1
|
Alshubramy MA, Alam MM, Alamry KA, Asiri AM, Hussein MA, Rahman MM. Ionic Organic Network-based C3-symmetric@Triazine core as a selective Hg +2 sensor. Des Monomers Polym 2024; 27:35-50. [PMID: 38903406 PMCID: PMC11188959 DOI: 10.1080/15685551.2024.2360746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
The C3-symmetry ionic polymer PPyTri has been designed with multi-walled carbon nanotubes (MWCNTs) or graphene nanoplatelets (GNPs) and studied as an ultrasensitive electrochemical sensor for trace Hg(II) detection. The synthesis approach incorporated attaching three pyridinium cationic components with chloride anions to the triazine core. The precursors, BPy, were synthesized using a condensation process involving 4-pyridine carboxaldehyde and focused nicotinic hydrazide. The polymer PPyTri was further modified with either MWCNTs or GNPs. The resulting ionic polymer PPyTri and its fabricated nanocomposites were characterized using infrared (IR), nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and powder X-ray diffraction (XRD). The analysis revealed that both the polymer and its nanocomposites have semi-crystalline structures. The electroactivity of the designed nanocomposites toward Hg + 2 ions revealed that among the nanocomposites and bare copolymer, the glassy carbon electrode (GCE) adapted with the PPyTri GNPs-5% exhibited the greatest current response over a wide range of Hg + 2 concentrations. The nanocomposite-modified electrode presented an excellent sensitivity of 83.33 µAµM - 1 cm - 2, a low detection limit of 0.033 nM, and a linear dynamic range of 0.1 nM to 0.01 mM (R2 = 0.9945).
Collapse
Affiliation(s)
- Maha A. Alshubramy
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M. M. Alam
- Department of Chemical Engineering, Z. H. Sikder University of Science and Technology (ZHSUST), Shariatpur, Bangladesh
| | - Khalid A. Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud A. Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Mohammed M. Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Zhao X, Wang Q, Kunthom R, Liu H. Sulfonic Acid-Grafted Hybrid Porous Polymer Based on Double-Decker Silsesquioxane as Highly Efficient Acidic Heterogeneous Catalysts for the Alcoholysis of Styrene Oxide. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6657-6665. [PMID: 36588472 DOI: 10.1021/acsami.2c17732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
β-Alkoxyalcohols generated from epoxide ring-opening reactions are significant due to their enormous value as pharmaceutical intermediates and fine chemicals. Using a phenyl-substituted double-decker-type silsesquioxane as the precursor, a hybrid porous material (PCS-DDSQ) was synthesized through a Scholl coupling reaction with an AlCl3 catalyst. Then, novel excellent Brønsted acid-derived silsesquioxane solid catalysts (PCS-DDSQ-SO3H-x) were successfully obtained through an electrophilic aromatic substitution reaction of chlorosulfonic acid on phenyl rings of PCS-DDSQ, fully characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, powder X-ray diffraction, temperature-programmed desorption, water contact angle, Brunauer-Emmett-Teller model, thermogravimetric analysis, and solid-state 13C and 29Si nuclear magnetic resonance techniques. The catalytic behavior of the PCS-DDSQ-SO3H-x with different SO3H loadings for the methanolysis of styrene oxide was compared and evaluated. The presence of SO3H groups endows them with excellent catalytic abilities, achieving the highest values from PCS-DDSQ-SO3H-1 (the acid site of its catalyst is 1.84 mmol/g) as 99% conversion and 100% selectivity for the methanolysis of styrene oxide in 30 min, which shows superior catalytic properties of low dosage and high efficiency. Furthermore, the PCS-DDSQ-SO3H-1 catalyst can maintain high activity and selectivity after three cycles. This study provides a feasible method for the preparation of Brønsted solid acid catalysts with different acid loadings by introducing the sulfonic group into PCS-DDSQ.
Collapse
Affiliation(s)
- Xiaohan Zhao
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Qingzheng Wang
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Rungthip Kunthom
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Hongzhi Liu
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
| |
Collapse
|
3
|
Duszczak J, Mrzygłód A, Mituła K, Dutkiewicz M, Januszewski R, Rzonsowska M, Dudziec B, Nowicki M, Kubicki M. Distinct insight into the use of difunctional double-decker silsesquioxanes as building blocks for alternating A–B type macromolecular frameworks. Inorg Chem Front 2023. [DOI: 10.1039/d2qi02161g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A distinct look at known, hydrosilylation reactions used for the formation of DDSQ-based linear A–B alternating macromolecular systems with DPn > 1000 is presented. Selected physicochemical properties of obtained hybrid co-polymers were determined.
Collapse
Affiliation(s)
- Julia Duszczak
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Aleksandra Mrzygłód
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Katarzyna Mituła
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Michał Dutkiewicz
- Adam Mickiewicz University Foundation, Poznan Science and Technology Park, Rubiez 46, 61-612 Poznan, Poland
| | - Rafał Januszewski
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Monika Rzonsowska
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Beata Dudziec
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Marek Nowicki
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Institute of Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| | - Maciej Kubicki
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| |
Collapse
|
4
|
Ding S, Zhao S, Gan X, Sun A, Xia Y, Liu Y. Design of Fluorescent Hybrid Materials Based on POSS for Sensing Applications. Molecules 2022; 27:3137. [PMID: 35630610 PMCID: PMC9146672 DOI: 10.3390/molecules27103137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 02/05/2023] Open
Abstract
Polyhedral oligomeric silsesquioxane (POSS) has a nanoscale silicon core and eight organic functional groups on the surface, with sizes from 0.7 to 1.5 nm. The three-dimensional nanostructures of POSS can be used to build all types of hybrid materials with specific performance and controllable nanostructures. The applications of POSS-based fluorescent materials have spread across various fields. In particular, the employment of POSS-based fluorescent materials in sensing application can achieve high sensitivity, selectivity, and stability. As a result, POSS-based fluorescent materials are attracting increasing attention due to their fascinating vistas, including unique structural features, easy fabrication, and tunable optical properties by molecular design. Here, we summarize the current available POSS-based fluorescent materials from design to sensing applications. In the design section, we introduce synthetic strategies and structures of the functionalized POSS-based fluorescent materials, as well as photophysical properties. In the application section, the typical POSS-based fluorescent materials used for the detection of various target objects are summarized with selected examples to elaborate on their wide applications.
Collapse
Affiliation(s)
- Sha Ding
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (S.Z.); (X.G.); (A.S.)
| | - Shuai Zhao
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (S.Z.); (X.G.); (A.S.)
| | - Xingyue Gan
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (S.Z.); (X.G.); (A.S.)
| | - Aokui Sun
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (S.Z.); (X.G.); (A.S.)
| | - Yong Xia
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (S.Z.); (X.G.); (A.S.)
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yuejun Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (S.Z.); (X.G.); (A.S.)
| |
Collapse
|
5
|
Udhayakumari D. Review on fluorescent sensors-based environmentally related toxic mercury ion detection. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01138-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Gon M, Tanaka K, Chujo Y. Recent Progresses on Designable Hybrids with Stimuli-Responsive Optical Properties Originating from Molecular Assembly Concerning Polyhedral Oligomeric Silsesquioxane. Chem Asian J 2022; 17:e202200144. [PMID: 35322576 DOI: 10.1002/asia.202200144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Indexed: 11/10/2022]
Abstract
In this review, we describe recent progresses on the stimuli-responsive hybrid materials based on polyhedral oligomeric silsesquioxane (POSS) and their applications as a chemical sensor. In particular, we explain the unique functions originating from molecular assembly concerning POSS-containing soft materials mainly from our studies. POSS has an inorganic cubic core composed of silicon-oxygen (Si-O) bonds and organic substituents at each vertex. Owing to intrinsic properties of POSS, such as high thermal stability, rigidity, and low chemical reactivity, various robust hybrid materials have been developed. From the numerous numbers of POSS hybrids, we herein focus on the environment-sensitive optical materials in which molecular assembly of POSS itself and functional units connected to POSS should be a key factor for expressing material properties. We also explain the mechanisms of chemical sensors originating from these stimuli-responsive optical properties. Stimuli-responsive excimer emission and pollutant detectors, nanoplastic sensors with the water-dispersive POSS networks, trans fatty acid sensors, turn-on luminescent sensors for aerobic condition and fluoride anion sensors are described. We also mention the mechanochromic polyurethane hybrids and the thermally-durable mechanochromic luminescent materials. The roles of the unique optical properties from soft materials composed of rigid POSS, which doesn't have significant light-absorption and emission properties in the visible region, are surveyed.
Collapse
Affiliation(s)
- Masayuki Gon
- Kyoto University: Kyoto Daigaku, Polymer Chemistry, Kyoto University, Katsura Nishikyo-ku, 615-8510, Kyoto, JAPAN
| | - Kazuo Tanaka
- Kyoto University, Graduate School of Engineering, Department of Polymer Chemistry, Katsura, Nishikyo-ku, 615-8510, Kyoto, JAPAN
| | - Yoshiki Chujo
- Kyoto University: Kyoto Daigaku, Polymer chemistry, Kyoto University, Katsura Nishikyo-ku, 615-8510, Kyoto, JAPAN
| |
Collapse
|
7
|
Ali S, Mansha M, Baig N, Khan SA. Recent Trends and Future Perspectives of Emergent Analytical Techniques for Mercury Sensing in Aquatic Environments. CHEM REC 2022; 22:e202100327. [PMID: 35253977 DOI: 10.1002/tcr.202100327] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/29/2022] [Accepted: 02/22/2022] [Indexed: 11/10/2022]
Abstract
Environmental emissions of mercury from industrial waste and natural sources, even in trace amounts, are toxic to organisms and ecosystems. However, industrial-scale mercury detection is limited by the high cost, low sensitivity/specificity, and poor selectivity of the available analytical tools. This review summarizes the key sensors for mercury detection in aqueous environments: colorimetric-, electrochemical-, fluorescence-, and surface-enhanced Raman spectroscopy-based sensors reported between 2014-2021. It then compares the performances of these sensors in the determination of inorganic mercury (Hg2+ ) and methyl mercury (CH3 Hg+ ) species in aqueous samples. Mercury sensors for aquatic applications still face serious challenges in terms of difficult deployment in remote areas and low robustness, reliability, and selectivity in harsh environments. We provide future perspectives on the selective detection of organomercury species, which are especially toxic and reactive in aquatic environments. This review is intended as a valuable resource for scientists in the field of mercury sensing.
Collapse
Affiliation(s)
- Shahid Ali
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Muhammad Mansha
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Safyan Akram Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| |
Collapse
|
8
|
Liu Y, Koizumi K, Takeda N, Unno M, Ouali A. Synthesis of Octachloro- and Octaazido-Functionalized T 8-Cages and Application to Recyclable Palladium Catalyst. Inorg Chem 2022; 61:1495-1503. [PMID: 34995060 DOI: 10.1021/acs.inorgchem.1c03209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Unprecedented T8-cages bearing eight chloromethyldimethylsilylethyl substituents were obtained in excellent yield from the readily and commercially available octavinylsilsesquioxane. The chloro groups can be quantitatively substituted by azido ones to yield the corresponding octaazido T8 without rearrangement of the cage. The syntheses of both functionalizable POSSs are scalable (gram-scale). The azido-functionalized T8 compound constitutes a versatile building block able to undergo copper-catalyzed azide-alkyne [3 + 2] cycloaddition. As a proof of concept, it was allowed to react with 2-ethynylpyridine to give rise to a multidentate ligand bearing eight 2-pyridyl-triazole moieties (N,N-pincers). The coordination of the eight N,N-bidentate ligands to palladium(II) led to the corresponding octa-palladium complex shown to successfully promote the coupling reaction between anisole and phenylboronic acid. The low solubility of this catalytic complex in the reaction medium enabled (or facilitated or made possible) its straightforward recovery and recycling with four cycles with no loss of activity.
Collapse
Affiliation(s)
- Yujia Liu
- Gunma University Initiative for Advanced Research (GIAR)-International Open Laboratory with ICGM France, Kiryu 376-8515, Japan.,Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Kyoka Koizumi
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Nobuhiro Takeda
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Masafumi Unno
- Gunma University Initiative for Advanced Research (GIAR)-International Open Laboratory with ICGM France, Kiryu 376-8515, Japan.,Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Armelle Ouali
- Gunma University Initiative for Advanced Research (GIAR)-International Open Laboratory with ICGM France, Kiryu 376-8515, Japan.,ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34296, France
| |
Collapse
|
9
|
Xiong S, Sun W, Chen R, Yuan Z, Cheng X. Fluorescent dialdehyde-BODIPY chitosan hydrogel and its highly sensing ability to Cu 2+ ion. Carbohydr Polym 2021; 273:118590. [PMID: 34560991 DOI: 10.1016/j.carbpol.2021.118590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 11/19/2022]
Abstract
Fluorescent hydrogel with proper hydrophilicity and thermal stability, excellent sensitivity and high selectivity has important practical and scientific significance, especially in heavy metal ion detection. In this work, by adjusting the content of [2, 6-Bis-[4-formylthiophene]]-1,3,5,7-tetramethyl-8-phenyl-4, 4-difluoroborazaindoloene (B3), as a cross-linking agent, a series of chitosan- fluoroboron dipyrrole-chitosan-based fluorescent hydrogels (CBC) with large stokes shift were designed and prepared. The hydrogels can be used as fluorescent probes for identifying Cu2+ in aqueous solution. The linear quenching range of Cu2+ is 0-50 μM, and the detection limit and quenching constant are 4.75 μM and 3.52 × 104 M-1, respectively. Under the interaction of Cu2+, the imine bond CN was converted to C- N bond, which causes the phenomenon of fluorescence quenching. In addition, relatively high crosslink density improves hydrophilicity and thermal stability of initial chitosan, and made the swelling ability better.
Collapse
Affiliation(s)
- Shuangyu Xiong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Wei Sun
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Rong Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Zhiqiang Yuan
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
10
|
Lenora C, Hu NH, Furgal JC. Thermally Stable Fluorogenic Zn(II) Sensor Based on a Bis(benzimidazole)pyridine-Linked Phenyl-Silsesquioxane Polymer. ACS OMEGA 2020; 5:33017-33027. [PMID: 33403263 PMCID: PMC7774080 DOI: 10.1021/acsomega.0c04366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/04/2020] [Indexed: 05/05/2023]
Abstract
A 2,6-bis(2-benzimidazolyl) pyridine-linked silsesquioxane-based semi-branched polymer was synthesized, and its photophysical and metal-sensing properties have been investigated. The polymer is thermally stable up to 285 °C and emits blue in both solid and solution state. The emission of the polymer is sensitive to pH and is gradually decreased and quenched upon protonation of the linkers. The initial emission color is recoverable upon deprotonation with triethylamine. The polymer also shows unique spectroscopic properties in both absorption and emission upon long-term UV irradiation, with red-shifted absorption and emission not present in a simple blended system of phenylsilsesquioxane and linker, suggesting that a long-lived energy transfer or charge separated state is present. In addition, the polymer acts as a fluorescence shift sensor for Zn(II) ions, with red shifts observed from 464 to 528 nm, and reversible binding by the introduction of a competitive ligand such as tetrahydrofuran. The ion sensing mechanism can differentiate Zn(II) from Cd(II) by fluorescence color shifts, which is unique because they are in the same group of the periodic table and possess similar chemical properties. Finally, the polymer system embedded in a paper strip acts as a fluorescent chemosensor for Zn(II) ions in solution, showing its potential as a solid phase ion extractor.
Collapse
Affiliation(s)
| | - Nai-hsuan Hu
- Department of Chemistry and Center
for Photochemical Sciences, Bowling Green
State University, Bowling
Green, Ohio 43403, United States
| | - Joseph C. Furgal
- Department of Chemistry and Center
for Photochemical Sciences, Bowling Green
State University, Bowling
Green, Ohio 43403, United States
| |
Collapse
|
11
|
Liu Y, Kigure M, Koizumi K, Takeda N, Unno M, Ouali A. Synthesis of Tetrachloro, Tetraiodo, and Tetraazido Double-Decker Siloxanes. Inorg Chem 2020; 59:15478-15486. [PMID: 33026805 DOI: 10.1021/acs.inorgchem.0c02515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A convenient and scalable (gram-scale) route to unprecedented T8D2-double-decker siloxanes (DDSQs) bearing four chloro (3b) or four azido (5b) groups is reported. Both compounds were characterized and proved to undergo successful nucleophilic substitution for 3b (with iodide or azide) and copper-catalyzed azide-alkyne [3 + 2] cycloaddition for 5b. All of these transformations occurred under mild conditions, and the corresponding DDSQs were prepared in very high yields. Beyond the enhanced multivalency as compared to the previously described disubstituted D2T8 structures, the reported tetrafunctional DDSQs are formed as a single isomer and readily isolated in very high yields. Moreover, the tetra-azido DDSQ 5b constitutes a multipurpose nanobuilding block for the further preparation of new inorganic-organic hybrid materials where the covalent incorporation of a DDSQ moiety brings valuable properties.
Collapse
Affiliation(s)
- Yujia Liu
- Gunma University Initiative for Advanced Research (GIAR)-International Open Laboratory with Institute Charles Gerhardt, Gunma University, Kiryu 376-8515, Japan.,Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Mana Kigure
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Kyoka Koizumi
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Nobuhiro Takeda
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Masafumi Unno
- Gunma University Initiative for Advanced Research (GIAR)-International Open Laboratory with Institute Charles Gerhardt, Gunma University, Kiryu 376-8515, Japan.,Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Armelle Ouali
- Gunma University Initiative for Advanced Research (GIAR)-International Open Laboratory with Institute Charles Gerhardt, Gunma University, Kiryu 376-8515, Japan.,Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM-ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 05, France
| |
Collapse
|
12
|
Christus AAB, Panneerselvam P. Enhanced Peroxidase Mimetic Activity of Magnetic Porous Carbon (MPC) Utilized in Colorimetric Sensing of Hg (II) Ions in Aqueous Medium. ChemistrySelect 2020. [DOI: 10.1002/slct.202002743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Augustine Anand Babu Christus
- Department of Chemistry SRM Institute of Science and Technology, Ramapuram campus- 600 089 Tamil Nadu India- 600 089
| | - Perumal Panneerselvam
- Department of Chemistry SRM Institute of Science and Technology Kattankulathur 603 203 Tamil Nadu India
| |
Collapse
|
13
|
A novel pyrenyl salicylic acid fluorophore for highly selective detection of paraquat in aqueous media. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Katowah DF, Alqarni S, Mohammed GI, Al Sheheri SZ, Alam MM, Ismail SH, Asiri AM, Hussein MA, Rahman MM. Selective Hg
2+
sensor performance based various carbon‐nanofillers into
CuO‐PMMA
nanocomposites. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dina F. Katowah
- Chemistry Department, Faculty of ScienceKing Abdulaziz University Jeddah Saudi Arabia
- Department of Chemistry, Faculty of Applied ScienceUmm Al‐Qura University Makkah Saudi Arabia
| | - Sara Alqarni
- Department of Chemistry, College of ScienceUniversity of Jeddah Jeddah Saudi Arabia
| | - Gharam I. Mohammed
- Department of Chemistry, Faculty of Applied ScienceUmm Al‐Qura University Makkah Saudi Arabia
| | - Soad Z. Al Sheheri
- Chemistry Department, Faculty of ScienceKing Abdulaziz University Jeddah Saudi Arabia
| | - M. M. Alam
- Department of Chemical Engineering and Polymer ScienceShahjalal University of Science and Technology Sylhet Bangladesh
| | | | - Abdullah M. Asiri
- Chemistry Department, Faculty of ScienceKing Abdulaziz University Jeddah Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University Jeddah Saudi Arabia
| | - Mahmoud A. Hussein
- Chemistry Department, Faculty of ScienceKing Abdulaziz University Jeddah Saudi Arabia
- Polymer chemistry Lab., Chemistry Department, Faculty of ScienceAssiut University Assiut Egypt
| | - Mohammed M. Rahman
- Chemistry Department, Faculty of ScienceKing Abdulaziz University Jeddah Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
15
|
Ma H, Wu R, Xiong J, Guo H, Yang F. Bis-biphenylacrylonitrile bridged with crown ether chain: a novel fluorescence sensor for Fe 3+ in aqueous media. NEW J CHEM 2020. [DOI: 10.1039/d0nj02412k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel fluorescence sensor for Fe3+ in aqueous media was developed and applied for living-cell imaging.
Collapse
Affiliation(s)
- Haifeng Ma
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Rongqin Wu
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Jie Xiong
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Hongyu Guo
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Fafu Yang
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- P. R. China
- Fujian Key Laboratory of Polymer Materials
| |
Collapse
|
16
|
Synthesis and Characterization of Unsymmetrical Double-Decker Siloxane (Basket Cage). Molecules 2019; 24:molecules24234252. [PMID: 31766625 PMCID: PMC6930635 DOI: 10.3390/molecules24234252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/27/2023] Open
Abstract
The one-pot synthesis of an unsymmetrical double-decker siloxane with a novel structure via the reaction of double-decker tetrasodiumsilanolate with 1 equiv. of dichlorotetraphenyldisiloxane in the presence of an acid is reported herein for the first time. The target compound bearing all phenyl substituents on the unsymmetrical siloxane structure was successfully obtained, as confirmed by 1H-NMR, 13C-NMR, 29Si-NMR, IR, MALDI-TOF, and X-ray crystallography analyses. Additionally, the thermal properties of the product were evaluated by TG/DTA and compared with those of other siloxane cage compounds.
Collapse
|
17
|
Synthesis of highly fluorescent RhDCP as an ideal inner filter effect pair for the NaYF4:Yb,Er upconversion fluorescent nanoparticles to detect trace amount of Hg(II) in water and food samples. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Synthetic Routes to Silsesquioxane-Based Systems as Photoactive Materials and Their Precursors. Polymers (Basel) 2019; 11:polym11030504. [PMID: 30960488 PMCID: PMC6473884 DOI: 10.3390/polym11030504] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 11/24/2022] Open
Abstract
Over the past two decades, organic optoelectronic materials have been considered very promising. The attractiveness of this group of compounds, regardless of their undisputable application potential, lies in the possibility of their use in the construction of organic–inorganic hybrid materials. This class of frameworks also considers nanostructural polyhedral oligomeric silsesquioxanes (POSSs) with “organic coronae” and precisely defined organic architectures between dispersed rigid silica cores. A significant number of papers on the design and development of POSS-based organic optoelectronic as well as photoluminescent (PL) materials have been published recently. In view of the scientific literature abounding with numerous examples of their application (i.e., as OLEDs), the aim of this review is to present efficient synthetic pathways leading to the formation of nanocomposite materials based on silsesquioxane systems that contain organic chromophores of complex nature. A summary of stoichiometric and predominantly catalytic methods for these silsesquioxane-based systems to be applied in the construction of photoactive materials or their precursors is given.
Collapse
|
19
|
Christus AAB, Panneerselvam P, Ravikumar A, Morad N, Sivanesan S. Colorimetric determination of Hg(II) sensor based on magnetic nanocomposite (Fe3O4@ZIF-67) acting as peroxidase mimics. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Saini N, Prigyai N, Wannasiri C, Ervithayasuporn V, Kiatkamjornwong S. Green synthesis of fluorescent N,O-chelating hydrazone Schiff base for multi-analyte sensing in Cu2+, F− and CN− ions. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.03.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
A new “on-off-on” fluorescent sensor for cascade recognition of Hg2+ and S2− ion in aqueous medium. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.03.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|