1
|
Yue L, Ai Y, Liu Q, Mao L, Ding H, Fan C, Liu G, Pu S. A novel diarylethene-based fluorescence sensor for Zn 2+ detection and its application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 301:122960. [PMID: 37315503 DOI: 10.1016/j.saa.2023.122960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/09/2023] [Accepted: 05/29/2023] [Indexed: 06/16/2023]
Abstract
A series of fluorometric sensors of Zn2+ have been synthesized due to the significant function of Zn2+ in the human body and environment. However, most of probes reported for detecting Zn2+ have high detection limit or low sensitivity. In this paper, an original Zn2+ sensor, namely 1o, was synthesized by diarylethene and 2-aminobenzamide. When Zn2+ was added, the fluorescence intensity of 1o increased by 11 times within 10 s, along with a fluorescence color change from dark to bright blue, and the detection limit (LOD) was calculated to be 0.329 μM. According to Job's plot curves, the binding mode of 1o and Zn2+ was measured as 1:1, which was further proved by 1H NMR spectra, HRMS and FT-IR spectra. The logic circuit was designed to take advantage of the fact that the fluorescence intensity of 1o can be controlled by Zn2+, EDTA, UV and Vis. In addition, Zn2+ in actual water samples were tested, in which the recovery rate of Zn2+ was between 96.5 % and 109 %. Furthermore, 1o was successfully made into a fluorescent test strip, which could be used to detect Zn2+ in the environment economically and conveniently.
Collapse
Affiliation(s)
- Lisha Yue
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Yin Ai
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Qianling Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Lingtao Mao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Haichang Ding
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; Department of Ecology and Environment, Yuzhang Normal University, Nanchang 330103, P. R. China.
| |
Collapse
|
2
|
Sinha A, Sahu SK, Biswas S, Ghorai TK. Synthesis of CeO 2/ZrO 2/ZnO nano alloy oxide and investigation of photocatalysis of naphthol orange under sunlight. RSC Adv 2023; 13:22029-22042. [PMID: 37483663 PMCID: PMC10359764 DOI: 10.1039/d3ra03579d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/08/2023] [Indexed: 07/25/2023] Open
Abstract
Novel metal-like cerium- and zirconium-doped ZnO photocatalysts were prepared herein with various proportions of molar ratios via a cost-effective co-precipitation method. The effects of novel metal doping on the photocatalytic activity of ZnO were studied. Various techniques were used to investigate the structural, morphological, and elemental composition, particle size, optical properties, and catalytic activity of the synthesized photocatalysts. It was found that the crystallite size and particle size of the nano alloy oxides were 15.12 ± 1 and 5 ± 1 nm, respectively, and the surface morphology of the nanoparticles indicated a satisfactory surface area. Among all synthesized nanocomposites, CexZrxZnxO5 (x = 1) [CZ1Z2-A] exhibited satisfactory photo-oxidation activity against naphthol orange (NO) under sunlight with a rate constant of 57.5 × 10-3 min-1. The effects of pH, inorganic salts, dye concentrations, and catalytic dosage on NO degradation were studied. A probable mechanistic pathway for the degradation of NO in the presence of CZ1Z2-A was proposed, and studies of sacrificial agents indicated that superoxide radical anion (O2˙-) was the main accountable active species in NO degradation. In addition, CZ1Z2-A exhibited excellent recyclability potential, and XRD studies revealed that there was no change in the crystal structure before or after degradation, which indicated its high stability. The intriguing finding was that Ce- and Zr-doped ZnO did not exhibit satisfactory catalytic performance in the photo-oxidation of NO. However, the composite formula of CexZrxZnxO5 (x = 1) with a 1 : 1 : 1 ratio of metal ions offered excellent catalytic activity.
Collapse
Affiliation(s)
- Anik Sinha
- Department of Chemistry, West Bengal State University Barasat Kolkata 700126 West Bengal India
| | - Sanjay Kumar Sahu
- Nanomaterials and Crystal Design Laboratory, Department of Chemistry, Indira Gandhi National Tribal University Amarkantak 484887 Madhya Pradesh India +9107629269712 +919432512461
| | - Suman Biswas
- Department of Chemistry, West Bengal State University Barasat Kolkata 700126 West Bengal India
| | - Tanmay Kumar Ghorai
- Nanomaterials and Crystal Design Laboratory, Department of Chemistry, Indira Gandhi National Tribal University Amarkantak 484887 Madhya Pradesh India +9107629269712 +919432512461
| |
Collapse
|
3
|
Mathew J, John N, Mathew B. Graphene oxide-incorporated silver-based photocatalysts for enhanced degradation of organic toxins: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16817-16851. [PMID: 36595177 DOI: 10.1007/s11356-022-25026-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Environmental contamination and scarcity of energy have been deepening over the last few decades. Heterogeneous photocatalysis plays a prominent role in environmental remediation. The failure of earlier metal oxide systems like pure TiO2 and ZnO as stable visible-light photocatalysts demanded more stable catalysts with high photodegradation efficiency. Silver-based semiconductor materials gained popularity as visible-light-responsive photocatalysts with a narrow bandgap. But their large-scale usage in natural water bodies for organic contaminant removal is minimal. The factors like self-photocorrosion and their slight solubility in water have prevented the commercial use. Various efforts have been made to improve their photocatalytic activity. This review focuses on those studies in which silver-based semiconductor materials are integrated with carbonaceous graphene oxide (GO) and reduced graphene oxide (RGO). The decoration of Ag-based semiconductor components on graphene oxide having high-surface area results in binary composites with enhanced visible-light photocatalytic activity and stability. It is found that the introduction of new efficient materials further increases the effectiveness of the system. So binary and ternary composites of GO and Ag-based materials are reviewed in this paper.
Collapse
Affiliation(s)
- Jincy Mathew
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Neenamol John
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Beena Mathew
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India.
| |
Collapse
|
4
|
Chen Y, Luo C, Tan F, Yang L. Synergistic mechanism and degradation kinetics for atrazine elimination by integrated N-ZnO/g-C 3N 4/solar light/oxidant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26032-26049. [PMID: 36350449 DOI: 10.1007/s11356-022-23931-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
In this study, an N-ZnO/g-C3N4 (g-N-Z) Z-scheme photocatalyst was constructed using hydrothermal and high-temperature calcination. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and other tests were employed to characterise the catalytic material. The results showed that after N-ZnO modification, the separation efficiency of the photoinduced charge pairs and the utilisation of sunlight in the composites were improved. The kinetics experiments indicated that the degradation of atrazine (ATZ) in the g-N-Z/PDS/solar system was significantly better than that in the PDS/solar system. Under the action of the g-N-Z/PDS/solar system, the degradation rate of ATZ reached 83.88%, whereas in the PDS/solar system, it was only 31.76%. In addition, it was found that increasing the PDS concentration, g-N-Z dosage, and solution acidity effectively accelerated the removal of ATZ. The presence of HCO3-/CO32-, Cl-, and natural organic matter (NOM) inhibited the oxidation efficiency of the g-N-Z/PDS/solar system. Moreover, the presence of multiple reactive oxygen species (ROS) was confirmed using radical scavenging experiments to determine the contribution of each active component. Twelve oxidation intermediates of ATZ were obtained via liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the mechanism of enhanced ATZ degradation in the g-N-Z/PDS/solar system was proposed. Actual water and cyclic photocatalytic experiments further suggest that g-N-Z has good application value in water treatment.
Collapse
Affiliation(s)
- Yongkai Chen
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, People's Republic of China
| | - Congwei Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, People's Republic of China.
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, People's Republic of China.
| | - Fengxun Tan
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, People's Republic of China
| | - Lubing Yang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, People's Republic of China
| |
Collapse
|
5
|
Catalytic oxidation of Reactive blue 222 Dye using Peroxymonosulfate activated by Mn3O4: Parameter optimization using response surface methodology. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Ranjbari A, Kim J, Kim JH, Yu J, Demeestere K, Heynderickx PM. Enhancement of commercial ZnO adsorption and photocatalytic degradation capacity of methylene blue by oxygen vacancy modification: Kinetic study. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Boosting the photocatalytic properties of NaTaO3 by coupling with AgBr. Photochem Photobiol Sci 2022; 22:549-566. [PMID: 36352304 DOI: 10.1007/s43630-022-00334-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
Abstract
AbstractAgBr/NaTaO3 composites, with different molar % of NaTaO3 (Br/NTO(X%)), have been synthesized by simple precipitation methods; bare NaTaO3 was synthesized by hydrothermal procedure, while AgBr was synthesized by a precipitation procedure using cetyl-tri-methyl-ammonium bromide (CTAB) and AgNO3. Samples have been characterized by X-ray diffraction (XRD), N2 adsorption, UV–vis diffuse reflectance spectroscopy (DRS), Fourier-transform infrared spectroscopy (FT-IR), Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Photocatalytic activity of the as-prepared photo-catalysts was evaluated through photocatalytic degradation of rhodamine B (RhB), methyl orange (MO) and caffeic acid (CAFA) under UV and visible illumination. Single AgBr material and Br/NTO(X%) composites displayed the ability to absorb light in the visible region, while NaTaO3 is only photoactive under UV irradiation. Based on the position of conduction and valence bands of AgBr and NaTaO3, the heterojunction between these two photo-catalysts corresponds to a type II junction. In the case of photocatalytic degradation of RhB and CAFA, Br/NTO(x%) composites have highest photocatalytic activity than that obtained by both parental materials under the same operational conditions. AgBr and Br/NTO(x%) composites achieve a fast degradation of MO, together with a considerable adsorption capacity, attributed to the presence of a remaining amount of residual CTAB on the AgBr surface. In summary, coupling AgBr with NaTaO3 improves the photocatalytic activity under both UV and visible illumination with respect to the parental components, but the performance of the composites is highly dependent on the type of substrate to be degraded and the illumination conditions.
Collapse
|
8
|
A diarylethene-based fluorescent chemosensor for highly selective recognition of Zn2+ and its application in real samples. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Recent advances in ZnO-based photosensitizers: Synthesis, modification, and applications in photodynamic cancer therapy. J Colloid Interface Sci 2022; 621:440-463. [PMID: 35483177 DOI: 10.1016/j.jcis.2022.04.087] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/26/2022] [Accepted: 04/14/2022] [Indexed: 01/05/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are important semiconductor materials with interesting photo-responsive properties. During the past, ZnO-based NPs have received considerable attention for photodynamic therapy (PDT) due to their biocompatibility and excellent potential of generating tumor-killing reactive oxygen species (ROS) through gentle photodynamic activation. This article provides a comprehensive review of the recent developments and improvements in optical properties of ZnO NPs as photosensitizers for PDT. The optical properties of ZnO-based photosensitizers are significantly dependent on their charge separation, absorption potential, band gap engineering, and surface area, which can be adjusted/tuned by doping, compositing, and morphology control. Here, we first summarize the recent progress in the charge separation capability, absorption potential, band gap engineering, and surface area of nanosized ZnO-based photosensitizers. Then, morphology control that is closely related to their synthesis method is discussed. Following on, the state-of-art for the ZnO-based NPs in the treatment of hypoxic tumors is comprehensively reviewed. Finally, we provide some outlooks on common targeted therapy methods for more effective tumor killing, including the attachment of small molecules, antibodies, ligands molecules, and receptors to NPs which further improve their selective distribution and targeting, hence improving the therapeutic effectiveness. The current review may provide useful guidance for the researchers who are interested in this promising dynamic cancer treatment technology.
Collapse
|
10
|
Ghobadifard M, Radovanovic PV, Mohebbi S. Novel CoFe
2
O
4
/CuBi
2
O
4
heterojunction p‐n semiconductor as visible‐light‐driven nano photocatalyst for C (OH)‐H bond activation. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mahdieh Ghobadifard
- Department of Chemistry University of Kurdistan Sanandaj Iran
- Department of Chemistry University of Waterloo Waterloo ON Canada
- Research Center for Nanotechnology University of Kurdistan Sanandaj Iran
| | | | - Sajjad Mohebbi
- Department of Chemistry University of Kurdistan Sanandaj Iran
- Research Center for Nanotechnology University of Kurdistan Sanandaj Iran
| |
Collapse
|
11
|
Zhou M, Tian X, Yu H, Wang Z, Ren C, Zhou L, Lin YW, Dou L. WO 3/Ag 2CO 3 Mixed Photocatalyst with Enhanced Photocatalytic Activity for Organic Dye Degradation. ACS OMEGA 2021; 6:26439-26453. [PMID: 34661001 PMCID: PMC8515572 DOI: 10.1021/acsomega.1c03694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The development of an efficient photocatalyst with superior activity under visible light has been regarded as a significant strategy for pollutant degradation and environmental remediation. Herein, a series of WO3/Ag2CO3 mixed photocatalysts with different proportions were prepared by a simple mixing method and characterized by XRD, SEM, TEM, XPS, and DRS techniques. The photocatalytic performance of the WO3/Ag2CO3 mixed photocatalyst was investigated by the degradation of rhodamine B (RhB) under visible light irradiation (λ > 400 nm). The photocatalytic efficiency of the mixed WO3/Ag2CO3 photocatalyst was rapidly increased with the proportion of Ag2CO3 up to 5%. The degradation percentage of RhB by WO3/Ag2CO3-5% reached 99.7% within 8 min. The pseudo-first-order reaction rate constant of WO3/Ag2CO3-5% (0.9591 min-1) was 118- and 14-fold higher than those of WO3 (0.0081 min-1) and Ag2CO3 (0.0663 min-1). The catalytic activities of the mixed photocatalysts are not only higher than those of the WO3 and Ag2CO3 but also higher than that of the WO3/Ag2CO3 composite prepared by the precipitation method. The activity enhancement may be because of the easier separation of photogenerated electron-hole pairs. The photocatalytic mechanism was investigated by free radical capture performance and fluorescence measurement. It was found that light-induced holes (h+) was the major active species and superoxide radicals (·O2 -) also played a certain role in photocatalytic degradation of RhB.
Collapse
Affiliation(s)
- Mei Zhou
- Chemical
Synthesis and Pollution Control Key Laboratory of Sichuan Province,
College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, Sichuan, China
| | - Xuemei Tian
- Chemical
Synthesis and Pollution Control Key Laboratory of Sichuan Province,
College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, Sichuan, China
| | - Hao Yu
- Chemical
Synthesis and Pollution Control Key Laboratory of Sichuan Province,
College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, Sichuan, China
| | - Zhonghua Wang
- Chemical
Synthesis and Pollution Control Key Laboratory of Sichuan Province,
College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, Sichuan, China
| | - Chunguang Ren
- Yantai
Institute of Materia Medica, Yantai 264000, Shandong, China
| | - Limei Zhou
- Chemical
Synthesis and Pollution Control Key Laboratory of Sichuan Province,
College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, Sichuan, China
| | - Ying-Wu Lin
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, Hunan, China
| | - Lin Dou
- Key
Laboratory of Green Chemistry of Sichuan Institutes of Higher Education,
College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, Sichuan, China
| |
Collapse
|
12
|
Li G, Teng Q, Sun B, Yang Z, Liu S, Zhu X. Synthesis scaly Ag-TiO2 loaded fly ash magnetic bead particles for treatment of xanthate wastewater. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126795] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Wei P, Yin S, Zhou T, Peng C, Xu X, Lu J, Liu M, Jia J, Zhang K. Rational design of Z-scheme ZnFe2O4/Ag@Ag2CO3 hybrid with enhanced photocatalytic activity, stability and recovery performance for tetracycline degradation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118544] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Puga F, Navío J, Hidalgo M. Enhanced UV and visible light photocatalytic properties of synthesized AgBr/SnO2 composites. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117948] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Synthesis and characterizations of ZnMn2O4-ZnO nanocomposite photocatalyst for enlarged photocatalytic oxidation of ciprofloxacin using visible light irradiation. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01359-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
16
|
Zouhier M, Tanji K, Navio J, Hidalgo M, Jaramillo-Páez C, Kherbeche A. Preparation of ZnFe2O4/ZnO composite: Effect of operational parameters for photocatalytic degradation of dyes under UV and visible illumination. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112305] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
|
18
|
Tanji K, Navio JA, Martín-Gómez AN, Hidalgo MC, Jaramillo-Páez C, Naja J, Hassoune H, Kherbeche A. Role of Fe(III) in aqueous solution or deposited on ZnO surface in the photoassisted degradation of rhodamine B and caffeine. CHEMOSPHERE 2020; 241:125009. [PMID: 31597109 DOI: 10.1016/j.chemosphere.2019.125009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/03/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Iron (III) was incorporated, to the surface of a synthesized ZnO, using two nominal molar percentages of Fe (III): 1% and 5% Fe relative to ZnO. Samples dried and calcined at 200 °C and 400 °C for 2 h, were characterized by XRD, XPS, XRF, N2-adsorption-BET and (UV-vis)-DRS. Photocatalytic activities of the catalysts were assessed based on the degradation of rhodamine B (RhB) and caffeine (CAF) in aqueous solution under two irradiation conditions: UV and visible light illumination. Prior to the photocatalytic tests, the interaction of each one of the substrates with either Fe(III) or Fe(II) was studied in homogeneous medium under UV-illumination and oxygenated environment. It was found that Fe (III) can play an important role in homogeneous media in the photoassisted degradation, both of rhodamine B and caffeine, while Fe (II) does not exert a relevant role in the photoassisted degradation of the referred substrates. Fe-ZnO samples display similar or poorer performance than pure ZnO in the presence of UV light for both studied substrates. The phenomenon can be attributed to the formation of either goethite or ZnFe2O4 at the ZnO surface where the coupled Fe3+/Fe2+ can act as recombination centers for the photogenerated charges. On the contrary, all Fe-ZnO samples showed enhanced photocatalytic activity under visible illumination which seems to be independent of the iron content. In this context, the mechanisms for photoassisted degradation of both the substrates in homogeneous medium and photocatalytic degradation are discussed, as well as the role of Fe in the photodegradation processes.
Collapse
Affiliation(s)
- Karim Tanji
- Laboratoire de Catalyse, Materiaux et Environnement (LCME), Université Sidi Mohammed Ben Abdellah, Fès, Route d'Imouzzer, BP, 2427, Fès, Morocco
| | - J A Navio
- Instituto de Ciencia de Materiales de Sevilla (ICMS), Centro Mixto Universidad de Sevilla-CSIC, Américo Vespucio 49, 41092, Sevilla, Spain.
| | - A N Martín-Gómez
- Instituto de Ciencia de Materiales de Sevilla (ICMS), Centro Mixto Universidad de Sevilla-CSIC, Américo Vespucio 49, 41092, Sevilla, Spain
| | - M C Hidalgo
- Instituto de Ciencia de Materiales de Sevilla (ICMS), Centro Mixto Universidad de Sevilla-CSIC, Américo Vespucio 49, 41092, Sevilla, Spain
| | - C Jaramillo-Páez
- Departamento de Química, Universidad del Tolima, Barrio Santa Elena, Ibagué, Colombia
| | - Jamal Naja
- Laboratoire de Chimie Appliquée et Environnement, Faculté des Sciences et Technologies de l'Université Hassan I, Settat, Morocco
| | | | - Abdelhak Kherbeche
- Laboratoire de Catalyse, Materiaux et Environnement (LCME), Université Sidi Mohammed Ben Abdellah, Fès, Route d'Imouzzer, BP, 2427, Fès, Morocco
| |
Collapse
|
19
|
A novel UV and visible light driven photocatalyst AgIO4/ZnO nanoparticles with highly enhanced photocatalytic performance for removal of rhodamine B and indigo carmine dyes. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112245] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|