1
|
Sun Y, Mu H, Wang Y, Gao J, Zhang Y, Li H, Cai J. Photophysical Properties of ( E)-1-(4-(Diethyla-mino)-2-hydroxybenzylidene)-4,4-dimethylthiosemicarbazide Compound and Its Triple Fluorescence Emission Mechanism: A Theoretical Perspective. J Phys Chem A 2024; 128:2092-2102. [PMID: 38466934 DOI: 10.1021/acs.jpca.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
In view of the application prospects in biomedicine of (E)-1-(4-(diethyla-mino)-2-hydroxybenzylidene)-4,4-dimethylthiosemicarbazide (DAHTS), the behavior of excited-state dynamics and photophysical properties were studied using the density functional theory/time-dependent density functional theory method. A series of studies indicated that the intramolecular hydrogen-bond (IHB) intensity of DAHTS was enhanced after photoexcitation. This was conducive to promoting the excited-state intramolecular proton-transfer (ESIPT) process. Combining the analysis of the IHB and hole-electron, it revealed that the molecule underwent both the ESIPT process and the twisted charge-transfer (TICT) process. Relying on exploration of the potential energy surface, it was proposed that the different competitive mechanisms between the ESIPT and TICT processes were regulated by solvent polarity. In acetonitrile (ACN) solvent, the ESIPT process occurred first, and the TICT process occurred later. In contrast, in the CYH solvent, the molecule first underwent the TICT process and then the ESIPT process. Furthermore, we raised the possibility that the TICT behavior was the cause of weak fluorescence emission for the DAHTS in CYH and ACN solvents. By the dimer correlation analysis, the corresponding components of triple fluorescence emission were clearly assigned, corresponding to the monomer, dimer, and ESIPT isomer in turn. Our work precisely elucidated the photophysical mechanism of DAHTS and the attribution of the triple fluorescence emission components, which provided valuable guidance for the development and regulation of bioactive fluorescence probes with multiband and multicolor emission characteristics.
Collapse
Affiliation(s)
- Yuhang Sun
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| | - Hongyan Mu
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| | - Yang Wang
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| | - Jiaan Gao
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| | - Yifu Zhang
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| | - Hui Li
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| | - Jixing Cai
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|
2
|
Şenol N, Şahin M, Şahin U. The protective role of 5-hydroxy-1,4-naphthoquinone against the harmful effects of 50 Hz electric field in rat lung tissue. Electromagn Biol Med 2023; 42:133-143. [PMID: 37811636 DOI: 10.1080/15368378.2023.2265935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 09/16/2023] [Indexed: 10/10/2023]
Abstract
There is strong scientific evidence that the electric field is harmful to life. Exposure to an electric field (EF) can cause lung toxicity and respiratory disorders. In addition, the electric field has been shown to cause tissue damage through inflammation and apoptosis. Juglone (JUG) is one of the powerful antioxidants with anti-apoptotic and anti-inflammatory, various pharmacological properties in the biological system. In this study, we evaluated the efficacy of JUG against the potential adverse effects of electric field on the lung. Twenty-four Wistar albino rats were randomly divided into three groups; control group (Cont), EF group, and EF exposure+JUG-treated group (EJUG). After routine histological procedures, sections stained with hematoxylin-eosin (H&E) showed significant changes in lung tissues in the EF group compared to the Cont group. Significant protective effects were observed in the building volumes and histopathology in the EJUG group. Our immunohistochemical and gene expression results increased the expression of caspase-3 and tumor necrosis factor alpha (TNF-α) in the EF group (p < 0.05). Juglon increased cytokine signal suppressor (SOCS) expression (p < 0.001). These findings were consistent with the antioxidant effect of JUG treatment. We reasoned that exposure to EF damaged rat lung tissues and administration of JUG alleviated the complications caused by 50 Hz EF.
Collapse
Affiliation(s)
- Nurgül Şenol
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Süleyman Demirel University, Isparta, Türkiye
| | - Melda Şahin
- Department of Bioengineering, Institute of Science, Süleyman Demirel University, Isparta, Türkiye
| | - Uğur Şahin
- Department of Chemistry, Faculty of Art and Science, University of Süleyman Demirel, Isparta, Türkiye
- Genetic Research Unit, Innovative Technologies Application and Research Center, Süleyman Demirel University, Isparta, Türkiye
| |
Collapse
|