1
|
Cui J, Ding D, Yue S, Chen Z. Photoelectrochemical water splitting with In 2O 3-x nanofilm/black Ti-Si-O composite photoanode. RSC Adv 2025; 15:4987-4996. [PMID: 39957822 PMCID: PMC11826412 DOI: 10.1039/d4ra09063b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/08/2025] [Indexed: 02/18/2025] Open
Abstract
Fabricating TiO2 with heterostructures is one of the important ways to enhance its photocatalytic activity. In this work, we fabricated black Si-doped TiO2 nanotubes (Ti-Si-O) through anodization and Sn reduction, and constructed In2O3-x nanofilm/black Ti-Si-O composite photoanode through electrochemical deposition and Ar annealing. The composition evolution, morphology, optical properties and photoelectrochemical performance of the composite photoanode were investigated. The In2O3-x /black Ti-Si-O composite photoanode exhibited excellent PEC hydrogen production performance, with a high photocurrent density of 3.76 mA cm-2 at 0 V Ag/AgCl, which was 2.16 times that of the black Ti-Si-O photoanode. The synergistic effects of Si doping, Ti3+/O vacancies and the modification with In2O3-x nanofilms provide a beneficial approach to design of high-efficiency photoanodes.
Collapse
Affiliation(s)
- Jianing Cui
- SJTU-Zhongmu Joint Research Center for Materials and Technology of Intelligent and Connected Vehicles, Institute of Electronic Materials and Technology, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Dongyan Ding
- SJTU-Zhongmu Joint Research Center for Materials and Technology of Intelligent and Connected Vehicles, Institute of Electronic Materials and Technology, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Shengzhe Yue
- SJTU-Zhongmu Joint Research Center for Materials and Technology of Intelligent and Connected Vehicles, Institute of Electronic Materials and Technology, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhi Chen
- Department of Electrical & Computer Engineering, Center for Nanoscale Science & Engineering, University of Kentucky Lexington Kentucky 40506 USA
| |
Collapse
|
2
|
Voloshin R, Goncharova M, Zharmukhamedov SK, Bruce BD, Allakhverdiev SI. In vitro photocurrents from spinach thylakoids following Mn depletion and Mn-cluster reconstitution. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149523. [PMID: 39521198 DOI: 10.1016/j.bbabio.2024.149523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Biohybrid devices that generate an electrical signal under the influence of light due to photochemical reactions in photosynthetic pigment-protein complexes have many prospects. On the one hand, the oxygen-evolving complex of photosystem II allows the use of ubiquitous water as a source of electrons for photoinduced electron transfer in such devices; on the other hand, it is the most vulnerable part of the photosynthetic apparatus. From the perspective of sustainable operation of bio-based hybrid devices, it is helpful to analyze how removing or modifying the Mn cluster will affect the performance of the bio-hybrid device. This work analyzed photocurrent generation in a liquid three-electrode solar cell based on manganese-depleted and reactivated thylakoid membranes. Membranes lacking Mn could not produce any significant photocurrent until manganese chloride was added. After adding MnCl2, the cell could produce current when exposed to light. This current was about a few percent from cells with intact thylakoid membranes. However, the photoactivation procedure made it possible to restore up to 75 % of the photocurrent of cells based on intact thylakoid membranes. The main objective of this work is to answer the question about the possibility of photocurrent generation in a biohybrid system based on thylakoid membranes using artificial analogs of the native oxygen-evolving complex. Photoactivation with manganese chloride is the simplest way to obtain preparations devoid of the native Mn cluster, but capable of oxidizing water.
Collapse
Affiliation(s)
- Roman Voloshin
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Maria Goncharova
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Sergey K Zharmukhamedov
- Institute of Basic Biological Problems, FRC PSCBR RAS, 142290, Moscow Region, Pushchino, Russia
| | - Barry D Bruce
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA; Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, USA; Department of Microbiology, University of Tennessee, Knoxville, USA.
| | - Suleyman I Allakhverdiev
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; Institute of Basic Biological Problems, FRC PSCBR RAS, 142290, Moscow Region, Pushchino, Russia; Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey.
| |
Collapse
|
3
|
Liu IT, Meemai P, Lin YH, Fang CJ, Huang CC, Li CY, Phisalaphong M, You JL, Tung SH, Balaji R, Liao YC. Bacterial cellulose materials in sustainable energy devices: A review. Int J Biol Macromol 2024; 281:135804. [PMID: 39414529 DOI: 10.1016/j.ijbiomac.2024.135804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/18/2024]
Abstract
This article provides a comprehensive review of the processing and applications of bacterial cellulose (BC) for energy conversion and storage devices. These emerging technologies enable the transformation of sustainable energy sources into electricity. Once converted, energy storage devices are vital for stable energy supply. To promote green manufacturing practices in this field, bio-based materials are explored as alternative materials for energy devices, addressing the growing demand for sustainable solutions. From a research and development perspective, the materials chosen for energy devices must exhibit exceptional mechanical, electrical, and thermal properties, along with the necessary chemical reactivity to unlock new applications. Furthermore, for successful commercialization and industrialization, these materials must be suitable for large-scale production within practical timeframes. BC fulfills all of these requirements. The review begins with an overview of BC growth, detailing the composition and operating parameters of the culture medium and the design of bioreactors for large-scale production. It then defines and summarizes both in-situ and ex-situ modifications and processing strategies, offering a comprehensive perspective on these techniques. Unique and interesting properties linking BC's structure to its properties are reviewed to demonstrate its potential as a substitute for benchmark materials. The exceptional performance and synergistic effects of BC-derived hybrid materials highlight their potential for state-of-the-art applications in energy devices, and are suitable for the next-generation energy devices. The papers reviewed in this work have gained significant attention and been widely cited over the past 10 years for their relevance to various practical applications, allowing readers to have a better understanding in development of BC based materials for energy conversion and conversion devices.
Collapse
Affiliation(s)
- I-Tseng Liu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Puttakhun Meemai
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yun-Hsuan Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Jan Fang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Ching Huang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Ying Li
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Muenduen Phisalaphong
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jhu-Lin You
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical & Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan 335, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ramachandran Balaji
- Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Andhra Pradesh 522302, India.
| | - Ying-Chih Liao
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
4
|
Kehler T, Szewczyk S, Gibasiewicz K. Dependence of Protein Immobilization and Photocurrent Generation in PSI-FTO Electrodes on the Electrodeposition Parameters. Int J Mol Sci 2024; 25:9772. [PMID: 39337260 PMCID: PMC11431872 DOI: 10.3390/ijms25189772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigates the immobilization of cyanobacterial photosystem I (PSI) from Synechocystis sp. PCC 6803 onto fluorine-doped tin oxide (FTO) conducting glass plates to create photoelectrodes for biohybrid solar cells. The fabrication of these PSI-FTO photoelectrodes is based on two immobilization processes: rapid electrodeposition driven by an external electric field and slower adsorption during solvent evaporation, both influenced by gravitational sedimentation. Deposition and performance of photoelectrodes was investigated by UV-Vis absorption spectroscopy and photocurrent measurements. We investigated the efficiency of PSI immobilization under varying conditions, including solution pH, applied electric field intensity and duration, and electrode polarization, with the goals to control (1) the direction of migration and (2) the orientation of the PSI particles on the substrate surface. Variation in the pH value of the PSI solution alters the surface charge distribution, affecting the net charge and the electric dipole moment of these proteins. Results showed PSI migration to the positively charged electrode at pH 6, 7, and 8, and to the negatively charged electrode at pH 4.4 and 5, suggesting an isoelectric point of PSI between 5 and 6. At acidic pH, the electrophoretic migration was largely hindered by protein aggregation. Notably, photocurrent generation was consistently cathodic and correlated with PSI layer thickness, and no conclusions can be drawn on the orientation of the immobilized proteins. Overall, these findings suggest mediated electron transfer from FTO to PSI by the used electrolyte containing 10 mM sodium ascorbate and 200 μM dichlorophenolindophenol.
Collapse
Affiliation(s)
- Theresa Kehler
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Sebastian Szewczyk
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Krzysztof Gibasiewicz
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| |
Collapse
|
5
|
Rasul F, You D, Jiang Y, Liu X, Daroch M. Thermophilic cyanobacteria-exciting, yet challenging biotechnological chassis. Appl Microbiol Biotechnol 2024; 108:270. [PMID: 38512481 PMCID: PMC10957709 DOI: 10.1007/s00253-024-13082-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2024]
Abstract
Thermophilic cyanobacteria are prokaryotic photoautotrophic microorganisms capable of growth between 45 and 73 °C. They are typically found in hot springs where they serve as essential primary producers. Several key features make these robust photosynthetic microbes biotechnologically relevant. These are highly stable proteins and their complexes, the ability to actively transport and concentrate inorganic carbon and other nutrients, to serve as gene donors, microbial cell factories, and sources of bioactive metabolites. A thorough investigation of the recent progress in thermophilic cyanobacteria reveals a significant increase in the number of newly isolated and delineated organisms and wide application of thermophilic light-harvesting components in biohybrid devices. Yet despite these achievements, there are still deficiencies at the high-end of the biotechnological learning curve, notably in genetic engineering and gene editing. Thermostable proteins could be more widely employed, and an extensive pool of newly available genetic data could be better utilised. In this manuscript, we attempt to showcase the most important recent advances in thermophilic cyanobacterial biotechnology and provide an overview of the future direction of the field and challenges that need to be overcome before thermophilic cyanobacterial biotechnology can bridge the gap with highly advanced biotechnology of their mesophilic counterparts. KEY POINTS: • Increased interest in all aspects of thermophilic cyanobacteria in recent years • Light harvesting components remain the most biotechnologically relevant • Lack of reliable molecular biology tools hinders further development of the chassis.
Collapse
Affiliation(s)
- Faiz Rasul
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Dawei You
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ying Jiang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xiangjian Liu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Khedr N, Elsayed KNM, Ibraheem IBM, Mohamed F. New insights into enhancement of bio-hydrogen production through encapsulated microalgae with alginate under visible light irradiation. Int J Biol Macromol 2023; 253:127270. [PMID: 37804894 DOI: 10.1016/j.ijbiomac.2023.127270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/14/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
The production of green hydrogen is a promising alternative to fossil fuels. The current study focuses on the design of microalgae as a catalyst in bioelectrochemical systems for the generation of biohydrogen. Furthermore, the abovementioned target could be achieved by optimizing different parameters, including strains of microalgae, different optical filters, and their shapes. Synechocystis sp. PAK13 (Ba9), Micractinium sp. YACCYB33 (R4), and Desmodesmus intermedius (Sh42) were used and designed as free cells and immobilized microalgae for evaluating their performance for hydrogen production. Alginate was applied for immobilization not only for protecting the immobilized microalgae from stress but also for inhibiting the agglomeration of microalgae and improving stability. The amount of studied immobilized microalgae was 0.01 g/5 ml algae-dissolved in 10 ml alginate gel at 28 °C, 12 h of light (light intensity 30.4 μmol m-2 s-1), and 12 h of darkness with continual aeration (air bump in every strain flask) at pH = 7.2 ± 0.2 in 0.05 %wuxal buffer which has 3.7 ionic strength. Different modalities, including FTIR, UV, and SEM, were performed for the description of selected microalgae. The surface morphology of Ba9 with alginate composite (immobilized Ba9) appeared as a stacked layer with high homogeneity, which facilitates hydrogen production from water. The conversion efficiencies of the immobilized microalgae were evaluated by incident photon-to-current efficiency (IPCE). Under optical filters, the optimum IPCE value was ∼ 7 % at 460 nm for immobilized Ba9. Also, its number of hydrogen moles was calculated to be 16.03 mmol h-1 cm-2 under optical filters. The electrochemical stability of immobilized Ba9 was evaluated through repetitive 100 cycles as a short-term stability test, and the curve of chrono-amperometry after 30 min in 0.05 %wuxal at a constant potential of 0.9 V for 30 min of all studied samples confirmed the high stability of all sample and the immobilized Ba9 has superior activity than others.
Collapse
Affiliation(s)
- Noha Khedr
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, 62511, Egypt
| | - Khaled N M Elsayed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, 62511, Egypt
| | - Ibraheem B M Ibraheem
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, 62511, Egypt
| | - Fatma Mohamed
- Nanophotonics and Applications Lab, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; Materials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
7
|
Chen Z, Qu Q, Li X, Srinivas K, Chen Y, Zhu M. Room-Temperature Synthesis of Carbon-Nanotube-Interconnected Amorphous NiFe-Layered Double Hydroxides for Boosting Oxygen Evolution Reaction. Molecules 2023; 28:7289. [PMID: 37959709 PMCID: PMC10648594 DOI: 10.3390/molecules28217289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The oxygen evolution reaction (OER) is a key half-reaction in electrocatalytic water splitting. Large-scale water electrolysis is hampered by commercial noble-metal-based OER electrocatalysts owing to their high cost. To address these issues, we present a facile, one-pot, room-temperature co-precipitation approach to quickly synthesize carbon-nanotube-interconnected amorphous NiFe-layered double hydroxides (NiFe-LDH@CNT) as cost-effective, efficient, and stable OER electrocatalysts. The hybrid catalyst NiFe-LDH@CNT delivered outstanding OER activity with a low onset overpotential of 255 mV and a small Tafel slope of 51.36 mV dec-1, as well as outstanding long-term stability. The high catalytic capability of NiFe-LDH@CNT is associated with the synergistic effects of its room-temperature synthesized amorphous structure, bi-metallic modulation, and conductive CNT skeleton. The room-temperature synthesis can not only offer economic feasibility, but can also allow amorphous NiFe-LDH to be obtained without crystalline boundaries, facilitating long-term stability during the OER process. The bi-metallic nature of NiFe-LDH guarantees a modified electronic structure, providing additional catalytic sites. Simultaneously, the highly conductive CNT network fosters a nanoporous structure, facilitating electron transfer and O2 release and enriching catalytic sites. This study introduces an innovative approach to purposefully design nanoarchitecture and easily synthesize amorphous transition-metal-based OER catalysts, ensuring their cost effectiveness, production efficiency, and long-term stability.
Collapse
Affiliation(s)
- Zhuo Chen
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
| | - Qiang Qu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
| | - Xinsheng Li
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Katam Srinivas
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuanfu Chen
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Mingqiang Zhu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
8
|
Dörpholz H, Subramanian S, Zouni A, Lisdat F. Photoelectrochemistry of a photosystem I - Ferredoxin construct on ITO electrodes. Bioelectrochemistry 2023; 153:108459. [PMID: 37263168 DOI: 10.1016/j.bioelechem.2023.108459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023]
Abstract
In this study, photobioelectrodes based on a ferredoxin-modified photosystem I (PSI-Fd) from Thermosynechococcus vestitus have been prepared and characterized regarding the direct electron transfer between PSI-Fd and the electrode. The modified PSI with the covalently linked ferredoxin (Fd) on its stromal side has been immobilized on indium-tin-oxide (ITO) electrodes with a 3-dimensional inverse-opal structure. Compared to native PSI, a lower photocurrent and a lower onset potential of the cathodic photocurrent have been observed. This can be mainly attributed to a different adsorption behavior of the PSI-Fd-construct onto the 3D ITO. However, the overall behavior is rather similar to PSI. First experiments have been performed for applying this PSI-Fd photobioelectrode for enzyme-driven NADPH generation. By coupling the electrode system with ferredoxin-NADP+-reductase (FNR), first hints for the usage of photoelectrons for biosynthesis have been collected by verifying NADPH generation.
Collapse
Affiliation(s)
- H Dörpholz
- Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University of Applied Sciences Wildau, 15745 Wildau, Germany.
| | - S Subramanian
- Biophysics of Photosynthesis, Institute of Biology, Humboldt University Berlin, 10115 Berlin, Germany
| | - A Zouni
- Biophysics of Photosynthesis, Institute of Biology, Humboldt University Berlin, 10115 Berlin, Germany
| | - F Lisdat
- Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University of Applied Sciences Wildau, 15745 Wildau, Germany.
| |
Collapse
|
9
|
Morlock S, Subramanian SK, Zouni A, Lisdat F. Closing the green gap of photosystem I with synthetic fluorophores for enhanced photocurrent generation in photobiocathodes. Chem Sci 2023; 14:1696-1708. [PMID: 36819875 PMCID: PMC9930989 DOI: 10.1039/d2sc05324a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
One restriction for biohybrid photovoltaics is the limited conversion of green light by most natural photoactive components. The present study aims to fill the green gap of photosystem I (PSI) with covalently linked fluorophores, ATTO 590 and ATTO 532. Photobiocathodes are prepared by combining a 20 μm thick 3D indium tin oxide (ITO) structure with these constructs to enhance the photocurrent density compared to setups based on native PSI. To this end, two electron transfer mechanisms, with and without a mediator, are studied to evaluate differences in the behavior of the constructs. Wavelength-dependent measurements confirm the influence of the additional fluorophores on the photocurrent. The performance is significantly increased for all modifications compared to native PSI when cytochrome c is present as a redox-mediator. The photocurrent almost doubles from -32.5 to up to -60.9 μA cm-2. For mediator-less photobiocathodes, interestingly, drastic differences appear between the constructs made with various dyes. While the turnover frequency (TOF) is doubled to 10 e-/PSI/s for PSI-ATTO590 on the 3D ITO compared to the reference specimen, the photocurrents are slightly smaller since the PSI-ATTO590 coverage is low. In contrast, the PSI-ATTO532 construct performs exceptionally well. The TOF increases to 31 e-/PSI/s, and a photocurrent of -47.0 μA cm-2 is obtained. This current is a factor of 6 better than the reference made with native PSI in direct electron transfer mode and sets a new record for mediator-free photobioelectrodes combining 3D electrode structures and light-converting biocomponents.
Collapse
Affiliation(s)
- Sascha Morlock
- Biosystems Technology, Technical University of Applied Sciences Wildau Hochschulring 1 15745 Wildau Germany .,Biophysics of Photosynthesis, Humboldt University of Berlin Philippstraße 13 10099 Berlin Germany
| | - Senthil K. Subramanian
- Biophysics of Photosynthesis, Humboldt University of BerlinPhilippstraße 1310099 BerlinGermany
| | - Athina Zouni
- Biophysics of Photosynthesis, Humboldt University of BerlinPhilippstraße 1310099 BerlinGermany
| | - Fred Lisdat
- Biosystems Technology, Technical University of Applied Sciences Wildau Hochschulring 1 15745 Wildau Germany
| |
Collapse
|
10
|
Mamedov MD, Milanovsky GE, Vitukhnovskaya L, Semenov AY. Measurements of the light-induced steady state electric potential generation by photosynthetic pigment-protein complexes. Biophys Rev 2022; 14:933-939. [DOI: 10.1007/s12551-022-00966-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/26/2022] [Indexed: 12/17/2022] Open
|
11
|
Du J, Xin J, Liu M, Zhang X, He H, Wu J, Xu X. Preparation of Photo-Bioelectrochemical Cells With the RC-LH Complex From Roseiflexus castenholzii. Front Microbiol 2022; 13:928046. [PMID: 35783423 PMCID: PMC9243436 DOI: 10.3389/fmicb.2022.928046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Roseiflexus castenholzii is an ancient green non-sulfur bacteria that absorbs the solar energy through bacteriochlorophylls (BChls) bound in the only light harvesting (LH) complex, and transfers to the reaction center (RC), wherein primary charge separation occurs and transforms the energy into electrochemical potentials. In contrast to purple bacteria, R. castenholzii RC-LH (rcRC-LH) does not contain an H subunit. Instead, a tightly bound tetraheme cytochrome c subunit is exposed on the P-side of the RC, which contains three BChls, three bacteriopheophytins (BPheos), two menaquinones, and one iron for electron transfer. These novel structural features of the rcRC-LH are advantageous for enhancing the electron transfer efficiency and subsequent photo-oxidation of the c-type hemes. However, the photochemical properties of rcRC-LH and its applications in developing the photo-bioelectrochemical cells (PBECs) have not been characterized. Here, we prepared a PBEC using overlapped fluorine-doped tin oxide (FTO) glass and Pt-coated glass as electrodes, and rcRC-LH mixed with varying mediators as the electrolyte. Absence of the H subunit allows rcRC-LH to be selectively adhered onto the hydrophilic surface of the front electrode with its Q-side. Upon illumination, the photogenerated electrons directly enter the front electrode and transfer to the counter electrode, wherein the accepted electrons pass through the exposed c-type hemes to reduce the excited P+, generating a steady-state current of up to 320 nA/cm2 when using 1-Methoxy-5-methylphenazinium methyl sulfate (PMS) as mediator. This study demonstrated the novel photoelectric properties of rcRC-LH and its advantages in preparing effective PBECs, showcasing a potential of this complex in developing new type PBECs.
Collapse
Affiliation(s)
- Jinsong Du
- Photosynthesis Research Center, Hangzhou Normal University, Hangzhou, China
| | - Jiyu Xin
- Photosynthesis Research Center, Hangzhou Normal University, Hangzhou, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Menghua Liu
- Photosynthesis Research Center, Hangzhou Normal University, Hangzhou, China
| | - Xin Zhang
- Photosynthesis Research Center, Hangzhou Normal University, Hangzhou, China
| | - Huimin He
- Photosynthesis Research Center, Hangzhou Normal University, Hangzhou, China
| | - Jingyi Wu
- Photosynthesis Research Center, Hangzhou Normal University, Hangzhou, China
| | - Xiaoling Xu
- Photosynthesis Research Center, Hangzhou Normal University, Hangzhou, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
12
|
Scanning prevalent technologies to promote scalable devising of DSSCs: An emphasis on dye component precisely with a shift to ambient algal dyes. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Voloshin R, Shumilova S, Zadneprovskaya E, Zharmukhamedov S, Alwasel S, Hou H, Allakhverdiev S. Photosystem II in bio-photovoltaic devices. PHOTOSYNTHETICA 2022; 60:121-135. [PMID: 39649000 PMCID: PMC11559483 DOI: 10.32615/ps.2022.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 02/18/2022] [Indexed: 12/10/2024]
Abstract
Hybrid photoelectrodes containing biological pigment-protein complexes can be used for environmentally friendly solar energy conversion, herbicide detection, and other applications. The total number of scientific publications on hybrid bio-based devices has grown rapidly over the past decades. Particular attention is paid to the integration of the complexes of PSII into photoelectrochemical devices. A notable feature of these complexes from a practical point of view is their ability to obtain electrons from abundant water. The utilization or imitation of the PSII functionality seems promising for all of the following: generating photoelectricity, photo-producing hydrogen, and detecting herbicides. This review summarizes recent advances in the development of hybrid devices based on PSII. In a brief historical review, we also highlighted the use of quinone-type bacterial reaction centers in hybrid devices. These proteins are the first from which the photoelectricity signal was detected. The photocurrent in these first systems, developed in the 70s-80s, was about 1 nA cm-2. In the latest work, by Güzel et al. (2020), a stable current of about 888 μA cm-2 as achieved in a PSII-based solar cell. The present review is inspired by this impressive progress. The advantages, disadvantages, and future endeavors of PSII-inspired bio-photovoltaic devices are also presented.
Collapse
Affiliation(s)
- R.A. Voloshin
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - S.M. Shumilova
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - E.V. Zadneprovskaya
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - S.K. Zharmukhamedov
- Institute of Basic Biological Problems, RAS, Pushchino, 142290 Moscow Region, Russia
| | - S. Alwasel
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - H.J.M. Hou
- Laboratory of Forensic Analysis and Photosynthesis, Department of Physical/Forensic Sciences, Alabama State University, Montgomery, 36104 Alabama, United States
| | - S.I. Allakhverdiev
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
- Institute of Basic Biological Problems, RAS, Pushchino, 142290 Moscow Region, Russia
- College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Competition between intra-protein charge recombination and electron transfer outside photosystem I complexes used for photovoltaic applications. Photochem Photobiol Sci 2022; 21:319-336. [PMID: 35119621 DOI: 10.1007/s43630-022-00170-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/07/2022] [Indexed: 02/01/2023]
Abstract
Photosystem I (PSI) complexes isolated from three different species were electrodeposited on FTO conducting glass, forming a photoactive multilayer of the photo-electrode, for investigation of intricate electron transfer (ET) properties in such green hybrid nanosystems. The internal quantum efficiency of photo-electrochemical cells (PEC) containing the PSI-based photo-electrodes did not exceed ~ 0.5%. To reveal the reason for such a low efficiency of photocurrent generation, the temporal evolution of the transient concentration of the photo-oxidized primary electron donor, P+, was studied in aqueous suspensions of the PSI complexes by time-resolved absorption spectroscopy. The results of these measurements provided the information on: (1) completeness of charge separation in PSI reaction centers (RCs), (2) dynamics of internal charge recombination, and (3) efficiency of electron transfer from PSI to the electrolyte, which is the reaction competing with the internal charge recombination in the PSI RC. The efficiency of the full charge separation in the PSI complexes used for functionalization of the electrodes was ~ 90%, indicating that incomplete charge separation was not the main reason for the small yield of photocurrents. For the PSI particles isolated from a green alga Chlamydomonas reinhardtii, the probability of ET outside PSI was ~ 30-40%, whereas for their counterparts isolated from a cyanobacterium Synechocystis sp. PCC 6803 and a red alga Cyanidioschyzon merolae, it represented a mere ~ 4%. We conclude from the transient absorption data for the PSI biocatalysts in solution that the observed small photocurrent efficiency of ~ 0.5% for all the PECs analyzed in this study is likely due to: (1) limited efficiency of ET outside PSI, particularly in the case of PECs based on PSI from Synechocystis and C. merolae, and (2) the electrolyte-mediated electric short-circuiting in PSI particles forming the photoactive layer, particularly in the case of the C. reinhardtii PEC.
Collapse
|
15
|
Abdi Z, Nandy S, Chae KH, Najafpour MM. Sodium Cobalticarborane: A Promising Precatalyst for Oxygen Evolution Reaction. Inorg Chem 2021; 61:464-473. [PMID: 34951771 DOI: 10.1021/acs.inorgchem.1c03143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water splitting is a helpful way of converting renewable electricity into fuel. The oxygen evolution reaction (OER) is a slow reaction that provides low-cost electrons for water reduction reactions. Thus, finding an efficient, low-cost, stable, and environmentally friendly OER catalyst is critical for water splitting. Here, sodium cobalticarborane (1) is introduced as a promising precatalyst for forming an OER cobalt-based catalyst. The cobalt-based catalyst was characterized by several methods and is suggested to be Co(III) (hydr)oxide. Using fluorine-doped tin oxide, glassy carbon, platinum, and gold electrodes, the OER activity of the cobalt-based precatalyst was investigated. The overpotential for the onset of OER in the presence of 1 is 315 mV using fluorine-doped tin oxide electrodes. The onsets of OERs in the presence of 1 using gold, platinum, and glassy carbon electrodes in KOH solutions (1.0 M) turned out to be 275, 284, and 330 mV, respectively. The nanoparticles on the gold electrodes exhibit significant OER activity with a Tafel slope of 63.8 mV/decade and an overpotential at 541 mV for 50 mA/cm2. In the case of the glassy carbon electrodes, a Tafel slope of 109.9 mV/decade and an overpotential of 548 mV for 10 mA/cm2 is recorded for the catalyst. This paper outlines an interesting approach to synthesize cobalt oxide for OER through a slow decomposition of a precatalyst.
Collapse
Affiliation(s)
- Zahra Abdi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Subhajit Nandy
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.,Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.,Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
16
|
Vitukhnovskaya LA, Simonyan RA, Semenov AY, Mamedov MD. Generation of Photoelectric Responses by Photosystem II Core Complexes in the Presence of Externally Added Cytochrome c. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1369-1376. [PMID: 34906039 DOI: 10.1134/s0006297921110018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 06/14/2023]
Abstract
The effect of exogenous cytochrome c (cyt c) on kinetics of photoelectric responses (Δψ) of two types of photosystem II (PSII) core complexes (intact - PSII with active water-oxidizing complex and Mn-depleted complex) reconstituted into liposomes has been investigated by direct electrometric technique. PSII complexes were localized in the proteoliposome membranes with their donor side outward. An additional electrogenic phase was observed in the kinetics of Δψ generation in response to a laser flash besides the main fast (<0.3 µs) electrogenic component due to electron transfer from the redox-active tyrosine YZ to the primary quinone acceptor QA in the presence of oxidized cyt c (cyt c3+) entrapped in the internal space of proteoliposomes with intact PSII complexes. This component with characteristic time τ ≈ 40 µs and relative amplitude of ~10% of the total Δψ was attributed to the vectorial electron transfer from QA- to cyt c3+ serving as an external acceptor. An additional electrogenic component with τ ~ 70 µs and a relative amplitude of ~20% of the total Δψ also appeared in the kinetics of Δψ formation, when cyt c2+ was added to the suspension of proteoliposomes containing Mn-depleted PSII core complexes. This component was attributed to the electrogenic transfer of an electron from cyt c2+ to photooxidized tyrosine YZ. These data imply that cyt c3+ serves as a very effective exogenous electron acceptor for QA- in the case of intact PSII core complexes, and cyt c2+ is an extremely efficient artificial electron donor for YZ in the Mn-depleted PSII. The obtained data on the roles of cyt c2+ and cyt c3+ as an electron donor and acceptor for PSII, respectively, can be used to develop hybrid photoelectrochemical solar energy-converting systems based on photosynthetic pigment-protein complexes.
Collapse
Affiliation(s)
- Liya A Vitukhnovskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ruben A Simonyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Alexey Yu Semenov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Mahir D Mamedov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
17
|
Hancock AM, Son M, Nairat M, Wei T, Jeuken LJC, Duffy CDP, Schlau-Cohen GS, Adams PG. Ultrafast energy transfer between lipid-linked chromophores and plant light-harvesting complex II. Phys Chem Chem Phys 2021; 23:19511-19524. [PMID: 34524278 PMCID: PMC8442836 DOI: 10.1039/d1cp01628h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light-Harvesting Complex II (LHCII) is a membrane protein found in plant chloroplasts that has the crucial role of absorbing solar energy and subsequently performing excitation energy transfer to the reaction centre subunits of Photosystem II. LHCII provides strong absorption of blue and red light, however, it has minimal absorption in the green spectral region where solar irradiance is maximal. In a recent proof-of-principle study, we enhanced the absorption in this spectral range by developing a biohybrid system where LHCII proteins together with lipid-linked Texas Red (TR) chromophores were assembled into lipid membrane vesicles. The utility of these systems was limited by significant LHCII quenching due to protein-protein interactions and heterogeneous lipid structures. Here, we organise TR and LHCII into a lipid nanodisc, which provides a homogeneous, well-controlled platform to study the interactions between TR molecules and single LHCII complexes. Fluorescence spectroscopy determined that TR-to-LHCII energy transfer has an efficiency of at least 60%, resulting in a 262% enhancement of LHCII fluorescence in the 525-625 nm range, two-fold greater than in the previous system. Ultrafast transient absorption spectroscopy revealed two time constants of 3.7 and 128 ps for TR-to-LHCII energy transfer. Structural modelling and theoretical calculations indicate that these timescales correspond to TR-lipids that are loosely- or tightly-associated with the protein, respectively, with estimated TR-to-LHCII separations of ∼3.5 nm and ∼1 nm. Overall, we demonstrate that a nanodisc-based biohybrid system provides an idealised platform to explore the photophysical interactions between extrinsic chromophores and membrane proteins with potential applications in understanding more complex natural or artificial photosynthetic systems.
Collapse
Affiliation(s)
- Ashley M Hancock
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK. .,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Minjung Son
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA.
| | - Muath Nairat
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA.
| | - Tiejun Wei
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Lars J C Jeuken
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.,Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Christopher D P Duffy
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA.
| | - Peter G Adams
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK. .,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
18
|
Teodor AH, Thal LB, Vijayakumar S, Chan M, Little G, Bruce BD. Photosystem I integrated into mesoporous microspheres has enhanced stability and photoactivity in biohybrid solar cells. Mater Today Bio 2021; 11:100122. [PMID: 34401709 PMCID: PMC8350420 DOI: 10.1016/j.mtbio.2021.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/24/2022] Open
Abstract
Isolated proteins, especially membrane proteins, are susceptible to aggregation and activity loss after purification. For therapeutics and biosensors usage, protein stability and longevity are especially important. It has been demonstrated that photosystem I (PSI) can be successfully integrated into biohybrid electronic devices to take advantage of its strong light-driven reducing potential (-1.2V vs. the Standard Hydrogen Electrode). Most devices utilize PSI isolated in a nanosize detergent micelle, which is difficult to visualize, quantitate, and manipulate. Isolated PSI is also susceptible to aggregation and/or loss of activity, especially after freeze/thaw cycles. CaCO3 microspheres (CCMs) have been shown to be a robust method of protein encapsulation for industrial and pharmaceutical applications, increasing the stability and activity of the encapsulated protein. However, CCMs have not been utilized with any membrane protein(s) to date. Herein, we examine the encapsulation of detergent-solubilized PSI in CCMs yielding uniform, monodisperse, mesoporous microspheres. This study reports both the first encapsulation of a membrane protein and also the largest protein to date stabilized by CCMs. These microspheres retain their spectral properties and lumenal surface exposure and are active when integrated into hybrid biophotovoltaic devices. CCMs may be a robust yet simple solution for long-term storage of large membrane proteins, showing success for very large, multisubunit complexes like PSI.
Collapse
Affiliation(s)
- Alexandra H. Teodor
- Program in Genome Sciences and Technology, Oak Ridge National Laboratory and University of Tennessee, Knoxville, USA
| | - Lucas B. Thal
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Shinduri Vijayakumar
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, USA
| | - Madison Chan
- Department of Engineering Management, University of Tennessee, Chattanooga, USA
| | - Gabriela Little
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Barry D. Bruce
- Program in Genome Sciences and Technology, Oak Ridge National Laboratory and University of Tennessee, Knoxville, USA
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, USA
| |
Collapse
|
19
|
Teodor AH, Ooi EJ, Medina J, Alarcon M, Vaughn MD, Bruce BD, Bergkamp JJ. Aqueous-soluble bipyridine cobalt(ii/iii) complexes act as direct redox mediators in photosystem I-based biophotovoltaic devices. RSC Adv 2021; 11:10434-10450. [PMID: 35423559 PMCID: PMC8695705 DOI: 10.1039/d0ra10221k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/28/2021] [Indexed: 01/13/2023] Open
Abstract
Sustainable energy production is critical for meeting growing worldwide energy demands. Due to its stability and reduction potential, photosystem I (PSI) is attractive as the photosensitizer in biophotovoltaic devices. Herein, we characterize aqueous and organic solvent soluble synthetic bipyridine-based cobalt complexes as redox mediators for PSI-based biophotovoltaics applications. Cobalt-based complexes are not destructive to protein and have appropriate midpoint potentials for electron donation to PSI. We report on PSI stability in organic solvents commonly used in biophotovoltaics. We also show the effects of a mixed organic solvent phase on PSI reduction kinetics, slowing reduction rates approximately 8–38 fold as compared to fully aqueous systems, with implications for dye regeneration rates in PSI-based biophotovoltaics. Further, we show evidence of direct electron transfer from cobalt complexes to PSI. Finally, we report on photocurrent generation from Co mediator-PSI biophotovoltaic devices. Taken together, we discuss the development of novel Co complexes and our ability to fine-tune their characteristics via functional groups and counteranion choice to drive interaction with a biological electron acceptor on multiple levels from redox midpoints, spectral overlap, and solvent requirements, among others. This work suggests that fine-tuning of redox active species for interaction with a biological partner is possible for the creation and improvement of low cost, carbon-neutral energy production in the future. Sustainable energy production is critical for meeting growing worldwide energy demands.![]()
Collapse
Affiliation(s)
- Alexandra H Teodor
- Graduate School of Genome Science and Technology, University of Tennessee at Knoxville and Oak Ridge National Laboratory USA
| | - Eu-Jee Ooi
- Department of Chemistry and Biochemistry, California State University Bakersfield USA
| | - Jackeline Medina
- Department of Chemistry and Biochemistry, California State University Bakersfield USA
| | - Miguel Alarcon
- Department of Chemistry and Biochemistry, California State University Bakersfield USA
| | | | - Barry D Bruce
- Graduate School of Genome Science and Technology, University of Tennessee at Knoxville and Oak Ridge National Laboratory USA .,Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at Knoxville USA.,Department of Chemical and Biomolecular Engineering, University of Tennessee at Knoxville USA
| | - Jesse J Bergkamp
- Department of Chemistry and Biochemistry, California State University Bakersfield USA
| |
Collapse
|
20
|
Wang P, Frank A, Zhao F, Szczesny J, Junqueira JRC, Zacarias S, Ruff A, Nowaczyk MM, Pereira IAC, Rögner M, Conzuelo F, Schuhmann W. Gemischte Photosystem‐I‐Monoschichten ermöglichen einen verbesserten anisotropen Elektronenfluss in Biophotovoltaik‐Systemen durch Unterdrückung elektrischer Kurzschlüsse. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202008958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Panpan Wang
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Anna Frank
- Plant Biochemistry Faculty of Biology and Biotechnology Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Fangyuan Zhao
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Julian Szczesny
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - João R. C. Junqueira
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Sónia Zacarias
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Oeiras 2780-157 Portugal
| | - Adrian Ruff
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
- PPG (Deutschland) Business Support GmbH PPG Packaging Coatings EMEA Erlenbrunnenstraße 20 72411 Bodelshausen Deutschland
| | - Marc M. Nowaczyk
- Plant Biochemistry Faculty of Biology and Biotechnology Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Oeiras 2780-157 Portugal
| | - Matthias Rögner
- Plant Biochemistry Faculty of Biology and Biotechnology Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Felipe Conzuelo
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Wolfgang Schuhmann
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| |
Collapse
|
21
|
Wang P, Frank A, Zhao F, Szczesny J, Junqueira JRC, Zacarias S, Ruff A, Nowaczyk MM, Pereira IAC, Rögner M, Conzuelo F, Schuhmann W. Closing the Gap for Electronic Short-Circuiting: Photosystem I Mixed Monolayers Enable Improved Anisotropic Electron Flow in Biophotovoltaic Devices. Angew Chem Int Ed Engl 2021; 60:2000-2006. [PMID: 33075190 PMCID: PMC7894356 DOI: 10.1002/anie.202008958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/15/2020] [Indexed: 11/10/2022]
Abstract
Well-defined assemblies of photosynthetic protein complexes are required for an optimal performance of semi-artificial energy conversion devices, capable of providing unidirectional electron flow when light-harvesting proteins are interfaced with electrode surfaces. We present mixed photosystem I (PSI) monolayers constituted of native cyanobacterial PSI trimers in combination with isolated PSI monomers from the same organism. The resulting compact arrangement ensures a high density of photoactive protein complexes per unit area, providing the basis to effectively minimize short-circuiting processes that typically limit the performance of PSI-based bioelectrodes. The PSI film is further interfaced with redox polymers for optimal electron transfer, enabling highly efficient light-induced photocurrent generation. Coupling of the photocathode with a [NiFeSe]-hydrogenase confirms the possibility to realize light-induced H2 evolution.
Collapse
Affiliation(s)
- Panpan Wang
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Anna Frank
- Plant BiochemistryFaculty of Biology and BiotechnologyRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Fangyuan Zhao
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Julian Szczesny
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - João R. C. Junqueira
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Sónia Zacarias
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeiras2780-157Portugal
| | - Adrian Ruff
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
- Present Address: PPG (Deutschland) Business Support GmbHPPG Packaging Coatings EMEAErlenbrunnenstrasse 2072411BodelshausenGermany
| | - Marc M. Nowaczyk
- Plant BiochemistryFaculty of Biology and BiotechnologyRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeiras2780-157Portugal
| | - Matthias Rögner
- Plant BiochemistryFaculty of Biology and BiotechnologyRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Felipe Conzuelo
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| |
Collapse
|
22
|
Anaya‐Plaza E, Shaukat A, Lehtonen I, Kostiainen MA. Biomolecule-Directed Carbon Nanotube Self-Assembly. Adv Healthc Mater 2021; 10:e2001162. [PMID: 33124183 DOI: 10.1002/adhm.202001162] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/12/2020] [Indexed: 12/26/2022]
Abstract
The strategy of combining biomolecules and synthetic components to develop biohybrids is becoming increasingly popular for preparing highly customized and biocompatible functional materials. Carbon nanotubes (CNTs) benefit from bioconjugation, allowing their excellent properties to be applied to biomedical applications. This study reviews the state-of-the-art research in biomolecule-CNT conjugates and discusses strategies for their self-assembly into hierarchical structures. The review focuses on various highly ordered structures and the interesting properties resulting from the structural order. Hence, CNTs conjugated with the most relevant biomolecules, such as nucleic acids, peptides, proteins, saccharides, and lipids are discussed. The resulting well-defined composites allow the nanoscale properties of the CNTs to be exploited at the micro- and macroscale, with potential applications in tissue engineering, sensors, and wearable electronics. This review presents the underlying chemistry behind the CNT-based biohybrid materials and discusses the future directions of the field.
Collapse
Affiliation(s)
- Eduardo Anaya‐Plaza
- Department of Bioproducts and Biosystems Aalto University Kemistintie 1 Espoo 02150 Finland
| | - Ahmed Shaukat
- Department of Bioproducts and Biosystems Aalto University Kemistintie 1 Espoo 02150 Finland
| | - Inka Lehtonen
- Department of Bioproducts and Biosystems Aalto University Kemistintie 1 Espoo 02150 Finland
| | - Mauri A. Kostiainen
- Department of Bioproducts and Biosystems Aalto University Kemistintie 1 Espoo 02150 Finland
| |
Collapse
|
23
|
Białek R, Thakur K, Ruff A, Jones MR, Schuhmann W, Ramanan C, Gibasiewicz K. Insight into Electron Transfer from a Redox Polymer to a Photoactive Protein. J Phys Chem B 2020; 124:11123-11132. [PMID: 33236901 PMCID: PMC7735723 DOI: 10.1021/acs.jpcb.0c08714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/10/2020] [Indexed: 11/29/2022]
Abstract
Biohybrid photoelectrochemical systems in photovoltaic or biosensor applications have gained considerable attention in recent years. While the photoactive proteins engaged in such systems usually maintain an internal charge separation quantum yield of nearly 100%, the subsequent steps of electron and hole transfer beyond the protein often limit the overall system efficiency and their kinetics remain largely uncharacterized. To reveal the dynamics of one of such charge-transfer reactions, we report on the reduction of Rhodobacter sphaeroides reaction centers (RCs) by Os-complex-modified redox polymers (P-Os) characterized using transient absorption spectroscopy. RCs and P-Os were mixed in buffered solution in different molar ratios in the presence of a water-soluble quinone as an electron acceptor. Electron transfer from P-Os to the photoexcited RCs could be described by a three-exponential function, the fastest lifetime of which was on the order of a few microseconds, which is a few orders of magnitude faster than the internal charge recombination of RCs with fully separated charge. This was similar to the lifetime for the reduction of RCs by their natural electron donor, cytochrome c2. The rate of electron donation increased with increasing ratio of polymer to protein concentrations. It is proposed that P-Os and RCs engage in electrostatic interactions to form complexes, the sizes of which depend on the polymer-to-protein ratio. Our findings throw light on the processes within hydrogel-based biophotovoltaic devices and will inform the future design of materials optimally suited for this application.
Collapse
Affiliation(s)
- Rafał Białek
- Faculty
of Physics, Adam Mickiewicz University, Poznań, ul. Uniwersytetu
Poznańskiego 2, 61-614 Poznań, Poland
| | - Kalyani Thakur
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Adrian Ruff
- Analytical
Chemistry—Center for Electrochemical Sciences, Faculty of Biochemistry
and Chemistry, Faculty of Biochemistry and Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| | - Michael R. Jones
- School
of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, U.K.
| | - Wolfgang Schuhmann
- Analytical
Chemistry—Center for Electrochemical Sciences, Faculty of Biochemistry
and Chemistry, Faculty of Biochemistry and Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| | - Charusheela Ramanan
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Krzysztof Gibasiewicz
- Faculty
of Physics, Adam Mickiewicz University, Poznań, ul. Uniwersytetu
Poznańskiego 2, 61-614 Poznań, Poland
| |
Collapse
|
24
|
Zaspa AA, Vitukhnovskaya LA, Mamedova AM, Semenov AY, Mamedov MD. Photovoltage generation by photosystem II core complexes immobilized onto a Millipore filter on an indium tin oxide electrode. J Bioenerg Biomembr 2020; 52:495-504. [PMID: 33190172 DOI: 10.1007/s10863-020-09857-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
The light-induced functioning of photosynthetic pigment-protein complex of photosystem II (PSII) is linked to the vectorial translocation of charges across the membrane, which results in the formation of voltage. Direct measurement of the light-induced voltage (∆V) generated by spinach oxygen-evolving PSII core complexes adsorbed onto a Millipore membrane filter (MF) on an indium tin oxide (ITO) electrode under continuous illumination has been performed. PSII was shown to participate in electron transfer from water to the ITO electrode, resulting in ∆V generation. No photovoltage was detected in PSII deprived of the water-oxidizing complex. The maximal and stable photoelectric signal was observed in the presence of disaccharide trehalose and 2,6-dichloro-1,4-benzoquinone, acting as a redox mediator between the primary quinone acceptor QA of PSII and electrode surface. Long time preservation of the steady-state photoactivity at room temperature in a simple in design ITO|PSII-MF|ITO system may be related to the retention of water molecules attached to the PSII surface in the presence of trehalose.
Collapse
Affiliation(s)
- Andrey A Zaspa
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Liya A Vitukhnovskaya
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Aida M Mamedova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,First Moscow State Medical University, Moscow, Russia
| | - Alexey Yu Semenov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Mahir D Mamedov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
25
|
Passantino JM, Wolfe KD, Simon KT, Cliffel DE, Jennings GK. Photosystem I Enhances the Efficiency of a Natural, Gel-Based Dye-Sensitized Solar Cell. ACS APPLIED BIO MATERIALS 2020; 3:4465-4473. [PMID: 35025445 DOI: 10.1021/acsabm.0c00446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photosystem I (PSI) protein complex is known to enhance bioelectrode performance for many liquid-based photoelectrochemical cells. A hydrogel as electrolyte media allows for simpler fabrication of more robust and practical solar cells in comparison to liquid-based devices. This paper reports a natural, gel-based dye-sensitized solar cell that integrates PSI to improve device efficiency. TiO2-coated FTO slides, dyed by blackberry anthocyanin, act as a photoanode, while a film of PSI deposited onto copper comprises the photocathode. Ascorbic acid (AscH) and 2,6-dichlorophenolindophenol (DCPIP) are the redox mediator couple inside an agarose hydrogel, enabling PSI to produce excess oxidized species near the cathode to improve device performance. A comparison of performance at low pH and neutral pH was performed to test the pH-dependent properties of the AscH/DCPIP couple. Devices at neutral pH performed better than those at lower pH. The PSI film enhanced photovoltage by 75 mV to a total photovoltage of 0.45 V per device and provided a mediator concentration-dependent photocurrent enhancement over non-PSI devices, reaching an instantaneous power conversion efficiency of 0.30% compared to 0.18% without PSI, a 1.67-fold increase. At steady state, power conversion efficiencies for devices with and without PSI were 0.042 and 0.028%, respectively.
Collapse
Affiliation(s)
- Joshua M Passantino
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Kody D Wolfe
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Keiann T Simon
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - David E Cliffel
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - G Kane Jennings
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
26
|
Teodor AH, Bruce BD. Putting Photosystem I to Work: Truly Green Energy. Trends Biotechnol 2020; 38:1329-1342. [PMID: 32448469 DOI: 10.1016/j.tibtech.2020.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
Abstract
Meeting growing energy demands sustainably is one of the greatest challenges facing the world. The sun strikes the Earth with sufficient energy in 1.5 h to meet annual world energy demands, likely making solar energy conversion part of future sustainable energy production plans. Photosynthetic organisms have been evolving solar energy utilization strategies for nearly 3.5 billion years, making reaction centers including the remarkably stable Photosystem I (PSI) especially interesting for biophotovoltaic device integration. Although these biohybrid devices have steadily improved, their output remains low compared with traditional photovoltaics. We discuss strategies and methods to improve PSI-based biophotovoltaics, focusing on PSI-surface interaction enhancement, electrolytes, and light-harvesting enhancement capabilities. Desirable features and current drawbacks to PSI-based devices are also discussed.
Collapse
Affiliation(s)
- Alexandra H Teodor
- Graduate School of Genome Science and Technology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Barry D Bruce
- Graduate School of Genome Science and Technology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; Department of Chemical and Biomolecular Engineering, University of Tennessee at Knoxville, Knoxville, TN 37996, USA.
| |
Collapse
|
27
|
Takekuma Y, Ikeda N, Kawakami K, Kamiya N, Nango M, Nagata M. Photocurrent generation by a photosystem I-NiO photocathode for a p-type biophotovoltaic tandem cell. RSC Adv 2020; 10:15734-15739. [PMID: 35493643 PMCID: PMC9052782 DOI: 10.1039/d0ra01793k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/15/2020] [Indexed: 11/21/2022] Open
Abstract
Photosynthesis is a process used by algae and plants to convert light energy into chemical energy. Due to their uniquely natural and environmentally friendly nature, photosynthetic proteins have attracted attention for use in a variety of artificial applications. Among the various types, biophotovoltaics based on dye-sensitized solar cells have been demonstrated in many studies. Although most related works have used n-type semiconductors, a p-type semiconductor is also a significant potential component for tandem cells. In this work, we used mesoporous NiO as a p-type semiconductor substrate for Photosystem I (PSI) and demonstrated a p-type PSI-biophotovoltaic and tandem cell based on dye-sensitized solar cells. Under visible light illumination, the PSI-adsorbed NiO electrode generated a cathodic photocurrent. The p-type biophotovoltaic cell using the PSI-adsorbed NiO electrode generated electricity, and the IPCE spectrum was consistent with the absorption spectrum of PSI. These results indicate that the PSI-adsorbed NiO electrode acts as a photocathode. Moreover, a tandem cell consisting of the PSI-NiO photocathode and a PSI-TiO2 photoanode showed a high open-circuit voltage of over 0.7 V under illumination to the TiO2 side. Thus, the tandem strategy can be utilized for biophotovoltaics, and the use of other biomaterials that match the solar spectrum will lead to further progress in photovoltaic performance.
Collapse
Affiliation(s)
- Yuya Takekuma
- Department of Industrial Chemistry, Graduate School of Engineering, Tokyo University of Science 12-1 Ichigaya-funagawara, Shinjuku-ku Tokyo 162-0826 Japan
| | - Nobuhiro Ikeda
- Department of Industrial Chemistry, Graduate School of Engineering, Tokyo University of Science 12-1 Ichigaya-funagawara, Shinjuku-ku Tokyo 162-0826 Japan
| | - Keisuke Kawakami
- Research Center for Artificial Photosynthesis (ReCAP), Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Nobuo Kamiya
- The OCU Advanced Research Institute for Natural Science & Technology (OCARINA), Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Mamoru Nango
- The OCU Advanced Research Institute for Natural Science & Technology (OCARINA), Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Morio Nagata
- Department of Industrial Chemistry, Graduate School of Engineering, Tokyo University of Science 12-1 Ichigaya-funagawara, Shinjuku-ku Tokyo 162-0826 Japan
| |
Collapse
|
28
|
Szewczyk S, Białek R, Burdziński G, Gibasiewicz K. Photovoltaic activity of electrodes based on intact photosystem I electrodeposited on bare conducting glass. PHOTOSYNTHESIS RESEARCH 2020; 144:1-12. [PMID: 32078102 PMCID: PMC7113217 DOI: 10.1007/s11120-020-00722-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
We demonstrate photovoltaic activity of electrodes composed of fluorine-doped tin oxide (FTO) conducting glass and a multilayer of trimeric photosystem I (PSI) from cyanobacterium Synechocystis sp. PCC 6803 yielding, at open circuit potential (OCP) of + 100 mV (vs. SHE), internal quantum efficiency of (0.37 ± 0.11)% and photocurrent density of up to (0.5 ± 0.1) µA/cm2. The photocurrent measured for OCP is of cathodic nature meaning that preferentially the electrons are injected from the conducting layer of the FTO glass to the photooxidized PSI primary electron donor, P700+, and further transferred from the photoreduced final electron acceptor of PSI, Fb-, via ascorbate electrolyte to the counter electrode. This observation is consistent with preferential donor-side orientation of PSI on FTO imposed by applied electrodeposition. However, by applying high-positive bias (+ 620 mV) to the PSI-FTO electrode, exceeding redox midpoint potential of P700 (+ 450 mV), the photocurrent reverses its orientation and becomes anodic. This is explained by "switching off" the natural photoactivity of PSI particles (by the electrochemical oxidation of P700 to P700+) and "switching on" the anodic photocurrent from PSI antenna Chls prone to photooxidation at high potentials. The efficient control of the P700 redox state (P700 or P700+) by external bias applied to the PSI-FTO electrodes was evidenced by ultrafast transient absorption spectroscopy. The advantage of the presented system is its structural simplicity together with in situ-proven high intactness of the PSI particles.
Collapse
Affiliation(s)
- Sebastian Szewczyk
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - Rafał Białek
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - Gotard Burdziński
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - Krzysztof Gibasiewicz
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland.
| |
Collapse
|
29
|
Szewczyk S, Abram M, Białek R, Haniewicz P, Karolczak J, Gapiński J, Kargul J, Gibasiewicz K. On the nature of uncoupled chlorophylls in the extremophilic photosystem I-light harvesting I supercomplex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148136. [PMID: 31825811 DOI: 10.1016/j.bbabio.2019.148136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/18/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023]
Abstract
Photosystem I core-light-harvesting antenna supercomplexes (PSI-LHCI) were isolated from the extremophilic red alga Cyanidioschyzon merolae and studied by three fluorescence techniques in order to characterize chlorophylls (Chls) energetically uncoupled from the PSI reaction center (RC). Such Chls are observed in virtually all optical experiments of any PSI core and PSI-LHCI supercomplex preparations across various species and may influence the operation of PSI-based solar cells and other biohybrid systems. However, the nature of the uncoupled Chls (uChls) has never been explored deeply before. In this work, the amount of uChls was controlled by stirring the solution of C. merolae PSI-LHCI supercomplex samples at elevated temperature (~303 K) and was found to increase from <2% in control samples up to 47% in solutions stirred for 3.5 h. The fluorescence spectrum of uChls was found to be blue-shifted by ~20 nm (to ~680 nm) relative to the fluorescence band from Chls that are well coupled to PSI RC. This effect indicates that mechanical stirring leads to disappearance of some red Chls (emitting at above ~700 nm) that are present in the intact LHCI antenna associated with the PSI core. Comparative diffusion studies of control and stirred samples by fluorescence correlation spectroscopy together with biochemical analysis by SDS-PAGE and BN-PAGE indicate that energetically uncoupled Lhcr subunits are likely to be still physically attached to the PSI core, albeit with altered three-dimensional organization due to the mechanical stress.
Collapse
Affiliation(s)
- Sebastian Szewczyk
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Mateusz Abram
- Solar Fuels Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland; Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Rafał Białek
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Patrycja Haniewicz
- Solar Fuels Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Jerzy Karolczak
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Jacek Gapiński
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Joanna Kargul
- Solar Fuels Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| | - Krzysztof Gibasiewicz
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.
| |
Collapse
|
30
|
Anwar M, Lou S, Chen L, Li H, Hu Z. Recent advancement and strategy on bio-hydrogen production from photosynthetic microalgae. BIORESOURCE TECHNOLOGY 2019; 292:121972. [PMID: 31444119 DOI: 10.1016/j.biortech.2019.121972] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Recently, ensuring energy security is a key challenge to political and economic strength in the world. Bio-hydrogen production from microalgae is the promising alternative source for potential renewable and self-sustainability energy but still in the initial phase of development. Practically and sustainability of microalgae hydrogen production is still debatable. The genetic engineering and metabolic pathway engineering of hydrogenase and nitrogenase play a key role to enhance hydrogen production. Microalgae have photosynthetic efficiency and synthesize huge carbohydrate biomass, used as 4th generation feedstock to generate bio-hydrogen. Recent genetically modified strains of microalgae are the attractive source for enhancing bio-hydrogen production in the future. The potential of hydrogen production from microRNAs are gaining great interest of researcher. The main objective of this review is attentive discussed recent approaches on new molecular genetics engineering and metabolic pathway developments, modern photo-bioreactors efficiency, economic assessment, limitations and knowledge gap of bio-hydrogen production from microalgae.
Collapse
Affiliation(s)
- Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Sulin Lou
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Liu Chen
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Hui Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, People's Republic of China.
| |
Collapse
|
31
|
Stikane A, Hwang ET, Ainsworth E, Piper SEH, Critchley K, Butt JN, Reisner E, Jeuken LJC. Towards compartmentalized photocatalysis: multihaem proteins as transmembrane molecular electron conduits. Faraday Discuss 2019; 215:26-38. [DOI: 10.1039/c8fd00163d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We show a proof-of-concept for using MtrCAB as a lipid membrane-spanning building block for compartmentalised photocatalysis that mimics photosynthesis.
Collapse
Affiliation(s)
- Anna Stikane
- School of Biomedical Sciences
- University of Leeds
- Leeds
- UK
- The Astbury Centre for Structural Molecular Biology
| | - Ee Taek Hwang
- School of Biomedical Sciences
- University of Leeds
- Leeds
- UK
- The Astbury Centre for Structural Molecular Biology
| | - Emma V. Ainsworth
- Centre for Molecular and Structural Biochemistry
- School of Chemistry and School of Biological Sciences
- University of East Anglia
- Norwich
- UK
| | - Samuel E. H. Piper
- Centre for Molecular and Structural Biochemistry
- School of Chemistry and School of Biological Sciences
- University of East Anglia
- Norwich
- UK
| | - Kevin Critchley
- The Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds
- UK
- School of Physics and Astronomy
| | - Julea N. Butt
- Centre for Molecular and Structural Biochemistry
- School of Chemistry and School of Biological Sciences
- University of East Anglia
- Norwich
- UK
| | - Erwin Reisner
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | - Lars J. C. Jeuken
- School of Biomedical Sciences
- University of Leeds
- Leeds
- UK
- The Astbury Centre for Structural Molecular Biology
| |
Collapse
|