1
|
Liu L, Li W, Wang L, Gong P, Lyu T, Liu D, Zhang Y, Guo Y, Liu X, Tang M, Hu H, Liu C, Li B. Proteomic and metabolomic profiling of acupuncture for migraine reveals a correlative link via energy metabolism. Front Neurosci 2022; 16:1013328. [PMID: 36248663 PMCID: PMC9557737 DOI: 10.3389/fnins.2022.1013328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Migraine is a neurovascular disease with a high disability rate. Acupuncture treatment has emerged as a safe and viable alternative prophylactic therapy that can effectively alleviate the duration and frequency of migraine attacks. However, the therapeutic mechanisms underlying the effects of acupuncture are yet to be systematically elucidated. In this study, we enrolled female patients with migraine without aura (n = 20) and healthy controls (n = 10). Patients received acupuncture treatment on DU20, DU24, bilateral GB13, GB8, and GB20, applied three times per week over the course of 4 weeks for 12 sessions in total. Blood samples were collected from the median cubital vein before and after acupuncture treatment. Proteomic and metabolomic profiling was performed using liquid chromatography-mass spectrometry to determine the characteristics of differentially expressed molecules and expression of their corresponding biological pathways as well as to elucidate the pathogenesis of migraine and the biological effects underlying the treatment of migraine with acupuncture. Proteomic and metabolomic profiling of plasma samples from patients with migraine without aura before and after acupuncture treatment revealed enrichment of immune-related pathway functions and the arginine synthesis pathway. Joint pathway analyses revealed significant enrichment of the pentose phosphate and glycolysis/gluconeogenesis pathways in patients with migraine. The glycolysis/gluconeogenesis and riboflavin metabolism pathways were significantly enriched after acupuncture treatment. The expression levels of various key proteins and metabolites, including α-D-glucose, flavin adenine dinucleotide, biliverdin reductase B, and L-glutamate, were significantly differentially expressed before and after acupuncture treatment in patients with migraine without aura. Treatment of migraine with acupuncture was associated with significant changes in key molecules and pathways, indicative of physiological changes in the trigeminovascular system, glutamate neurotoxicity, and other migraine-related physiological changes. Overall, our comprehensive analysis using proteomic and metabolomic profiling demonstrates that energy metabolism may serve as a key correlative link in the occurrence of migraine and the therapeutic effects of acupuncture treatment. Our findings may facilitate the identification of diagnostic and therapeutic modalities in the ongoing search for effective treatments for migraine attacks.
Collapse
Affiliation(s)
- Lu Liu
- Beijing Key Laboratory of Acupuncture Neuromodulation, Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Weizheng Li
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Linpeng Wang
- Beijing Key Laboratory of Acupuncture Neuromodulation, Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Pengyun Gong
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Tianli Lyu
- Beijing Key Laboratory of Acupuncture Neuromodulation, Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Dapeng Liu
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yajie Zhang
- Shanxi Hospital of Integrated Traditional and Western Medicine, Taiyuan, China
| | - Yijie Guo
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Xiang Liu
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Min Tang
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Hongke Hu
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Chao Liu
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
- *Correspondence: Chao Liu,
| | - Bin Li
- Beijing Key Laboratory of Acupuncture Neuromodulation, Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Bin Li,
| |
Collapse
|
2
|
Lourenço CF, Laranjinha J. Nitric Oxide Pathways in Neurovascular Coupling Under Normal and Stress Conditions in the Brain: Strategies to Rescue Aberrant Coupling and Improve Cerebral Blood Flow. Front Physiol 2021; 12:729201. [PMID: 34744769 PMCID: PMC8569710 DOI: 10.3389/fphys.2021.729201] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
The brain has impressive energy requirements and paradoxically, very limited energy reserves, implying its huge dependency on continuous blood supply. Aditionally, cerebral blood flow must be dynamically regulated to the areas of increased neuronal activity and thus, of increased metabolic demands. The coupling between neuronal activity and cerebral blood flow (CBF) is supported by a mechanism called neurovascular coupling (NVC). Among the several vasoactive molecules released by glutamatergic activation, nitric oxide (•NO) is recognized to be a key player in the process and essential for the development of the neurovascular response. Classically, •NO is produced in neurons upon the activation of the glutamatergic N-methyl-D-aspartate (NMDA) receptor by the neuronal isoform of nitric oxide synthase and promotes vasodilation by activating soluble guanylate cyclase in the smooth muscle cells of the adjacent arterioles. This pathway is part of a more complex network in which other molecular and cellular intervenients, as well as other sources of •NO, are involved. The elucidation of these interacting mechanisms is fundamental in understanding how the brain manages its energy requirements and how the failure of this process translates into neuronal dysfunction. Here, we aimed to provide an integrated and updated perspective of the role of •NO in the NVC, incorporating the most recent evidence that reinforces its central role in the process from both viewpoints, as a physiological mediator and a pathological stressor. First, we described the glutamate-NMDA receptor-nNOS axis as a central pathway in NVC, then we reviewed the link between the derailment of the NVC and neuronal dysfunction associated with neurodegeneration (with a focus on Alzheimer's disease). We further discussed the role of oxidative stress in the NVC dysfunction, specifically by decreasing the •NO bioavailability and diverting its bioactivity toward cytotoxicity. Finally, we highlighted some strategies targeting the rescue or maintenance of •NO bioavailability that could be explored to mitigate the NVC dysfunction associated with neurodegenerative conditions. In line with this, the potential modulatory effects of dietary nitrate and polyphenols on •NO-dependent NVC, in association with physical exercise, may be used as effective non-pharmacological strategies to promote the •NO bioavailability and to manage NVC dysfunction in neuropathological conditions.
Collapse
Affiliation(s)
- Cátia F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - João Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
3
|
KOISO T, MARUYAMA D, HAMANO E, MORI H, SATOW T, KATAOKA H, NAKAGAWARA J, TAKAHASHI JC. Hyperperfusion Syndrome Detected by 15O-Gas Positron Emission Tomography after Clipping of a Large Unruptured Internal Carotid Artery Aneurysm: A Case Report. NMC Case Rep J 2021; 8:275-279. [PMID: 35079475 PMCID: PMC8769413 DOI: 10.2176/nmccrj.cr.2020-0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/13/2020] [Indexed: 11/20/2022] Open
Abstract
Cerebral hyperperfusion syndrome (CHS) after surgical clipping for cerebral aneurysm is a rare entity. The authors present a 76-year-old woman with a large left internal carotid-posterior communicating artery aneurysm. After successful clipping with temporary occlusion of the internal carotid artery, the patient exhibited motor aphasia. 15O-gas positron emission tomography (PET) showed extreme elevation of the regional cerebral blood flow (rCBF) along with a mildly decreased regional cerebral metabolic rate for oxygen (rCMRO2) and a remarkable decrease in the oxygen extraction fraction (OEF) in the territory of the ipsilateral superior trunk of the middle cerebral artery. These data indicated local hyperperfusion. She had fully recovered from the aphasia by postoperative day (POD) 18. PET showed normalization of CBF on POD 27. To our knowledge, this is the first case report to show hyperperfusion syndrome, clearly detected by 15O-gas PET, after aneurysmal neck clipping.
Collapse
Affiliation(s)
- Takao KOISO
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Daisuke MARUYAMA
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Eika HAMANO
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hisae MORI
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Tetsu SATOW
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hiroharu KATAOKA
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Jyoji NAKAGAWARA
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Jun C. TAKAHASHI
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| |
Collapse
|
4
|
Soldozy S, Sharifi KA, Desai B, Giraldo D, Yeghyayan M, Liu L, Norat P, Sokolowski JD, Yağmurlu K, Park MS, Tvrdik P, Kalani MYS. Cortical Spreading Depression in the Setting of Traumatic Brain Injury. World Neurosurg 2019; 134:50-57. [PMID: 31655239 DOI: 10.1016/j.wneu.2019.10.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022]
Abstract
Cortical spreading depression (CSD) is a pathophysiologic phenomenon that describes an expanding wave of depolarization within the cortical gray matter. Originally described over 70 years ago, this spreading depression disrupts neuronal and glial ionic equilibrium, leading to increased energy demands that can cause a metabolic crisis. This results in secondary insult, further perpetuating brain injury and neuronal death. Initially not thought to be of clinical significance, the view of CSD was modified with the advent of intracranial electroencephalography, or electrocorticography. With these improved monitoring techniques, CSD has been identified as a major mechanism by which traumatic brain injury (TBI) imparts its negative sequalae. TBI is a heterogenous disease process that runs the gamut of clinical presentations. This includes concussion, epidural and subdural hematoma, diffuse axonal injury, and subarachnoid hemorrhage. Nonetheless, CSD appears to be frequently occurring among the various types of TBI, thus allowing for the potential development of targeted therapies in an otherwise ill-fated patient cohort. Although a complete understanding of the interplay between CSD and TBI has not yet been achieved, the authors recount the efforts that have been employed over the last several decades in an effort to bridge this gap. In addition, our current understanding of the role neuroimmune cells play in CSD is discussed in the context of TBI. Finally, current therapeutic strategies using CSD as a pharmacologic target are explored with respect to their clinical use in patients with TBI.
Collapse
Affiliation(s)
- Sauson Soldozy
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Khadijeh A Sharifi
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA; Department of Neuroscience, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Bhargav Desai
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Daniel Giraldo
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Michelle Yeghyayan
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Lei Liu
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA; Department of Neuroscience, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Pedro Norat
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Jennifer D Sokolowski
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Kaan Yağmurlu
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Min S Park
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Petr Tvrdik
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA; Department of Neuroscience, University of Virginia Health System, Charlottesville, Virginia, USA
| | - M Yashar S Kalani
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA; Department of Neuroscience, University of Virginia Health System, Charlottesville, Virginia, USA.
| |
Collapse
|
5
|
Haruta M, Kurauchi Y, Ohsawa M, Inami C, Tanaka R, Sugie K, Kimura A, Ohta Y, Noda T, Sasagawa K, Tokuda T, Katsuki H, Ohta J. Chronic brain blood-flow imaging device for a behavioral experiment using mice. BIOMEDICAL OPTICS EXPRESS 2019; 10:1557-1566. [PMID: 31086694 PMCID: PMC6484972 DOI: 10.1364/boe.10.001557] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/27/2018] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
A chronic brain blood-flow imaging device was developed for cerebrovascular disease treatment. This device comprises a small complementary metal-oxide semiconductor image sensor and a chronic fiber-optic plate window on a mouse head. A long-term cerebral blood-flow imaging technique was established in a freely moving mouse. Brain surface images were visible for one month using the chronic FOP window. This device obtained brain surface images and blood-flow velocity. The blood-flow changes were measured in behavioral experiments using this device. The chronic brain blood-flow imaging device may contribute to determining the cause of cerebrovascular disease and the development of cerebrovascular disease treatment.
Collapse
Affiliation(s)
- Makito Haruta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma-shi, Nara, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto-shi, Kumamoto, Japan
| | - Masahiro Ohsawa
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya-shi, Aichi, Japan
| | - Chihiro Inami
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya-shi, Aichi, Japan
| | - Risako Tanaka
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto-shi, Kumamoto, Japan
| | - Kenji Sugie
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma-shi, Nara, Japan
| | - Ayaka Kimura
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma-shi, Nara, Japan
| | - Yasumi Ohta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma-shi, Nara, Japan
| | - Toshihiko Noda
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma-shi, Nara, Japan
- Electronics-Inspired Interdisciplinary Research Institute, Toyohashi University of Technology, Hibarigaoka 1-1, Tempaku-cho, Toyohashi-shi, Aichi, Japan
| | - Kiyotaka Sasagawa
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma-shi, Nara, Japan
| | - Takashi Tokuda
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma-shi, Nara, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto-shi, Kumamoto, Japan
| | - Jun Ohta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma-shi, Nara, Japan
| |
Collapse
|
6
|
Propranolol prevents cerebral blood flow changes and pain-related behaviors in migraine model mice. Biochem Biophys Res Commun 2019; 508:445-450. [DOI: 10.1016/j.bbrc.2018.11.173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023]
|
7
|
|
8
|
Kurauchi Y, Kinoshita R, Mori A, Sakamoto K, Nakahara T, Ishii K. MEK/ERK- and calcineurin/NFAT-mediated mechanism of cerebral hyperemia and brain injury following NMDA receptor activation. Biochem Biophys Res Commun 2017; 488:329-334. [PMID: 28495529 DOI: 10.1016/j.bbrc.2017.05.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/07/2017] [Indexed: 12/11/2022]
Abstract
N-methyl-d-aspartate (NMDA) receptor activation increases regional cerebral blood flow (rCBF) and induces neuronal injury, but similarities between these processes are poorly understood. In this study, by measuring rCBF in vivo, we identified a clear correlation between cerebral hyperemia and brain injury. NMDA receptor activation induced brain injury as a result of rCBF increase, which was attenuated by an inhibitor of mitogen-activated protein kinase or calcineurin. Moreover, NMDA induced phosphorylation of extracellular signal-regulated kinase (ERK) and nuclear translocation of nuclear factor of activated T-cell (NFAT) in neurons. Therefore, a MEK/ERK- and calcineurin/NFAT-mediated mechanism of neurovascular coupling underlies the pathophysiology of neurovascular disorders.
Collapse
Affiliation(s)
- Yuki Kurauchi
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| | - Rintaro Kinoshita
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kunio Ishii
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|