1
|
Cai Z, Li Y, Li J, Zhang Z, Yang T, Yang S. Nitrogen-doped carbon quantum dots from pumpkin for the sensing of nifuratel and temperature. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125758. [PMID: 39837228 DOI: 10.1016/j.saa.2025.125758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Herein, nitrogen doped carbon quantum dots (N-CQDs) were synthesized using a hydrothermal strategy. The raw materials for the preparation of N-CQDs were sourced from pumpkin and melamine. The N-CQDs suggested fascinating water solubility, favorable UV and salt resistance stability. The fluorescence quantum yield of N-CQDs was carried out to be 16.7 %. The prepared N-CQDs suggested good optical features and favorable blue fluorescence under a UV lamp (365 nm). The as-prepared N-CQDs could be employed as rapid, sensitive and promising fluorescence nanoprobes to detect nifuratel because of static quenching and inter filter effect. For nifuratel detection, the linear range of 0.5-100 μM and detection limit of 0.074 μM were obtained. Furthermore, N-CQDs were subsequently applied to determine nifuratel in river water and Yili milk samples with acceptable experiment results. Significantly, N-CQDs suggested evident temperature-sensitive characteristics and were employed as fluorescent temperature sensing nanoprobes.
Collapse
Affiliation(s)
- Zhifeng Cai
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619 PR China.
| | - Yanan Li
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619 PR China
| | - Jinghong Li
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619 PR China
| | - Ziyue Zhang
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619 PR China
| | - Tian Yang
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619 PR China
| | - Shuying Yang
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619 PR China
| |
Collapse
|
2
|
Sudewi S, Sashank PVS, Rasool A, Ullah N, Zulfajri M, Chen HY, Huang GG. Fluorescence and Colorimetric Dual-Readout Detection of Tetracycline Using Leucine-Conjugated Iron Oxide Quantum Dots. APPLIED SPECTROSCOPY 2024; 78:1191-1202. [PMID: 39308416 DOI: 10.1177/00037028241279464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
This study developed a dual-readout system utilizing fluorescence and colorimetry based on iron oxide quantum dots (IO-QDs) for detecting tetracycline (TCy). IO-QDs were synthesized within 6 h using L-leucine as a surface modifier, achieving a more efficient route. Upon interaction with TCy, IO-QDs exhibited a significant decrease in fluorescence response and observable color changes, while fluorescence lifetime remained consistent regardless of TCy presence. Moreover, IO-QDs' fluorescence response remained stable across various temperatures. The Förster resonance energy transfer distance of less than 2 nm and a quenching constant of 2.90 × 1012 M-1s-1 indicated static quenching in the presence of TCy. Additionally, significant changes in observed and corrected fluorescence efficiency suggested the involvement of the inner filter effect in the fluorescence quenching of IO-QDs. The synthesized IO-QDs were then utilized for selective and rapid fluorescence-based TCy detection, showing a linear range of 0.5 to 80 μM. Simultaneously, a colorimetric method for TCy detection was established, demonstrating a good linear relationship within the range of 0.5 to 20 μM. The detection limits for TCy were determined as 0.539 and 0.329 μM using fluorescence and colorimetric approaches, respectively. Furthermore, IO-QDs were applied to detect real samples, and the dual-readout probe exhibited satisfactory recoveries, confirming the practical reliability of the developed method for analyzing milk and drinking water samples.
Collapse
Affiliation(s)
- Sri Sudewi
- Department of Pharmacy, Faculty of Mathematics and Natural Science, Universitas Sam Ratulangi, Manado, Indonesia
| | | | - Akhtar Rasool
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), Tangerang, Indonesia
| | - Najeeb Ullah
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung
| | - Muhammad Zulfajri
- Department of Chemistry Education, Universitas Serambi Mekkah, Banda Aceh, Indonesia
| | - Hsuan-Ying Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung
| | - Genin Gary Huang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung
| |
Collapse
|
3
|
Sudewi S, Sai Sashank PV, Kamaraj R, Zulfajri M, Huang GG. Understanding Antibiotic Detection with Fluorescence Quantum Dots: A Review. J Fluoresc 2024:10.1007/s10895-024-03743-4. [PMID: 38771407 DOI: 10.1007/s10895-024-03743-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
The utilization of fluorescent quantum dots (FL QDs) has gained significant traction in the realm of antibiotic detection, owing to their exceptional FL properties and versatility. Various types of QDs have been tailored to exhibit superior FL characteristics, employing diverse capping agents such as metals, surfactants, polymers, and biomass to protect and stabilize their surfaces. In their evolution, FL QDs have demonstrated both "turn-off" and "turn-on" mechanisms in response to the presence of analytes, offering promising avenues for biosensing applications. This review article provides a comprehensive overview of the recent advancements in antibiotic detection utilizing FL QDs as biosensors. It encompasses an extensive examination of different types of FL QDs, including carbon, metal, and core-shell QDs, deployed for the detection of antibiotics. Furthermore, the synthesis methods employed for the fabrication of various FL QDs are elucidated, shedding light on the diverse approaches adopted in their preparation. Moreover, this review delves into the intricate sensing mechanisms underlying FL QDs-based antibiotic detection. Various mechanisms, such as photoinduced electron transfer, electron transfer, charge transfer, Forster resonance energy transfer, static quenching, dynamic quenching, inner filter effect, hydrogen bonding, and aggregation-induced emission, are discussed in detail. These mechanisms provide a robust scientific rationale for the detection of antibiotics using FL QDs, showcasing their potential for sensitive and selective sensing applications. Finally, the review addresses current challenges and offers perspectives on the future improvement of FL QDs in sensing applications. Insights into overcoming existing limitations and harnessing emerging technologies are provided, charting a course for the continued advancement of FL QDs-based biosensing platforms in the field of antibiotic detection.
Collapse
Affiliation(s)
- Sri Sudewi
- Department of Pharmacy, Faculty of Mathematics and Natural Science, Universitas Sam Ratulangi, Manado, 95115, Indonesia
| | - Penki Venkata Sai Sashank
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Rajiv Kamaraj
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Muhammad Zulfajri
- Department of Chemistry Education, Universitas Serambi Mekkah, Banda Aceh, Aceh, 23245, Indonesia.
| | - Genin Gary Huang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
4
|
Sudewi S, Li CH, Chabib L, Rasool A, Arputharaj E, Zulfajri M, Huang GG. Turn-off/turn-on biosensing of tetracycline and ciprofloxacin antibiotics using fluorescent iron oxide quantum dots. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1261-1271. [PMID: 38323472 DOI: 10.1039/d3ay02168h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
A fluorescence probe based on iron oxide quantum dots (IO-QDs) was synthesized using the hydrothermal method for the determination of tetracycline (TCy) and ciprofloxacin (CPx) in aqueous solution. The IO-QDs were characterized using high-resolution transmission electron microscopy (HR-TEM), powder X-ray diffraction (P-XRD), vibrating sample magnetometry (VSM), and Fourier-transform infrared spectroscopy (FTIR). The as-prepared IO-QDs are fluorescent, stable, and with a fluorescence quantum yield (QY) of 9.8 ± 0.12%. The fluorescence of IO-QDs was observed to be quenched and enhanced in the presence of TCy and CPx, respectively. The fluorescence intensity ratio shows linearity at concentrations from 1-100 μM and 5-100 μM for TCy and CPx, respectively; the detection limit for TCy and CPx was estimated to be 0.71 μM and 1.56 μM, respectively. The proposed method was also successfully utilized in the spiked samples of drinking water and honey with good recoveries. The method offered convenience, rapid detection, high sensitivity, selectivity, and cost-efficient alternative options for the determination of TCy and CPx in real samples.
Collapse
Affiliation(s)
- Sri Sudewi
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Pharmacy, Faculty of Mathematics and Natural Science, Universitas Sam Ratulangi, Manado 95115, Indonesia
| | - Chien-Hung Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Lutfi Chabib
- Pharmacy Study Program, Faculty of Mathematics and Science, Universitas Islam Indonesia, Yogyakarta 55584, Indonesia
| | - Akhtar Rasool
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), KST BJ Habibie, Setu, Tangerang Selatan 15314, Indonesia
| | - Emmanuvel Arputharaj
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Muhammad Zulfajri
- Department of Chemistry Education, Universitas Serambi Mekkah, Banda Aceh 23245, Indonesia
| | - Genin Gary Huang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
5
|
Fan SH, Wang WQ, Zhou YW, Gao XJ, Zhang Q, Zhang MH. Research on the Interaction Mechanism and Structural Changes in Human Serum Albumin with Hispidin Using Spectroscopy and Molecular Docking. Molecules 2024; 29:655. [PMID: 38338399 PMCID: PMC10856618 DOI: 10.3390/molecules29030655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The interaction between human serum albumin (HSA) and hispidin, a polyketide abundantly present in both edible and therapeutic mushrooms, was explored through multispectral methods, hydrophobic probe assays, location competition trials, and molecular docking simulations. The results of fluorescence quenching analysis showed that hispidin quenched the fluorescence of HSA by binding to it via a static mechanism. The binding of hispidin and HSA was validated further by synchronous fluorescence, three-dimensional fluorescence, and UV/vis spectroscopy analysis. The apparent binding constant (Ka) at different temperatures, the binding site number (n), the quenching constants (Ksv), the dimolecular quenching rate constants (Kq), and the thermodynamic parameters (∆G, ∆H, and ∆S) were calculated. Among these parameters, ∆H and ∆S were determined to be 98.75 kJ/mol and 426.29 J/(mol·K), respectively, both exhibiting positive values. This observation suggested a predominant contribution of hydrophobic forces in the interaction between hispidin and HSA. By employing detergents (SDS and urea) and hydrophobic probes (ANS), it became feasible to quantify alterations in Ka and surface hydrophobicity, respectively. These measurements confirmed the pivotal role of hydrophobic forces in steering the interaction between hispidin and HSA. Site competition experiments showed that there was an interaction between hispidin and HSA molecules at site I, which situates the IIA domains of HSA, which was further confirmed by the molecular docking simulation.
Collapse
Affiliation(s)
- Si-Hua Fan
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, No. 1, Kechuang Road, Maonan District, Maoming 525000, China; (S.-H.F.); (W.-Q.W.)
- College of Animal Science and Technology, Yangtze University, 88 Jingmi Road, Jingzhou District, Jingzhou 434025, China; (Y.-W.Z.); (X.-J.G.)
| | - Wen-Qiang Wang
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, No. 1, Kechuang Road, Maonan District, Maoming 525000, China; (S.-H.F.); (W.-Q.W.)
- College of Animal Science and Technology, Yangtze University, 88 Jingmi Road, Jingzhou District, Jingzhou 434025, China; (Y.-W.Z.); (X.-J.G.)
| | - Yu-Wen Zhou
- College of Animal Science and Technology, Yangtze University, 88 Jingmi Road, Jingzhou District, Jingzhou 434025, China; (Y.-W.Z.); (X.-J.G.)
| | - Xue-Jun Gao
- College of Animal Science and Technology, Yangtze University, 88 Jingmi Road, Jingzhou District, Jingzhou 434025, China; (Y.-W.Z.); (X.-J.G.)
| | - Qiang Zhang
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, No. 1, Kechuang Road, Maonan District, Maoming 525000, China; (S.-H.F.); (W.-Q.W.)
| | - Ming-Hui Zhang
- College of Animal Science and Technology, Yangtze University, 88 Jingmi Road, Jingzhou District, Jingzhou 434025, China; (Y.-W.Z.); (X.-J.G.)
| |
Collapse
|
6
|
Andregic N, Weaver C, Basu S. The binding of a c-MYC promoter G-quadruplex to neurotransmitters: An analysis of G-quadruplex stabilization using DNA melting, fluorescence spectroscopy, surface-enhanced Raman scattering and molecular docking. Biochim Biophys Acta Gen Subj 2023; 1867:130473. [PMID: 37778448 DOI: 10.1016/j.bbagen.2023.130473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
The interactions of several neurotransmitter and neural hormone molecules with the c-MYC G-quadruplex DNA sequence were analyzed using a combination of spectroscopic and computational techniques. The interactions between indole, catecholamine, and amino acid neurotransmitters and DNA sequences could potentially add to the understanding of the role of G-quadruplex structures play in various diseases. Also, the interaction of the DNA sequence derived from the nuclear hypersensitivity element (NHE) III1 region of c-MYC oncogene (Pu22), 5'-TGAGGGTGGGTAGGGTGGGTAA-3', has added significance in that these molecules may promote or inhibit the formation of G-quadruplex DNA which could lead to the development of promising drugs for anticancer therapy. The results showed that these molecules did not disrupt G-quadruplex formation even in the absence of quadruplex-stabilizing cations. There was also evidence of concentration-dependent binding and high binding affinities based on the Stern-Volmer model, and thermodynamically favorable interactions in the form of hydrogen-bonding and interactions involving the π system of the aromatic neurotransmitters.
Collapse
Affiliation(s)
- Nicole Andregic
- Department of Biology, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Caitlin Weaver
- Department of Biology, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Swarna Basu
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA.
| |
Collapse
|
7
|
Hamada WM, El-Nahass MN, Noser AA, Fayed TA, El-Kemary M, Salem MM, Bakr EA. Simple dihydropyridine-based colorimetric chemosensors for heavy metal ion detection, biological evaluation, molecular docking, and ADMET profiling. Sci Rep 2023; 13:15420. [PMID: 37723190 PMCID: PMC10507071 DOI: 10.1038/s41598-023-42137-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023] Open
Abstract
In this study, two novel chemosensors containing dihydropyridine fragment namely; (2E, 2E')-1,1'-(2,6-dimethyl-1,4-dihydropyridine-3,5-diyl)bis(3-(4-(dimethylamino)phenyl)prop-2-en-1-one) (1), (2E,2E',4E,4E')-1,1' -(2,6-dimethyl-1,4-dihydropyridine-3,5-diyl)bis(5-(4-(dimethylamino)phenyl)penta-2,4-dien-1-one) (2) have been synthesized and characterized. The solvatochromic behavior was explored in different solvents of various polarities. The visual detection, as well as UV-Vis and fluorescence measurements were carried out to explore the colorimetric and optical sensing properties of the investigated chemosensors towards various metal ions such as Al3+, Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Mg2+, Hg2+ and Zn2+. The chemosensors 1 and 2 have strong detecting abilities, with excellent sensitivity and selectivity for Cu2+ and Fe3+, respectively, over the other metal ions. The chemosensors were totally reversible upon addition of EDTA to the formed complexes and displayed a turn on-off-on fluorescence response based on an effect of chelation-quenching fluorescence. The antioxidant activities of the investigated chemosensors were assessed. They were examined in-silico for their capacity to block the Akt signaling pathway, which is involved in cancer proliferation with interpreting their pharmacokinetics aspects. Furthermore, in-vitro antitumor evaluation against a panel of cancer cell lines for the investigated chemosensors has been examined. Conclusively, chemosensor 1 was more effective at scavenging free radicals and as an anticancer agent and could be exploited as a therapeutic candidate for cancer therapy than chemosensor 2 due to its potential inhibition of Akt protein.
Collapse
Affiliation(s)
- Wafaa M Hamada
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Marwa N El-Nahass
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Ahmed A Noser
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Tarek A Fayed
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Maged El-Kemary
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Eman A Bakr
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
8
|
Sudewi S, Zulfajri M, Dayalan S, Hsu SCN, Huang GG. Glutamic acid-capped iron oxide quantum dots as fluorescent nanoprobe for tetracycline in urine. Mikrochim Acta 2023; 190:226. [PMID: 37198413 DOI: 10.1007/s00604-023-05801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/14/2023] [Indexed: 05/19/2023]
Abstract
The fabrication of iron oxide quantum dots (IO-QDs) modified with glutamic acid (Glu) under controllable conditions is reported. The IO-QDs have been characterized by transmission electron microscopy, spectrofluorometry, powder X-ray diffraction, vibrating sample magnetometry, UV-Vis spectroscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy. The IO-QDs exhibited good stability towards irradiation, temperature elevations, and ionic strength, and the quantum yield (QY) of IO-QDs was calculated to be 11.91 ± 0.09%. The IO-QDs were furtherly measured at an excitation wavelength of 330 nm with emission maxima at 402 nm, which were employed to detect tetracycline (TCy) antibiotics, including tetracycline (TCy), chlortetracycline (CTCy), demeclocycline (DmCy), and oxytetracycline (OTCy) in biological samples. The results indicated that TCy, CTCy, DmCy, and OTCy in urine samples show a dynamic working range between 0.01 and 80.0 μM; 0.01 and 1.0 μM; 0.01 and 10 μM; and 0.04 and 1.0 μM, respectively, with detection limits of 7.69 nM, 120.23 nM, 18.20 nM, and 67.74 nM, respectively. The detection was not interfered with by the auto-fluorescence from the matrices. In addition, the obtained recovery in real urine samples suggested that the developed method could be used in practical applications. Therefore, the current study has prospect to develop an easy, fast, eco-friendly, and efficient new sensing method for detecting tetracycline antibiotics in biological samples.
Collapse
Affiliation(s)
- Sri Sudewi
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Pharmacy, Faculty of Mathematics and Natural Science, Universitas Sam Ratulangi, Manado, 95115, Indonesia
| | - Muhammad Zulfajri
- Department of Chemistry Education, Universitas Serambi Mekkah, Banda Aceh, Aceh, 23245, Indonesia
| | - Sandhiya Dayalan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Sodio C N Hsu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Genin Gary Huang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
9
|
Herrera MG, Amundarain MJ, Santos J. Biophysical evaluation of the oligomerization and conformational properties of the N-terminal domain of TDP-43. Arch Biochem Biophys 2023; 737:109533. [PMID: 36740035 DOI: 10.1016/j.abb.2023.109533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/08/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
TDP-43 is an RNA-binding protein that presents four domains comprising an N-terminal region, two RNA recognition motifs and a C-terminal region. The N-terminal domain (NTD) has a relevant role in the oligomerization and splicing activity of TDP-43. In this work, we have expressed, purified and biophysically characterized the region that includes residues 1 to 102 that contains the nuclear localization signal (residues 80-102, NLS). Furthermore, we have evaluated the oligomerization equilibrium for this protein fragment. Also, we have determined changes in the tertiary structure and its stability in a broad range of pH values by means of different spectroscopic methods. Additionally, we compared this fragment with the one that lacks the NLS employing experimental and computational methods. Finally, we evaluated the motion of dimeric forms to get insights into the conformational flexibility of this TDP-43 module in an oligomeric state. Our results suggest that this domain has a conformational plasticity in the vicinity of the single tryptophan of this domain (Trp68), which is enhanced by the presence of the nuclear localization signal. All these results help to understand the molecular features of the NTD of TDP-43.
Collapse
Affiliation(s)
- Maria Georgina Herrera
- Faculty of Exact and Natural Sciences, Institute of Biosciences, Biotechnology and Translational Biology (iB3), University of Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina; Institute of Biochemistry and Pathobiochemistry, Ruhr-Universität Bochum, Gebäude MA 2/143, Universitätsstraße 150, 44801, Bochum, Germany.
| | - Maria Julia Amundarain
- Faculty of Chemistry, OCIII, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Javier Santos
- Faculty of Exact and Natural Sciences, Institute of Biosciences, Biotechnology and Translational Biology (iB3), University of Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| |
Collapse
|
10
|
Indumathy R, Senthilrajkapoor P, Kalaiarasi G, Sathyaraj G, Uma V. Synthesis, spectral characterization, protein binding and cytotoxic evaluation of new cobalt(II) and cobalt(III) complexes containing benzimidazolylterpyridine as ligand. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2141116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ramasamy Indumathy
- Department of Chemistry, Nallamuthu Gounder Mahalingam College, Pollachi, India
| | | | - Giriraj Kalaiarasi
- Department of Chemistry, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, India
| | - Gopal Sathyaraj
- Centre for Analysis, Testing, Evaluation & Reporting Services (CATERS), CSIR-Central Leather Research Institute, Adyar, Chennai, India
| | - Varadarajan Uma
- Department of Chemistry, Presidency College, Chepauk, Chennai, India
| |
Collapse
|
11
|
Hu M, Yang F, Huang Y, You X, Liu D, Sun S, Sui SF. Structural insights into the mechanism of human NPC1L1-mediated cholesterol uptake. SCIENCE ADVANCES 2021; 7:7/29/eabg3188. [PMID: 34272236 PMCID: PMC8284890 DOI: 10.1126/sciadv.abg3188] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/03/2021] [Indexed: 05/28/2023]
Abstract
Niemann-Pick C1-like 1 (NPC1L1) protein plays a central role in the intestinal cholesterol absorption and is the target of a drug, ezetimibe, which inhibits NPC1L1 to reduce cholesterol absorption. Here, we present cryo-electron microscopy structures of human NPC1L1 in apo state, cholesterol-enriched state, and ezetimibe-bound state to reveal molecular details of NPC1L1-mediated cholesterol uptake and ezetimibe inhibition. Comparison of these structures reveals that the sterol-sensing domain (SSD) could respond to the cholesterol level alteration by binding different number of cholesterol molecules. Upon increasing cholesterol level, SSD binds more cholesterol molecules, which, in turn, triggers the formation of a stable structural cluster in SSD, while binding of ezetimibe causes the deformation of the SSD and destroys the structural cluster, leading to the inhibition of NPC1L1 function. These results provide insights into mechanisms of NPC1L1 function and ezetimibe action and are of great significance for the development of new cholesterol absorption inhibitors.
Collapse
Affiliation(s)
- Miaoqing Hu
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Fan Yang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yawen Huang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xin You
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Desheng Liu
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| |
Collapse
|
12
|
Fenner K, Reynolds G, Basu S. Fluorescence quenching of various indoles by nickel complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118473. [PMID: 32447217 DOI: 10.1016/j.saa.2020.118473] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/23/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
The interactions between two nickel complexes with the ligand N,N'-bis (2-pyridylmethylene)-1,3-diaminopropyl and the indoles melatonin, serotonin, tryptamine, and tryptophol were characterized using UV-vis and fluorescence spectroscopy. The fluorescence of all the indoles were quenched in the presence of the complex with a hydroxyl group, indicating that hydrogen-bonding is a necessary interaction for quenching to occur. Various quenching parameters were determined using Stern-Volmer analysis and the quenching was determined to be of a mixed nature with high static quenching values (1011-1013 M-1). Additional analysis using the finite sink approximation indicated that the bimolecular reactions were not diffusion-limited and had high activation energies (135-199 kJ mol-1).
Collapse
Affiliation(s)
- Kristina Fenner
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, United States of America
| | - Gustin Reynolds
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, United States of America
| | - Swarna Basu
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, United States of America.
| |
Collapse
|
13
|
Kumar R, Uppal S, Kaur K, Mehta S. Curcumin nanoemulsion as a biocompatible medium to study the metal ion imbalance in a biological system. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Butkus JM, Pytko KG, Stead CE, Basu S. Binding of quadruplex DNA to nickel and zinc complexes monitored by surface-enhanced raman and fluorescence spectroscopy. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Shenbagavalli K, Yadav SK, Ananthappan P, Sundaram E, Ponmariappan S, Vasantha VS. A simple and fast protocol for the synthesis of 2-amino-4-(4-formylphenyl)-4 H-chromene-3-carbonitrile to develop an optical immunoassay for the quantification of botulinum neurotoxin type F. NEW J CHEM 2020. [DOI: 10.1039/d0nj04103c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, a novel optical immunoassay platform using (S)-2-amino-4-(4-formylphenyl)-4H-chromene-3-carbonitrile, which was synthesized by an ultra-sonication method, as an optical probe.
Collapse
Affiliation(s)
| | - Shiv Kumar Yadav
- Defence Research and Development Establishment
- Gwalior-474 002
- India
| | | | - Ellairaja Sundaram
- Department of Chemistry
- Vivekanada College Tiruvedakam West
- Madurai 625 234
- India
| | | | | |
Collapse
|
16
|
Zhao X, Zhao X, Yuan M, Han R, Lian J, Zhao X, Ji X, Zhang F. Study on physisorption between phycocyanin and gold nanoparticles. LUMINESCENCE 2019; 34:623-627. [PMID: 31144438 DOI: 10.1002/bio.3654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/27/2019] [Accepted: 05/06/2019] [Indexed: 01/05/2023]
Abstract
Interactions between nanoparticles (NPs) and biomolecules, especially proteins, have attracted increasing attention. Photoresponsive proteins have shown high potential for optogenetic research. The combination between optogenetics and nanotechnology will bring a new biological era in which photoresponsive proteins will inevitably encounter NPs, therefore their interactions will be a key point to investigate. Here, we have systematically studied the interactions between a photoresponsive protein (called phycocyanin, PC) and a typical kind of amphiphilic polymer-coated gold NPs (AP-AuNPs) using fluorescence quenching methods. The results showed that the binding constant between PCs and AP-AuNPs is 4.427 × 106 M-1 with a positive cooperativity, and the robust affinity was hydrophobic interaction driven mortise-tenon conjugation, which could even resist gel electrophoresis. These results could also shed light on potential designs for building up artificial protein-NP light-harvesting systems.
Collapse
Affiliation(s)
- Xiujuan Zhao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, 7 Arding Street, Baotou, China
| | - Xinyu Zhao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, 7 Arding Street, Baotou, China.,Biomedical Nanocenter, School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, China
| | - Ming Yuan
- Biomedical Nanocenter, School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, China
| | - Rong Han
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, 7 Arding Street, Baotou, China
| | - Jiaqi Lian
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, 7 Arding Street, Baotou, China.,Biomedical Nanocenter, School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, China
| | - Xinmin Zhao
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiang Ji
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, 7 Arding Street, Baotou, China
| | - Feng Zhang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, 7 Arding Street, Baotou, China.,Biomedical Nanocenter, School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, China.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Stănciuc N, Creţu AA, Banu I, Aprodu I. Advances on the impact of thermal processing on structure and antigenicity of chicken ovomucoid. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3119-3128. [PMID: 29210457 DOI: 10.1002/jsfa.8813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/07/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Ovomucoid (OVM) is the dominant allergen found in egg white. The heat-induced changes on chicken OVM structure and antigenic properties were assessed at acidic, neutral and alkaline pH values. RESULTS The fluorescence spectroscopy measurements indicated changes in the conformation of OVM caused by both pH and thermal treatment. The OVM molecule exhibited higher exposure of hydrophobic residues at 7.0, as indicated by the synchronous spectra, intrinsic fluorescence and quenching experiments. When heating the protein at pH 9.5, the molecular structure appeared more compact. The antigenic properties of OVM, estimated through the enzyme-linked immunosorbent assay, appeared not to be sensitive to heat at pH 7.0 and 4.5. Single molecule level investigations indicated that the secondary and tertiary structure of OVM was affected by the thermal treatment. CONCLUSIONS Experimental results indicated over 90% reduction of the antigenicity at pH 9.5 and temperature of 100 °C. Significant changes of the linear epitopes exposure and location of the conformational epitopes were highlighted after performing heating molecular dynamics simulations of OVM from 25 °C to 100 °C. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nicoleta Stănciuc
- Dunarea de Jos University of Galati, Faculty of Food Science and Engineering, Galati, Romania
| | - Alexandra Andreea Creţu
- Dunarea de Jos University of Galati, Faculty of Food Science and Engineering, Galati, Romania
| | - Iuliana Banu
- Dunarea de Jos University of Galati, Faculty of Food Science and Engineering, Galati, Romania
| | - Iuliana Aprodu
- Dunarea de Jos University of Galati, Faculty of Food Science and Engineering, Galati, Romania
| |
Collapse
|
18
|
Mehraban MH, Odooli S, Yousefi R, Roghanian R, Motovali-Bashi M, Moosavi-Movahedi AA, Ghasemi Y. The interaction of beta-lactoglobulin with ciprofloxacin and kanamycin; a spectroscopic and molecular modeling approach. J Biomol Struct Dyn 2017; 35:1968-1978. [PMID: 27562530 DOI: 10.1080/07391102.2016.1203819] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
A vast research has been conducted to find suitable and safe carriers for vital and pH-sensitive drugs including antibiotics. This article reports the use of easily accessible and abundant purified beta-lactoglobulin (β-LG) protein as the potential carrier of widely used Kanamycin (Kana) and Ciprofloxacin (Cip) antibiotics. Spectroscopic techniques (Fluorescence, UV-vis, Circular Dichroism) combined with molecular docking were used to determine the binding mechanism of these drugs. Fluorescence studies showed moderate binding affinity with the calculated binding constants KCip = 60.1 (±0.2) × 103 M-1 and Kkana = 2.5 (±0.6) × 103 M-1 with the order of Cip > Kana. Results of UV-vis were consistent with fluorescence measurements and demonstrated a stronger complexation for Cip rather than Kana. The secondary structure of β-LG was preserved upon interaction with Kana; however, a reduction in β-sheet content from 39.1 to 31.9% was convoyed with an increase in α-helix from 12.8 to 20.5% due to complexation of Cip. Molecular docking studies demonstrated that preferred binding sites of these drugs are not the same and several amino acids are involved in stabilizing the interaction. Based on the achieved results, Kana and Cip can spontaneously bind to β-LG and this protein may serve as their transport vehicle.
Collapse
Affiliation(s)
- Mohammad Hossein Mehraban
- a Pharmaceutical Sciences Research Center, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
- b Genetics Division, Biology Department , Faculty of Sciences , University of Isfahan , Isfahan , Iran
| | - Salman Odooli
- a Pharmaceutical Sciences Research Center, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
- c Department of Biology, Faculty of Sciences , University of Isfahan , Isfahan , Iran
| | - Reza Yousefi
- d Protein Chemistry Laboratory (PCL), Department of Biology , College of Sciences, Shiraz University , Shiraz , Iran
| | - Rasoul Roghanian
- c Department of Biology, Faculty of Sciences , University of Isfahan , Isfahan , Iran
| | - Majid Motovali-Bashi
- b Genetics Division, Biology Department , Faculty of Sciences , University of Isfahan , Isfahan , Iran
| | | | - Younes Ghasemi
- a Pharmaceutical Sciences Research Center, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
- f Department of Pharmaceutical Biotechnology , School of Pharmacy, Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
19
|
Microwave Assisted Synthesis, Characterisation and Fluorescence Studies of some Transition Metal Complexes with a Luminol Derivative. J Fluoresc 2017; 27:1171-1181. [DOI: 10.1007/s10895-017-2054-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/19/2017] [Indexed: 10/20/2022]
|
20
|
Complexes between ovalbumin nanoparticles and linoleic acid: Stoichiometric, kinetic and thermodynamic aspects. Food Chem 2016; 211:819-26. [DOI: 10.1016/j.foodchem.2016.05.137] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/19/2016] [Accepted: 05/21/2016] [Indexed: 12/17/2022]
|
21
|
Kaur K, Kumar R, Mehta SK. Formulation of saponin stabilized nanoemulsion by ultrasonic method and its role to protect the degradation of quercitin from UV light. ULTRASONICS SONOCHEMISTRY 2016; 31:29-38. [PMID: 26964921 DOI: 10.1016/j.ultsonch.2015.11.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 05/26/2023]
Abstract
The objective of the present study was to prepare quercitin (QT) loaded o/w nanoemulsion using food grade surfactants (saponin and tween 80). The prepared nanoemulsion) was stable up to 30 days. The average particle size of the nanoemulsion was 52 ± 10 nm. The formation of saponin stabilized nanoemulsion was confirmed by transmission electron microscopy. Quercitin (QT) trapped nanoemulsion showed higher stability on exposure to UV light (254 nm) as compared to water/ethanol system. The degradation rate was found to decrease from 9 ± 1%, 11 ± 1% at pH 7.4, 8.0 respectively as compared to 42 ± 2% in water/ethanol system. Attempt was also made to study the interaction of QT with two different bile salts (sodium cholate and sodium taurocholate). The free radical scavenging activity of DPPH quercitin and curcumin was compared in NEm media. The obtained IC50 value of quercitin, curcumin and ascorbic acid are 28.88 ± 1, 45.53 ± 2 and 51.51 ± 2 μM respectively. The values of binding constant for sodium cholate (NaC) and sodium taurocholate (NaTC) are 2.66 × 10(5) and 2.72 × 10(4) M(-1) respectively. Sodium cholate (NaC) was found to show strong interaction towards quercitin (QT) due to more electron density on oxygen atom of carboxylate ion.
Collapse
Affiliation(s)
- Khushwinder Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India.
| | - Raj Kumar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| | - S K Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| |
Collapse
|
22
|
Salci A, Toprak M. Spectroscopic investigations on the binding of Pyronin Y to human serum albumin. J Biomol Struct Dyn 2016; 35:8-16. [DOI: 10.1080/07391102.2015.1128357] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Abdullah Salci
- Department of Chemistry, Bingol University, Bingöl 12000, Turkey
| | - Mahmut Toprak
- Department of Chemistry, Bingol University, Bingöl 12000, Turkey
| |
Collapse
|
23
|
Abstract
A series of eight water soluble anionic, cationic, and neutral zinc(II) complexes were synthesized and characterized. The interaction of these complexes with bovine serum albumin (BSA), human serum albumin (HSA), lysozyme, and free tryptophan (Trp) was investigated using steady-state fluorescence spectroscopy. Static and dynamic fluorescence quenching analysis based on Stern-Volmer kinetics was conducted, and the decrease in fluorescence intensity of the Trp residue(s) can be ascribed predominantly to static quenching that occurs when the Zn complex binds to the protein and forms a nonfluorescent complex. The role played by the nature of the ligand, the metal, and complex charge in quenching Trp fluorescence was investigated. The binding association constants (Ka) ranged from 104 to 1010 M−1 and indicate that complexes with planar aromatic features have the strongest affinity for globular proteins and free Trp. Complexes with nonaromatic features failed to interact with these proteins at or in the vicinity of the Trp residues. These interactions were studied over a range of temperatures, and binding was found to weaken with the increase in temperature and was exothermic with a negative change in entropy. The thermodynamic parameters suggest that binding of Zn complexes to the proteins is a highly spontaneous and favorable process.
Collapse
|
24
|
Toprak M. Fluorescence study on the interaction of human serum albumin with Butein in liposomes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 154:108-113. [PMID: 26519918 DOI: 10.1016/j.saa.2015.10.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/03/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023]
Abstract
The interaction of Butein with human serum albumin in L-egg lecithin phosphatidycholine (PC) liposome has been investigated by fluorescence and absorption spectroscopy. The results of the fluorescence measurement indicated that Butein effectively quenched the intrinsic fluorescence of HSA via static quenching. The Stern–Volmer plots in all the liposome solutions showed a positive deviation from the linearity. According to the thermodynamic parameters, the hydrophobic interactions appeared be the major interaction forces between Butein and HSA. The effect of Butein on the conformation of HSA was also investigated by the synchronous fluorescence under the same experimental conditions. In addition, the partition coefficient of the Butein in the PC liposomes was also determined by using the fluorescence quenching process. The obtained results can be of biological significance in pharmacology and clinical medicine.
Collapse
Affiliation(s)
- Mahmut Toprak
- Department of Chemistry, Bingol University, Bingol 12000, Turkey.
| |
Collapse
|
25
|
Barbero N, Visentin S, Viscardi G. The different kinetic behavior of two potential photosensitizers for PDT. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2014.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|