1
|
Guo J, Bai R, Luo R, Lin L, Zheng Y. Angiostatin: a promising therapeutic target for atopic dermatitis. Arch Dermatol Res 2025; 317:616. [PMID: 40119948 DOI: 10.1007/s00403-025-04126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
Angiostatin, a 38-45 KDa proteolytic fragment derived from plasminogen, has garnered significant attention for its dual roles in inhibiting angiogenesis and modulating inflammation. We employed bidirectional Mendelian randomization (MR), meta-analysis, and colocalization to investigate the causal relationship between angiostatin and atopic dermatitis (AD) using three angiostatin and two AD datasets. Additionally, we analyzed global epidemiological trends (1990-2021) and performed transcriptomic profiling of AD. MR analyses revealed a protective effect of angiostatin on AD risk (combined odds ratio: 0.9437, 95% confidence interval [CI]: 0.9198-0.9683, p < 0.0001), while reverse analyses showed no association (standardized mean difference: -0.0029, 95% CI: -0.0516-0.0459, p = 0.9084). Colocalization indicated no shared causal variants (H4 probabilities < 80%). Epidemiological trends highlighted declining age-standardized AD rates despite rising case numbers. Transcriptomic analyses implicated NF-κB, PI3K-Akt, and JAK-STAT pathways in AD pathogenesis. These findings position angiostatin as a dual-action therapeutic candidate, offering novel opportunities to simultaneously target vascular remodeling and immune dysregulation in AD. Translational research is warranted to harness its clinical potential.
Collapse
Affiliation(s)
- Jiaqi Guo
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ruimin Bai
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ruiting Luo
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Liyan Lin
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yan Zheng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
2
|
Arslan U, Brescia M, Meraviglia V, Nahon DM, van Helden RWJ, Stein JM, van den Hil FE, van Meer BJ, Vila Cuenca M, Mummery CL, Orlova VV. Vascularized hiPSC-derived 3D cardiac microtissue on chip. Stem Cell Reports 2023; 18:1394-1404. [PMID: 37390826 PMCID: PMC10362508 DOI: 10.1016/j.stemcr.2023.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 07/02/2023] Open
Abstract
Functional vasculature is essential for delivering nutrients, oxygen, and cells to the heart and removing waste products. Here, we developed an in vitro vascularized human cardiac microtissue (MT) model based on human induced pluripotent stem cells (hiPSCs) in a microfluidic organ-on-chip by coculturing hiPSC-derived, pre-vascularized, cardiac MTs with vascular cells within a fibrin hydrogel. We showed that vascular networks spontaneously formed in and around these MTs and were lumenized and interconnected through anastomosis. Anastomosis was fluid flow dependent: continuous perfusion increased vessel density and thus enhanced the formation of the hybrid vessels. Vascularization further improved endothelial cell (EC)-cardiomyocyte communication via EC-derived paracrine factors, such as nitric oxide, and resulted in an enhanced inflammatory response. The platform sets the stage for studies on how organ-specific EC barriers respond to drugs or inflammatory stimuli.
Collapse
Affiliation(s)
- Ulgu Arslan
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2333ZC Leiden, the Netherlands
| | - Marcella Brescia
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2333ZC Leiden, the Netherlands
| | - Viviana Meraviglia
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2333ZC Leiden, the Netherlands
| | - Dennis M Nahon
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2333ZC Leiden, the Netherlands
| | - Ruben W J van Helden
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2333ZC Leiden, the Netherlands
| | - Jeroen M Stein
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2333ZC Leiden, the Netherlands
| | - Francijna E van den Hil
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2333ZC Leiden, the Netherlands
| | - Berend J van Meer
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2333ZC Leiden, the Netherlands
| | - Marc Vila Cuenca
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2333ZC Leiden, the Netherlands; Department of Clinical Genetics, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2333ZC Leiden, the Netherlands
| | - Valeria V Orlova
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2333ZC Leiden, the Netherlands.
| |
Collapse
|
3
|
Łuczak A, Małecki R, Kulus M, Madej M, Szahidewicz-Krupska E, Doroszko A. Cardiovascular Risk and Endothelial Dysfunction in Primary Sjogren Syndrome Is Related to the Disease Activity. Nutrients 2021; 13:nu13062072. [PMID: 34204342 PMCID: PMC8235705 DOI: 10.3390/nu13062072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/23/2022] Open
Abstract
The aim of our study was to evaluate if endothelial-dysfunction (ED) occurs in patients with primary Sjogren syndrome (pSS) and whether it is associated with the disease characteristics and activity. A total of 46 patients with pSS and 30 controls, without known cardiovascular disease, were enrolled in this study. A flow-mediated-dilation (FMD) of the brachial artery, plasma concentrations of the nitric oxide (NO) metabolic pathway (ADMA, L-arginine, SDMA, cGMP), and markers of endothelial inflammatory function (PAI-1, sE-selectin) and angiogenesis (angiostatin, VEGF) were analyzed. The FMD was significantly lower in pSS patients (7.56 ± 3.08 vs. 10.91 ± 1.02%, p = 0.043) and positively correlated with the Ro/SS-A-antibodies (r = 0.34, p = 0.03), pulmonary involvement (r = 0.52, p = 0.001) and inversely with ADMA (r = −0.35, p = 0.04). Plasma ADMA, L-arginine and angiostatin levels were significantly higher in pSS patients (0.39 ± 0.08 vs. 0.36 ± 0.06 µmol/L, p = 0.05; 29.07 ± 6.7 vs. 25.4 ± 5.23 µmol/L, p = 0.01; 152.25 ± 60.99 vs. 120.07 ± 38.7 pg/mL, p = 0.0, respectively). ADMA was associated with ESSDAI (r = 0.33, p = 0.02), SCORE (r = 0.57, p = 0.00003) and focus score (r = 0.38, p = 0.04). In the multiple regression analysis, the ESSDAI was significantly and independently associated with plasma ADMA levels (β = 0.24, p = 0.04). Moreover, plasma cGMP concentrations were negatively correlated with the disease duration (r = −0.31, p = 0.03). Endothelial function is impaired in patients with pSS and associated with the measures of disease activity, which supports the key-role of inflammation in developing and maintaining accelerated atherosclerosis.
Collapse
Affiliation(s)
- Anna Łuczak
- Department of Rheumatology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (A.Ł.); (M.M.)
| | - Rafał Małecki
- Department of Angiology, Hypertension and Diabetology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Michał Kulus
- Department of Histology and Embryology, Wroclaw Medical University, Chalubinskiego 6a, 50-367 Wroclaw, Poland;
| | - Marta Madej
- Department of Rheumatology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (A.Ł.); (M.M.)
| | - Ewa Szahidewicz-Krupska
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Adrian Doroszko
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-736-4000
| |
Collapse
|
4
|
Hammoud SH, AlZaim I, Mougharbil N, Koubar S, Eid AH, Eid AA, El-Yazbi AF. Peri-renal adipose inflammation contributes to renal dysfunction in a non-obese prediabetic rat model: Role of anti-diabetic drugs. Biochem Pharmacol 2021; 186:114491. [PMID: 33647265 DOI: 10.1016/j.bcp.2021.114491] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/07/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy is a major health challenge with considerable economic burden and significant impact on patients' quality of life. Despite recent advances in diabetic patient care, current clinical practice guidelines fall short of halting the progression of diabetic nephropathy to end-stage renal disease. Moreover, prior literature reported manifestations of renal dysfunction in early stages of metabolic impairment prior to the development of hyperglycemia indicating the involvement of alternative pathological mechanisms apart from those typically triggered by high blood glucose. Here, we extend our prior research work implicating localized inflammation in specific adipose depots in initiating cardiovascular dysfunction in early stages of metabolic impairment. Non-obese prediabetic rats showed elevated glomerular filtration rates and mild proteinuria in absence of hyperglycemia, hypertension, and signs of systemic inflammation. Isolated perfused kidneys from these rats showed impaired renovascular endothelial feedback in response to vasopressors and increased flow. While endothelium dependent dilation remained functional, renovascular relaxation in prediabetic rats was not mediated by nitric oxide and prostaglandins as in control tissues, but rather an upregulation of the function of epoxy eicosatrienoic acids was observed. This was coupled with signs of peri-renal adipose tissue (PRAT) inflammation and renal structural damage. A two-week treatment with non-hypoglycemic doses of metformin or pioglitazone, shown previously to ameliorate adipose inflammation, not only reversed PRAT inflammation in prediabetic rats, but also reversed the observed functional, renovascular, and structural renal abnormalities. The present results suggest that peri-renal adipose inflammation triggers renal dysfunction early in the course of metabolic disease.
Collapse
Affiliation(s)
- Safaa H Hammoud
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Nahed Mougharbil
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Sahar Koubar
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Assaad A Eid
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon.
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt.
| |
Collapse
|
5
|
Chen ZB, Li G, Lin H, Jiang J, Jiang R. Low androgen status inhibits erectile function by increasing pyroptosis in rat corpus cavernosum. Andrology 2021; 9:1264-1274. [PMID: 33657666 DOI: 10.1111/andr.12995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/01/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The mechanism of erectile dysfunction (ED) caused by low androgen status is not fully understood. OBJECTIVES To investigate whether low androgen status inhibits erectile function of rats by inducing pyroptosis in the corpus cavernosum (CC). MATERIALS AND METHODS Thirty-six eight-weeks-old healthy male Sprague-Dawley rats were equally divided into six groups: sham-operated group (4w sham, 8w sham), castration group (4w cast, 8w cast), and castration + testosterone (T) group (4w cast + T, 8w cast + T). The rats in castration + T groups were injected with testosterone propionate subcutaneously every other day. After 4 and 8 weeks, the ratio of maximum intracavernous pressure (ICPmax)/mean arterial pressure (MAP), the level of serum T, the concentration of nitric oxide (NO) and interleukin-1β (IL-1β), the expression of NOD-like receptor pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), Caspase-1 p20, gasdermin D-N (GSDMD-N), transforming growth factor β1 (TGF-β1), collagen-I, and collagen-III, the ratio of smooth muscle/collagen (SM/C), and the proportion of pyroptotic cells in the CC were analyzed. RESULTS The ratio of ICPmax/MAP (3/5 V) and SM/C, the level of NO and serum T was significantly decreased in castration groups when compared to other groups (p < 0.01). NLRP3, ASC, Caspase-1, and GSDMD were mainly expressed in the cytoplasm of smooth muscle cells (SMCs) and endothelial cells (ECs) in the CC. The expression of NLRP3, ASC, Caspase-1p20, GSDMD-N, IL-1β, TGF-β1, collagen-I, and collagen-III was significantly increased in castration groups when compared with other groups (p < 0.01). The proportion of pyroptotic cells in the CC was increased significantly in castration groups when compared with other groups (p < 0.05). DISCUSSION AND CONCLUSION Low androgen status inhibits erectile function of rats by promoting CC fibrosis and reducing NO synthesis through pyroptosis of SMCs and ECs in the CC.
Collapse
Affiliation(s)
- Zhi-Bin Chen
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ge Li
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Haocheng Lin
- Department of Urology and Andrology, Peking University Third Hospital, Beijing, China
| | - Jun Jiang
- Department of Thyroid Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Rui Jiang
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Nephropathy Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan, China
| |
Collapse
|
6
|
Strassheim D, Karoor V, Stenmark K, Verin A, Gerasimovskaya E. A current view of G protein-coupled receptor - mediated signaling in pulmonary hypertension: finding opportunities for therapeutic intervention. ACTA ACUST UNITED AC 2018; 2. [PMID: 31380505 PMCID: PMC6677404 DOI: 10.20517/2574-1209.2018.44] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pathological vascular remodeling is observed in various cardiovascular diseases including pulmonary hypertension (PH), a disease of unknown etiology that has been characterized by pulmonary artery vasoconstriction, right ventricular hypertrophy, vascular inflammation, and abnormal angiogenesis in pulmonary circulation. G protein-coupled receptors (GPCRs) are the largest family in the genome and widely expressed in cardiovascular system. They regulate all aspects of PH pathophysiology and represent therapeutic targets. We overview GPCRs function in vasoconstriction, vasodilation, vascular inflammation-driven remodeling and describe signaling cross talk between GPCR, inflammatory cytokines, and growth factors. Overall, the goal of this review is to emphasize the importance of GPCRs as critical signal transducers and targets for drug development in PH.
Collapse
Affiliation(s)
- Derek Strassheim
- Departments of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Vijaya Karoor
- Departments of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.,Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kurt Stenmark
- Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Pediatrics, Pulmonary and Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Evgenia Gerasimovskaya
- Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Pediatrics, Pulmonary and Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Lipopolysaccharide Downregulates Kruppel-Like Factor 2 (KLF2) via Inducing DNMT1-Mediated Hypermethylation in Endothelial Cells. Inflammation 2018; 40:1589-1598. [PMID: 28578476 DOI: 10.1007/s10753-017-0599-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
KLF2 plays a protective role in antiinflammation and endothelial function, and can be regulated by promoter methylation alteration. Lipopolysaccharide (LPS) is a mediator of inflammatory responses, which causes epigenetic change of certain genes in host cells. We thus aimed to determine whether LPS could control the KLF2 expression by inducing methylation in promoter region. DNA methylation of 16 CpG sites within KLF2 promoter region was detected by bisulfite sequencing PCR. Results showed that methylation at 12 CpG sites were significantly increased in HUVECs after exposure to LPS among the total 16 sites, and the average level was increased by 57%. The KLF2 expressions assessed by reverse transcription quantitative real-time PCR and Western blot were significantly downregulated compared that without LPS simulation. Moreover, both messenger RNA and protein levels of KLF2 in HUVEC co-treated with LPS and DNA methyltransferase (DNMT) 1 small interfering RNA were dramatically higher than that treated with LPS only. Similar result was obtained when the cells were incubated in combination with LPS and 5-aza-2'-deoxycytidine (AZA), suggesting that the reduction of KLF2 expression induced by LPS can be reversed by DNMT1 inhibition. Finally, the presence of AZA changed the expression of genes that depends on KLF2 in LPS-stimulated HUVECs, which downregulated the E-selectin and VCAM and increased the eNOS and thrombomodulin expression. Our data demonstrated that LPS exposure resulted in hypermethylation in KLF2 promoter in HUVECs, which subsequently led to downregulation of the KLF2 expression. The study suggested that epigenetic alteration is involved in LPS-induced inflammatory response and provided a new insight into atherogenesis.
Collapse
|
8
|
Sun J, Chen J, Cao J, Li T, Zhuang S, Jiang X. IL-1β-stimulated β-catenin up-regulation promotes angiogenesis in human lung-derived mesenchymal stromal cells through a NF-κB-dependent microRNA-433 induction. Oncotarget 2018; 7:59429-59440. [PMID: 27449086 PMCID: PMC5312322 DOI: 10.18632/oncotarget.10683] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/04/2016] [Indexed: 01/07/2023] Open
Abstract
Considerable attentions have been focused on the treatment of lung injury using mesenchymal stem cells that can replenish damaged tissues including the blood vessels. In human lung-derived mesenchymal stem cells (hL-MSC), we investigated the potential role of an IL-1β-stimulated miR-433 pathway in angiogenesis in vitro. The expressions of miR-433 and its target genes were examined in cells treated with IL-1β. The angiogenic activity of hL-MSC was studied by cell migration and tube formation assays in which miR-433 levels were manipulated. The reporter assay and chromatin immunoprecipitation (ChIP) were also performed to analyze the underlying regulations. We found that the expression of miR-433 was enhanced in hL-MSC by IL-1β in a NF-κB dependent manner via a NF-κB binding site at its promoter region. The effects of IL-1β on promoting angiogenic activities in hL-MSC can be mimicked by the overexpression of miR-433 and were blocked by anti-miR-433. Mechanistically, our data suggested that miR-433 directly targets the 3'-UTR of Dickkopf Wnt signaling pathway inhibitor 1 (DKK1) mRNA and decreases its expression. Consistently, the expression of β-catenin, the major mediator of canonical Wnt pathway that is capable of inducing endothelial differentiation and angiogenesis, was upregulated by IL-1β through miR-433. Thus, increasing miR-433 expression by IL-1β in mesenchymal stem cells could stimulate their capacity of vascular remodeling for efficient repair processes, which may be utilized as a therapeutic target in patients suffering from severe lung injury.
Collapse
Affiliation(s)
- Jia Sun
- Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Jintao Chen
- Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Juan Cao
- Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Tianxiang Li
- Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Shaoxia Zhuang
- Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Xiufeng Jiang
- Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu, China
| |
Collapse
|
9
|
Wang D, Gao Q, Wang T, Zhao G, Qian F, Huang J, Wang H, Zhang X, Wang Y. Green tea infusion protects against alcoholic liver injury by attenuating inflammation and regulating the PI3K/Akt/eNOS pathway in C57BL/6 mice. Food Funct 2018; 8:3165-3177. [PMID: 28782772 DOI: 10.1039/c7fo00791d] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alcohol intake is a major risk factor for the pathogenesis of alcoholic liver diseases. Accumulating evidence suggests that green tea protects against alcoholic liver injury; however, the underlying mechanisms remain unclear. The present study investigated the role of endothelial nitric oxide synthase (eNOS) in the protective effects of green tea against alcohol-induced liver injury and inflammation. Ethanol was intragastrically administered to male C57BL/6 mice once a day, and the mice were allowed free access to green tea infusion or water for two weeks. We assessed the plasma levels of alanine aminotransferase and aspartate aminotransferase, hepatic contents of thiobarbituric acid reactive substances, malondialdehyde and triglyceride and hepatic mRNA expression of pro-inflammatory cytokines (interleukin-1β, tumor necrosis factor-α, and interleukin-6). Our results showed that compared with water alone, green tea infusion markedly reduced liver damage, hepatic oxidative stress, hepatic lipid accumulation and inflammatory response. Green tea infusion also significantly reduced hepatic nuclear factor-κB expression and its downstream inflammatory mediators (inducible nitric oxide synthase and cyclooxygenase-2) mRNA levels in ethanol-treated mice. Additionally, green tea infusion significantly activated hepatic phosphorylated phosphatidylinositol 3-kinase (PI3K) and phosphorylated protein kinase B (Akt), which are associated with the upregulation of phosphorylated eNOS expression and the increase of plasma nitric oxide levels in ethanol-treated mice. Furthermore, the protective effects of green tea infusion were considerably inhibited by the eNOS inhibitor NG-nitro-l-arginine methyl ester in ethanol-treated mice. In conclusion, our study demonstrated that the protective effects of green tea infusion on alcohol-induced liver injury and inflammation involve the modulation of the PI3K/AKT/eNOS pathway.
Collapse
Affiliation(s)
- Dongxu Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, Anhui, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Arriens C, Wren JD, Munroe ME, Mohan C. Systemic lupus erythematosus biomarkers: the challenging quest. Rheumatology (Oxford) 2017; 56:i32-i45. [PMID: 28013203 DOI: 10.1093/rheumatology/kew407] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Indexed: 01/01/2023] Open
Abstract
SLE, a multisystem heterogeneous disease, is characterized by production of antibodies to cellular components, with activation of both the innate and the adaptive immune system. Decades of investigation of blood biomarkers has resulted in incremental improvements in the understanding of SLE. Owing to the heterogeneity of immune dysregulation, no single biomarker has emerged as a surrogate for disease activity or prediction of disease. Beyond identification of surrogate biomarkers, a multitude of clinical trials have sought to inhibit elevated SLE biomarkers for therapeutic benefit. Armed with new -omics technologies, the necessary yet daunting quest to identify better surrogate biomarkers and successful therapeutics for SLE continues with tenacity.
Collapse
Affiliation(s)
- Cristina Arriens
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation.,Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Jonathan D Wren
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation
| | - Melissa E Munroe
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|