1
|
Ambrosini V, Riou C. The dark side of 5,10,15,20-(tetra-4-sulfonatophenyl)porphyrin tetra-ammonium (TPPS) on Botrytis cinerea mycelium growth. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
2
|
Maldonado-Carmona N, Ouk TS, Villandier N, Calliste CA, Calvete MJF, Pereira MM, Leroy-Lhez S. Photophysical and Antibacterial Properties of Porphyrins Encapsulated inside Acetylated Lignin Nanoparticles. Antibiotics (Basel) 2021; 10:513. [PMID: 33946390 PMCID: PMC8147155 DOI: 10.3390/antibiotics10050513] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 12/24/2022] Open
Abstract
Lignin has recently attracted the attention of the scientific community, as a suitable raw material for biomedical applications. In this work, acetylated lignin was used to encapsulate five different porphyrins, aiming to preserve their photophysical properties, and for further use as antibacterial treatment. The obtained nanoparticles were physically characterized, through dynamic light scattering size measurement, polydispersity index and zeta potential values. Additionally, the photophysical properties of the nanoparticles, namely UV-vis absorption, fluorescence emission, singlet oxygen production and photobleaching, were compared with those of the free porphyrins. It was found that all the porphyrins were susceptible to encapsulation, with an observed decrease in their fluorescence quantum yield and singlet oxygen production. These nanoparticles were able to exert an effective photodynamic bactericide effect (blue-LED light, 450-460 nm, 15 J/cm2) on Staphylococcus aureus and Escherichia coli. Furthermore, it was achieved a photodynamic bactericidal activity on an encapsulated lipophillic porphyrin, where the free porphyrin failed to diminish the bacterial survival. In this work it was demonstrated that acetylated lignin encapsulation works as a universal, cheap and green material for the delivery of porphyrins, while preserving their photophysical properties.
Collapse
Affiliation(s)
- Nidia Maldonado-Carmona
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, 87060 Limoges, France; (N.M.-C.); (T.-S.O.); (N.V.)
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (M.J.F.C.); (M.M.P.)
| | - Tan-Sothea Ouk
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, 87060 Limoges, France; (N.M.-C.); (T.-S.O.); (N.V.)
| | - Nicolas Villandier
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, 87060 Limoges, France; (N.M.-C.); (T.-S.O.); (N.V.)
| | - Claude Alain Calliste
- PEIRENE Laboratory, Faculty of Pharmacy, University of Limoges, 87025 Limoges, France;
| | - Mário J. F. Calvete
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (M.J.F.C.); (M.M.P.)
| | - Mariette M. Pereira
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (M.J.F.C.); (M.M.P.)
| | - Stéphanie Leroy-Lhez
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, 87060 Limoges, France; (N.M.-C.); (T.-S.O.); (N.V.)
| |
Collapse
|
3
|
Lee MY, Ahmed I, Yu K, Lee CS, Kang KK, Jang MS, Ahn WS. Aqueous adsorption of bisphenol A over a porphyrinic porous organic polymer. CHEMOSPHERE 2021; 265:129161. [PMID: 33302201 DOI: 10.1016/j.chemosphere.2020.129161] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
A new porphyrinic porous organic polymer (PPOP) with high stability and excellent textural properties (929 m2/g surface area with 0.73 cm3/g pore volume) was made via the Friedel-Crafts reaction and applied for bisphenol A (BPA) adsorption in water. The material was examined by X-ray diffraction, N2 adsorption-desorption isotherms, scanning electron microscopy, infrared spectroscopy, X-ray photoelectron spectroscopy, and solid-state 13C CP-MAS nuclear magnetic resonance spectroscopy. PPOP was proven highly effective for capturing BPA among the many adsorbent materials investigated. The Langmuir model could closely match the adsorption isotherm data with a high adsorption amount of ca. 653 mg/g at 25 °C. Approximately 95% of BPA was adsorbed in 50 min, and the pseudo-second-order kinetic model satisfactorily described the adsorption behavior. This adsorption process was exothermic (ΔH° = -39.10 kJ/mol), and the capacity gradually decreased with increasing pH. Spectroscopic analyses indicated that the BPA adsorption on PPOP was affected by (1) π-π interaction between BPA and the aromatic constituents of PPOP, (2) hydrogen bonding between the N sites of porphyrin units in PPOP and the hydroxyl group of BPA and, and (3) hydrophobic interactions. PPOP was easily regenerated after acetone washing, and >98% efficiency was observed throughout the five repeated adsorption-desorption cycles.
Collapse
Affiliation(s)
- Myeong Yeon Lee
- Department of Chemical Engineering, Inha University, Incheon, 22201, Republic of Korea
| | - Imteaz Ahmed
- Department of Chemical Engineering, Inha University, Incheon, 22201, Republic of Korea
| | - Kwangsun Yu
- Department of Chemical Engineering, Inha University, Incheon, 22201, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Yuseoung-Gu, Daejeon, 305-764, Republic of Korea
| | - Kyoung-Ku Kang
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Yuseoung-Gu, Daejeon, 305-764, Republic of Korea.
| | - Min-Seok Jang
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Wha-Seung Ahn
- Department of Chemical Engineering, Inha University, Incheon, 22201, Republic of Korea.
| |
Collapse
|
4
|
Maldonado-Carmona N, Marchand G, Villandier N, Ouk TS, Pereira MM, Calvete MJF, Calliste CA, Żak A, Piksa M, Pawlik KJ, Matczyszyn K, Leroy-Lhez S. Porphyrin-Loaded Lignin Nanoparticles Against Bacteria: A Photodynamic Antimicrobial Chemotherapy Application. Front Microbiol 2020; 11:606185. [PMID: 33281805 PMCID: PMC7705181 DOI: 10.3389/fmicb.2020.606185] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/20/2020] [Indexed: 01/29/2023] Open
Abstract
The need for alternative strategies to fight bacteria is evident from the emergence of antimicrobial resistance. To that respect, photodynamic antimicrobial chemotherapy steadily rises in bacterial eradication by using light, a photosensitizer and oxygen, which generates reactive oxygen species that may kill bacteria. Herein, we report the encapsulation of 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphyrin into acetylated lignin water-dispersible nanoparticles (THPP@AcLi), with characterization of those systems by standard spectroscopic and microscopic techniques. We observed that THPP@AcLi retained porphyrin's photophysical/photochemical properties, including singlet oxygen generation and fluorescence. Besides, the nanoparticles demonstrated enhanced stability on storage and light bleaching. THPP@AcLi were evaluated as photosensitizers against two Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, and against three Gram-positive bacteria, Staphylococcus aureus, Staphylococcus epidermidis, and Enterococcus faecalis. THPP@AcLi were able to diminish Gram-positive bacterial survival to 0.1% when exposed to low white LED light doses (4.16 J/cm2), requiring concentrations below 5 μM. Nevertheless, the obtained nanoparticles were unable to diminish the survival of Gram-negative bacteria. Through transmission electron microscopy observations, we could demonstrate that nanoparticles did not penetrate inside the bacterial cell, exerting their destructive effect on the bacterial wall; also, a high affinity between acetylated lignin nanoparticles and bacteria was observed, leading to bacterial flocculation. Altogether, these findings allow to establish a photodynamic antimicrobial chemotherapy alternative that can be used effectively against Gram-positive topic infections using the widely available natural polymeric lignin as a drug carrier. Further research, aimed to inhibit the growth and survival of Gram-negative bacteria, is likely to enhance the wideness of acetylated lignin nanoparticle applications.
Collapse
Affiliation(s)
- Nidia Maldonado-Carmona
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, Limoges, France
- Laboratory of Catalysis and Fine Chemistry, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Guillaume Marchand
- PEIRENE Laboratory, Faculty of Pharmacy, University of Limoges, Limoges, France
| | - Nicolas Villandier
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, Limoges, France
| | - Tan-Sothea Ouk
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, Limoges, France
| | - Mariette M. Pereira
- Laboratory of Catalysis and Fine Chemistry, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Mário J. F. Calvete
- Laboratory of Catalysis and Fine Chemistry, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | | | - Andrzej Żak
- Electron Microscopy Laboratory, Wrocław University of Science and Technology, Wrocław, Poland
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marta Piksa
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Krzysztof J. Pawlik
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Stéphanie Leroy-Lhez
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, Limoges, France
| |
Collapse
|
5
|
Photodynamic inactivation of Botrytis cinerea by an anionic porphyrin: an alternative pest management of grapevine. Sci Rep 2020; 10:17438. [PMID: 33060706 PMCID: PMC7566482 DOI: 10.1038/s41598-020-74427-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/25/2020] [Indexed: 11/29/2022] Open
Abstract
Botrytis cinerea is a necrotic plant fungus that causes gray mold disease in over 200 crops, including grapevine. Due to its genetic plasticity, this fungus presents strong resistance to many fungicides. Thus, new strategies against B. cinerea are urgently needed. In this context, antimicrobial photodynamic treatment (APDT) was considered. APDT involves the use of a photosensitizer that generates reactive oxygen species upon illumination with white light. Tetra-4-sulfonatophenyl porphyrin tetra-ammonium (TPPS) was tested on B. cinerea using light. 1.5 µM TPPS completely inhibited mycelial growth. TPPS (12.5 µM) was tested on three grapevine clones from Chardonnay, Merlot and Sauvignon, grown in vitro for 2 months. Treated root apparatus of the three backgrounds increased thiol production as a molecular protection against photoactivated TPPS, leading to a normal phenotype as compared with control plantlets. Finally, 2-month-old grapevine leaves were infected with 4-day-old mycelium of B. cinerea pre-incubated or not with TPPS. The pre-treated mycelium was unable to infect the detached leaves of any of the three grapevine varieties after 72 h growth when subjected to a 16 h photoperiod, contrary to untreated mycelium. These results suggest a strong potential of photo-treatment against B. cinerea mycelium for future agricultural practices in vineyard or other cultures.
Collapse
|
6
|
Ndemueda A, Pereira I, Faustino MAF, Cunha Â. Photodynamic inactivation of the phytopathogenic bacterium Xanthomonas citri subsp. citri. Lett Appl Microbiol 2020; 71:420-427. [PMID: 32628776 DOI: 10.1111/lam.13350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/13/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
Abstract
The present work intended to evaluate the applicability of photodynamic inactivation (PDI) of Xanthomonas citri subsp. citri with toluidine blue O (TBO), a commercial photosensitizer, as a strategy to control citrus canker. Assays were conducted with cell suspensions and biofilms, constructed either on polypropylene microtubes (in vitro assays) or on the surface of orange leaves (ex vivo assays), in the presence of TBO and under irradiation with artificial white light or natural sunlight. PDI assays using TBO alone caused a maximum 5·8 log10 reduction of X. citri viable cells in suspensions, and a much smaller inactivation (1·5 log10) in biofilms. However, concomitant use of KI potentiated the TBO photosensitization. Biofilms were inactivated down to the detection limit (>6 log10 reduction) with 5·0 µmol l-1 TBO + 10 mmol l-1 KI (in vitro) or 5·0 µmol l-1 TBO + 100 mmol l-1 KI (ex vivo) after artificial white light irradiation. Under natural sunlight, a reduction down to the detection limit of the Miles-Misra method was achieved with 50 µmol l-1 TBO and 100 mmol l-1 KI. PDI has potential to be applied in the control of citrus canker in field conditions although further studies are needed to show that there are no risks to plant physiology or fruit quality. SIGNIFICANCE AND IMPACT OF THE STUDY: Xanthomonas citri subsp. citri is a major cause of disease in citrus orchards. Because of the low efficacy and high environmental toxicity of copper-based treatments, there is growing interest on more sustainable phytosanitary approaches. Photodynamic inactivation (PDI) is being successfully used to control infectious agents and literature reports indicate that it is effective against some fungi and bacteria attacking fruit crops. The results of the present work open the perspective of using a low-cost photosensitizer and sunlight, as energy source, to control of the causative agent of citrus canker.
Collapse
Affiliation(s)
- A Ndemueda
- CESAM and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - I Pereira
- CESAM and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - M A F Faustino
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Â Cunha
- CESAM and Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
7
|
Issawi M, Leroy-Lhez S, Sol V, Riou C. Crossing the First Threshold: New Insights into the Influence of the Chemical Structure of Anionic Porphyrins on Plant Cell Wall Interactions and Photodynamic Cell Death Induction. Biochemistry 2019; 58:2188-2197. [PMID: 30942568 DOI: 10.1021/acs.biochem.9b00107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this study, our fundamental research interest was to understand how negatively charged porphyrins could interact with a plant cell wall and further act inside cells. Thus, three anionic porphyrins differing in their anionic external groups (carboxylates, sulfonates, and phosphonates) were tested. First, the tobacco cell wall was isolated to monitor in vitro its interactions with the three different anionic porphyrins. Unexpectedly, these negatively charged molecules were able to bind to the negatively charged cell wall probably by weak bonds such as hydrogen bonds and/or electrostatic interactions when the tetrapyrrolic core was protonated. Moreover, we showed that at the pH of spent culture medium (4.5), the neutrality of the carboxylated porphyrin (TPPC) facilitated its cell wall crossing while the diffusion of the two other sulfonated (TPPS) or phosphonated (TPPP) porphyrins that remained anionic was delayed. Once inside Tobacco Bright Yellow-2 (TBY-2) cells, TPPC induced higher levels of production of both H2O2 and malondialdehyde compared to TPPS after illumination. That result correlated well with strong cell death induction by photoactivated TPPC. Furthermore, reactive oxygen species-scavenging enzymes such as catalase, peroxidases, and superoxide dismutase were also strongly downmodulated in response to TPPC, while these enzymes were almost unchanged in response to photoactivated TPPS. To the best of our knowledge, this is the first study that took into account the whole story from interactions of porphyrins with a plant cell wall to their photodynamic activity inside the cells.
Collapse
Affiliation(s)
- Mohammad Issawi
- Laboratoire Peirene EA7500 , 123 avenue Albert Thomas , 87060 Limoges Cedex, France
| | - Stephanie Leroy-Lhez
- Laboratoire Peirene EA7500 , 123 avenue Albert Thomas , 87060 Limoges Cedex, France
| | - Vincent Sol
- Laboratoire Peirene EA7500 , 123 avenue Albert Thomas , 87060 Limoges Cedex, France
| | - Catherine Riou
- Laboratoire Peirene EA7500 , 123 avenue Albert Thomas , 87060 Limoges Cedex, France
| |
Collapse
|