapse
|
9
|
Valkai L, Peintler G, Horváth AK. Clarifying the Equilibrium Speciation of Periodate Ions in Aqueous Medium. Inorg Chem 2017; 56:11417-11425. [PMID: 28858495 DOI: 10.1021/acs.inorgchem.7b01911] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Equilibria of periodate ion were reinvestigated in aqueous solution by using potentiometric titration, UV and Raman spectroscopies, and gravimetry simultaneously at 0.5 M ionic strength and at 25.0 ± 0.2 °C. Stepwise acid dissociation constants of orthoperiodic acid were found to be pK1 = 0.98 ± 0.18, pK2 = 7.42 ± 0.03, and pK3 = 10.99 ± 0.02, as well as pK2 = 7.55 ± 0.04 and pK3 = 11.25 ± 0.03 in the presence of sodium nitrate and sodium perchlorate as background salts, respectively. pK1 cannot be determined unambiguously from our experiments in the presence of sodium perchlorate. The molar absorptivity spectrum of H4IO6- and H3IO62- was determined in the range of 215-335 nm, as major species of periodate present from slightly acidic to slightly alkaline conditions. The solubility of periodate decreases significantly under alkaline conditions, and it was determined to be (2.8 ± 0.4) mM by gravimetry, under our experimental conditions. None of these studies gave any clear evidence for an ortho-meta equilibrium and the frequently invoked dimerization of periodate. All measurements can quantitatively be described by the presence of orthoperiodic acid and its three successive deprotonation steps.
Collapse
Affiliation(s)
- László Valkai
- Faculty of Sciences, Department of Inorganic Chemistry, University of Pécs , Pécs, Hungary
| | - Gábor Peintler
- Faculty of Science and Informatics, Department of Physical Chemistry and Material Sciences, University of Szeged , Szeged, Hungary
| | - Attila K Horváth
- Faculty of Sciences, Department of Inorganic Chemistry, University of Pécs , Pécs, Hungary
| |
Collapse
|
10
|
Hamdaoui O, Merouani S. Improvement of sonochemical degradation of Brilliant blue R in water using periodate ions: Implication of iodine radicals in the oxidation process. ULTRASONICS SONOCHEMISTRY 2017; 37:344-350. [PMID: 28427642 DOI: 10.1016/j.ultsonch.2017.01.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 05/12/2023]
Abstract
In this paper, the effect of periodate (IO4-) on the ultrasonic degradation at 300kHz of Brilliant Blue R (BBR), an organic dye pollutant, was investigated. The experiments were realized in the absence and presence of periodate for various operating conditions including initial solution pH (2-8) and delivered ultrasonic power (20-80W). It was found that periodate greatly enhanced the sonochemical degradation of BBR. The degradation rate increased significantly with increasing IO4- concentration up to 10mM and decreased afterward. With 10mM of periodate, the degradation rate was 2.4-fold higher than that with ultrasound alone. The chemical probes experiments showed that periodate activation into free radicals (IO3, IO4 and OH) takes place by sonolysis and iodine radicals contribute significantly in the oxidation process. It was found that the periodate-enhanced effect was strongly experimental parameters dependent. The advantageous effect of periodate increased significantly with decreasing power and the best enhancing effect was obtained for the lowest power. Correspondingly, the periodate-enhanced effect increased with pH increase in the range 2-8 and it was more remarkable at near alkaline condition (pH 8). A reaction scheme for periodate sonolysis was proposed, for the first time, discussed and then used for interpreting the obtained results.
Collapse
Affiliation(s)
- Oualid Hamdaoui
- Laboratory of Environmental Engineering, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar - Annaba University, P.O. Box 12, 23000 Annaba, Algeria
| | - Slimane Merouani
- Laboratory of Environmental Engineering, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar - Annaba University, P.O. Box 12, 23000 Annaba, Algeria; Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University of Constantine 3, 25000 Constantine, Algeria.
| |
Collapse
|
11
|
Li X, Liu X, Qi C, Lin C. Activation of periodate by granular activated carbon for acid orange 7 decolorization. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.08.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Lee H, Yoo HY, Choi J, Nam IH, Lee S, Lee S, Kim JH, Lee C, Lee J. Oxidizing capacity of periodate activated with iron-based bimetallic nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:8086-8093. [PMID: 24896837 DOI: 10.1021/es5002902] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nanosized zerovalent iron (nFe0) loaded with a secondary metal such as Ni or Cu on its surface was demonstrated to effectively activate periodate (IO4-) and degrade selected organic compounds at neutral pH. The degradation was accompanied by a stoichiometric conversion of IO4- to iodate (IO3-). nFe0 without bimetallic loading led to similar IO4- reduction but no organic degradation, suggesting the production of reactive iodine intermediate only when IO4- is activated by bimetallic nFe0 (e.g., nFe0-Ni and nFe0-Cu). The organic degradation kinetics in the nFe0-Ni(or Cu)/IO4- system was substrate dependent: 4-chlorophenol, phenol, and bisphenol A were effectively degraded, whereas little or no degradation was observed with benzoic acid, carbamazepine, and 2,4,6-trichlorophenol. The substrate specificity, further confirmed by little kinetic inhibition with background organic matter, implies the selective nature of oxidant in the nFe0-Ni(or Cu)/IO4- system. The comparison with the photoactivated IO4- system, in which iodyl radical (IO3•) is a predominant oxidant in the presence of methanol, suggests IO3• also as primary oxidant in the nFe0-Ni(or Cu)/IO4- system.
Collapse
Affiliation(s)
- Hongshin Lee
- Center for Water Resource Cycle, Korea Institute of Science and Technology , Seoul 136-791, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|