1
|
Abdellah IM, Eletmany MR, Abdelhamid AA, Alghamdi HS, Abdalla AN, Elhenawy AA, Latif FMAE. One-pot synthesis of novel poly-substituted 3-cyanopyridines: Molecular docking, antimicrobial, cytotoxicity, and DFT/TD-DFT studies. J Mol Struct 2023; 1289:135864. [DOI: 10.1016/j.molstruc.2023.135864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
2
|
Bouzzine SM, Abdelaaziz A, Hamidi M, Al-Zahrani FAM, Zayed MEM, El-Shishtawy RM. The Impact of TPA Auxiliary Donor and the π-Linkers on the Performance of Newly Designed Dye-Sensitized Solar Cells: Computational Investigation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1611. [PMID: 36837251 PMCID: PMC9965092 DOI: 10.3390/ma16041611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The efficiency of the newly designed dye-sensitized solar cells (DSSCs) containing triphenylamine, diphenylamine (TPA), phenothiazine, and phenoxazine as donors and triazine, phenyl with D1-D2-π-linker-π-(A)2 architecture has been investigated using density functional theory (DFT) and time-dependent (TD-DFT) methods. These methods were used to investigate the geometrical structures, electronic properties, absorption, photovoltaic properties, and chemical reactivity. Furthermore, the calculated results indicate that different architectures can modify the energy levels of HOMO and LUMO and reduce the energy gap. The absorption undergoes a redshift displacement. This work aims at calculating the structural geometries and the electronic and optical properties of the designed dyes. Furthermore, the dye adsorption characteristics, such as the optoelectronic properties and the adsorption energies in the TiO2 clusters, were calculated with counterpoise correction and discussed.
Collapse
Affiliation(s)
- Si Mohamed Bouzzine
- Regional Center for Education and Training Professional, B.P. 8 Errachidia, Morocco
- Equipe de Chimie-Physique, Electrochimie et Environnement, Laboratoire de Chimie-Physique, Environnement et Matériaux, Université Moulay Ismaïl, B.P. 509 Boutalamine, Errachidia, Morocco
| | - Alioui Abdelaaziz
- Equipe de Chimie-Physique, Electrochimie et Environnement, Laboratoire de Chimie-Physique, Environnement et Matériaux, Université Moulay Ismaïl, B.P. 509 Boutalamine, Errachidia, Morocco
| | - Mohamed Hamidi
- Equipe de Chimie-Physique, Electrochimie et Environnement, Laboratoire de Chimie-Physique, Environnement et Matériaux, Université Moulay Ismaïl, B.P. 509 Boutalamine, Errachidia, Morocco
| | - Fatimah A. M. Al-Zahrani
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohie E. M. Zayed
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reda M. El-Shishtawy
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Dyeing, Printing and Textile Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
3
|
Al-Marhabi AR, El-Shishtawy RM, Bouzzine SM, Hamidi M, Al-Ghamdi HA, Al-Footy KO. D-D-π-A-π-A-based quinoxaline dyes incorporating phenothiazine, phenoxazine and carbazole as electron donors: Synthesis, photophysical, electrochemical, and computational investigation. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Synthesis of Novel Key Chromophoric Intermediates via C-C Coupling Reactions. Catalysts 2022. [DOI: 10.3390/catal12101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The fundamentals of Pd-catalyzed Csp2−Csp2 Miyaura borylation, Suzuki cross-coupling, and Stille cross-coupling reactions for a variety of borylated precursors based on phenothiazine (PTZ), phenoxazine (POZ), carbazole (Cz), and quinoxaline (QX) units have been explored. Three palladium-based catalysts were chosen for this study: Pd(PPh3)4, Pd(PPh3)2Cl2, and Pd(dppf)Cl2, applying different reaction conditions. Around 16 desired chromophores were successfully designed and synthesized using C-C cross-coupling reactions in moderate to excellent yields, including PTZ, POZ, and Cz units coupled with QX, indolinium iodide, thienyl, phenyl, or triphenylamine moieties. Additionally, PTZ, POZ, and Cz have been employed in synthesizing various pinacol boronate ester derivatives in good to moderate yields. Interestingly, Pd(dppf)Cl2 was found to be the best catalyst for borylation, and C-C cross-coupling reactions occurred in as little as 30 min, with an excellent yield exceeding 98%. Pd(PPh3)4 and Pd(PPh3)2Cl2 catalyzed the reaction to obtain the desired products in moderate to good yields after a long time (20–24 h). On the other hand, the Suzuki-Miyaura cross-coupling between N-(2-methyl)hexyl carbazole pinacol boronate ester derivative 10c and three halogenated quinoxaline derivatives—4-(3-(5-bromothiophen-2-yl)quinoxalin-2-yl)benzaldehyde (27), 4-(5-(3-(5-bromothiophen-2-yl)quinoxalin-2-yl)thiophen-2-yl)benzaldehyde (30), and 4-(3-chloroquinoxalin-2-yl)benzaldehyde (25) catalyzed by Pd(PPh3)4—afforded three carbazole-quinoxaline chromophores (28, 30, and 31, respectively) in 2–3 h, with good to excellent yields reaching 86%. The electron-deficient QX couplers proved to be coupled efficiently using the Stille coupling reaction, which involves the coupling between electron-rich orgaostannane and electron-deficient halide. The synthesized precursors and desired chromophores were characterized by FTIR, 1H-NMR, 13C-NMR, and HRMS.
Collapse
|