1
|
Isa EDM, Jusoh NWC, Rodzi AAM. Enhanced simultaneous degradation of simulated dyes using ZnO/GCN heterojunction photocatalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116921-116933. [PMID: 37178288 DOI: 10.1007/s11356-023-27576-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
The scarcity of water leads to research nowadays to focus on techniques for treating wastewater. Photocatalysis emerged as a technique of interest due to its nature of friendliness. It utilizes light and catalyst to degrade the pollutants. One of the popular catalysts to be used is zinc oxide (ZnO), but its usage is limited due to the high recombination rate of electron-hole pair. Herein, in this study, ZnO is modified with graphitic carbon nitride (GCN), and the GCN loading amount was varied to study the impact on photocatalytic degradation of mixed dye solution. To the best of our knowledge, this is the first work that reports on the degradation of mixed dye solution using modified ZnO with GCN. Structural analysis showed that GCN is present in the composites which proves the success of the modification. Photocatalytic activity revealed that the composite with 5 wt% loading of GCN showed the best activity at a catalyst dosage of 1 g/L with degradation rates of 0.0285, 0.0365, 0.0869, and 0.1758 min-1 for methyl red, methyl orange, rhodamine B, and methylene blue dyes, respectively. This observation is expected due to the formation of heterojunction between ZnO and GCN which creates a synergistic effect and thus led to an improvement in the photocatalytic activity. Based on these results, ZnO modified with GCN has a good potential to be used in the treatment of textile wastewater which consists of various dye mixtures.
Collapse
Affiliation(s)
- Eleen Dayana Mohamed Isa
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Nurfatehah Wahyuny Che Jusoh
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
- Advanced Materials Research Group, Center of Hydrogen Energy, Universiti Teknologi Malaysia, 54100, Kuala Lumpur, Malaysia.
| | - Amir Awalludin Mohamad Rodzi
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Abstract
In this work, the main objective is to enhance the gas sensing capability through investigating the effect of Al and Mg doping on ZnO based sensors. ZnO, Mg1% doped ZnO, Al5% doped ZnO and (Al5%, Mg1%) co-doped ZnO nanoparticles (NPs) were synthesized by a modified sol-gel method. The structural characterization showed the hexagonal crystalline structure of the prepared samples. Morphological characterizations confirmed the nanometric sizes of the NPs (27–57 nm) and elemental composition investigation proved the existence of Al and Mg with low concentrations. The optical characterization showed the high absorbance of the synthesized samples in the UV range. The gas sensing performances of the synthesized samples, prepared in the form of thick films, were investigated. Sensing tests demonstrated the high influence of the Al and Mg on the sensing performances towards H2 and CO gas, respectively. The 5A1MZO-based sensor exhibits high sensitivity and low detection limits to H2 (<2 ppm) and CO (<1 ppm). It showed a response around 70 (at 250 °C) towards 2000 ppm H2 and 2 (at 250 °C) towards CO.
Collapse
|
3
|
Rahali S, Ben Aissa MA, Khezami L, Elamin N, Seydou M, Modwi A. Adsorption Behavior of Congo Red onto Barium-Doped ZnO Nanoparticles: Correlation between Experimental Results and DFT Calculations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7285-7294. [PMID: 34102848 DOI: 10.1021/acs.langmuir.1c00378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ba-loaded ZnO nanoparticles (Ba/ZnO) were obtained by the co-precipitation process and employed as a sorbent for Congo Red (C32H22N6Na2O6S2) dye (CR). Physicochemical parameters such as particle size, pH, and contact time were checked to characterize the adsorption process. The maximum adsorption capacity of Ba/ZnO NPs for CR (1614.26 mg/g) proves its potential utility in the elimination of CR dye from wastewater. The adsorption mechanism was studied via infrared spectroscopy and density functional theory calculations. The geometrical parameters and electronic properties of the CR-Ba/ZnO complex, particularly the interaction energy, the density of states, and the charge transfer, highlighted the Ba-ion mediation in the chemical bond formation between CR and the surface. The interaction between CR and Ba-doped ZnO has found to show strong chemisorption with charge transfer between the SO3- group and adsorbed Ba2+ ion on the surface.
Collapse
Affiliation(s)
- Seyfeddine Rahali
- Department of Chemistry, College of Science and Arts, Qassim University, 51921 Ar Rass, Saudi Arabia
| | - Mohamed Ali Ben Aissa
- Department of Chemistry, College of Science and Arts, Qassim University, 51921 Ar Rass, Saudi Arabia
| | - Lotfi Khezami
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
- LaNSER, Research and Technology Centre of Energy (CRTEn), Borj Cedria Technopark, BP.95, Hammam-Lif 2050, Tunisia
| | - Nuha Elamin
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
- Chemistry Department, Sudan University of Science and Technology College of Science, Khartoum 13311, Sudan
| | | | - Abueliz Modwi
- Department of Chemistry, College of Science and Arts, Qassim University, 51921 Ar Rass, Saudi Arabia
| |
Collapse
|
4
|
Gouda M, El-Din Bekhit A, Tang Y, Huang Y, Huang L, He Y, Li X. Recent innovations of ultrasound green technology in herbal phytochemistry: A review. ULTRASONICS SONOCHEMISTRY 2021; 73:105538. [PMID: 33819867 PMCID: PMC8048006 DOI: 10.1016/j.ultsonch.2021.105538] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 05/10/2023]
Abstract
Ultrasound (US) has become one of the most important techniques in green chemistry and emerging technologies. Many research investigations documented the usefulness of US in a wide range of applications in food science, nanotechnology, and complementary medicine, where effective extraction of natural products is important. However, as with all novel technologies, US has advantages and limitations that require clarification for full adaptation at an industrial scale. The present review discusses recent applications of US in herbal phytochemistry with the emphasis on US effects on chemical structures of bioactive compounds extracted from herbs and their bioactivities. The impact of different US processing conditions such as frequency, intensity, duration, temperature, and pressure on the effectiveness of the extraction process and the properties of the extracted materials are also discussed. Different frequencies and intensities of US have demonstrated its potential applications in modifying, determining, and predicting the physicochemical properties of herbs and their extracts. US has important applications in nanotechnology where it supports the fabrication of inexpensive and eco-friendly herbal nanostructures, as well as acoustic-based biosensors for chemical imaging of the herbal tissues. The application of US enhances the rates of chemical processes such as hydrolysis of herbal fibers, which reduces the time and energy consumed without affecting the quality of the final products. Overall, the use of US in herbal science has great potential to create novel chemical constructions and to be used as an innovative diagnostic system in various biomedical, food, and analytical applications.
Collapse
Affiliation(s)
- Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Nutrition & Food Science, National Research Centre, Dokki, Giza, Egypt
| | | | - Yu Tang
- College of Automation, Guangdong Polytechnic Normal University, Guangzhou 510665, China
| | - Yifeng Huang
- College of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China
| | - Lingxia Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
5
|
Araujo FP, Trigueiro P, Honório LMC, Oliveira DM, Almeida LC, Garcia RP, Lobo AO, Cantanhêde W, Silva-Filho EC, Osajima JA. Eco-friendly synthesis and photocatalytic application of flowers-like ZnO structures using Arabic and Karaya Gums. Int J Biol Macromol 2020; 165:2813-2822. [PMID: 33736284 DOI: 10.1016/j.ijbiomac.2020.10.132] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/01/2022]
Abstract
Flowers-like ZnO structures were synthesized using Arabic Gum (AGZnO) or Karaya Gum (KGZnO). The AGZnO and KGZnO were characterized by X-ray diffractometry, Fourier Transformed Infrared, Scanning Electron Microscopy, Photoluminescence, nitrogen adsorption/desorption and diffuse reflectance techniques. The materials were tested in the discoloration of Methylene Blue (MB) dye under visible light and scavenger studies were also performed. The toxicity of the MB irradiated was investigated in bioassays with Artemia salina. The structural characterization demonstrated the formation of hexagonal ZnO. All samples presented flower-like morphology with presence of mesopores identified by BET method. The optical properties indicated band gap of 2.99 (AGZnO) and 2.76 eV (KGZnO), and emission in violet, blue and green emissions also were observed. The KGZnO demonstrated better photocatalytic performance than the AGZnO, and scavenger studies indicated that OH radicals are the main species involved in the degradation of the pollutant model. The photodiscoloration of MB solution did not demonstrate toxicity. Therefore, KGZnO is a promising material for photocatalysis application.
Collapse
Affiliation(s)
- Francisca P Araujo
- Federal University of Piauí, Interdisciplinary Laboratory Advanced Materials (Limav), Teresina, PI, Brazil
| | - Pollyana Trigueiro
- Federal University of Piauí, Interdisciplinary Laboratory Advanced Materials (Limav), Teresina, PI, Brazil
| | - Luzia M C Honório
- Federal University of Piauí, Interdisciplinary Laboratory Advanced Materials (Limav), Teresina, PI, Brazil
| | - Dyego M Oliveira
- Federal University of Pernambuco, Postgraduate Program in Materials Science and Engineering, Recife, PE, Brazil
| | - Luciano C Almeida
- Federal University of Pernambuco, Chemical Engineering Department, Recife, PE, Brazil
| | - Ramón Peña Garcia
- Federal University of Piauí, Interdisciplinary Laboratory Advanced Materials (Limav), Teresina, PI, Brazil
| | - Anderson Oliveira Lobo
- Federal University of Piauí, Interdisciplinary Laboratory Advanced Materials (Limav), Teresina, PI, Brazil
| | - Welter Cantanhêde
- Federal University of Piauí, Chemistry Department, Teresina, PI, Brazil
| | - Edson C Silva-Filho
- Federal University of Piauí, Interdisciplinary Laboratory Advanced Materials (Limav), Teresina, PI, Brazil
| | - Josy A Osajima
- Federal University of Piauí, Interdisciplinary Laboratory Advanced Materials (Limav), Teresina, PI, Brazil.
| |
Collapse
|