1
|
Quereda C, Pastor À, Martín-Nieto J. Involvement of abnormal dystroglycan expression and matriglycan levels in cancer pathogenesis. Cancer Cell Int 2022; 22:395. [PMID: 36494657 PMCID: PMC9733019 DOI: 10.1186/s12935-022-02812-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Dystroglycan (DG) is a glycoprotein composed of two subunits that remain non-covalently bound at the plasma membrane: α-DG, which is extracellular and heavily O-mannosyl glycosylated, and β-DG, an integral transmembrane polypeptide. α-DG is involved in the maintenance of tissue integrity and function in the adult, providing an O-glycosylation-dependent link for cells to their extracellular matrix. β-DG in turn contacts the cytoskeleton via dystrophin and participates in a variety of pathways transmitting extracellular signals to the nucleus. Increasing evidence exists of a pivotal role of DG in the modulation of normal cellular proliferation. In this context, deficiencies in DG glycosylation levels, in particular those affecting the so-called matriglycan structure, have been found in an ample variety of human tumors and cancer-derived cell lines. This occurs together with an underexpression of the DAG1 mRNA and/or its α-DG (core) polypeptide product or, more frequently, with a downregulation of β-DG protein levels. These changes are in general accompanied in tumor cells by a low expression of genes involved in the last steps of the α-DG O-mannosyl glycosylation pathway, namely POMT1/2, POMGNT2, CRPPA, B4GAT1 and LARGE1/2. On the other hand, a series of other genes acting earlier in this pathway are overexpressed in tumor cells, namely DOLK, DPM1/2/3, POMGNT1, B3GALNT2, POMK and FKTN, hence exerting instead a pro-oncogenic role. Finally, downregulation of β-DG, altered β-DG processing and/or impaired β-DG nuclear levels are increasingly found in human tumors and cell lines. It follows that DG itself, particular genes/proteins involved in its glycosylation and/or their interactors in the cell could be useful as biomarkers of certain types of human cancer, and/or as molecular targets of new therapies addressing these neoplasms.
Collapse
Affiliation(s)
- Cristina Quereda
- grid.5268.90000 0001 2168 1800Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Campus Universitario San Vicente, P.O. Box 99, 03080 Alicante, Spain
| | - Àngels Pastor
- grid.5268.90000 0001 2168 1800Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Campus Universitario San Vicente, P.O. Box 99, 03080 Alicante, Spain
| | - José Martín-Nieto
- grid.5268.90000 0001 2168 1800Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Campus Universitario San Vicente, P.O. Box 99, 03080 Alicante, Spain ,grid.5268.90000 0001 2168 1800Instituto Multidisciplinar para el Estudio del Medio ‘Ramón Margalef’, Universidad de Alicante, 03080 Alicante, Spain
| |
Collapse
|
2
|
Gannon SM, Hawk K, Walsh BF, Coulibaly A, Isaacson LG. Retrograde influences of SCG axotomy on uninjured preganglionic neurons. Brain Res 2018; 1691:44-54. [PMID: 29679543 DOI: 10.1016/j.brainres.2018.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/06/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
There is evidence that neuronal injury can affect uninjured neurons in the same neural circuit. The overall goal of this study was to understand the effects of peripheral nerve injury on uninjured neurons located in the central nervous system (CNS). As a model, we examined whether axotomy (transection of postganglionic axons) of the superior cervical ganglion (SCG) affected the uninjured, preganglionic neurons that innervate the SCG. At 7 days post-injury a reduction in choline acetyltransferase (ChAT) and synaptophysin immunoreactivity in the SCG, both markers for preganglionic axons, was observed, and this reduction persisted at 8 and 12 weeks post-injury. No changes were observed in the number or size of the parent cell bodies in the intermediolateral cell column (IML) of the spinal cord, yet synaptic input to the IML neurons was decreased at both 8 and 12 weeks post-injury. In order to understand the mechanisms underlying these changes, protein levels of brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB) were examined and reductions were observed at 7 days post-injury in both the SCG and spinal cord. Taken together these results suggest that axotomy of the SCG led to reduced BDNF in the SCG and spinal cord, which in turn influenced ChAT and synaptophysin expression in the SCG and also contributed to the altered synaptic input to the IML neurons. More generally these findings provide evidence that the effects of peripheral injury can cascade into the CNS and affect uninjured neurons.
Collapse
Affiliation(s)
- Sean M Gannon
- Center for Neuroscience and Behavior, Miami University, Oxford, OH 45056, United States; Department of Biology, Miami University, Oxford, OH 45056, United States
| | - Kiel Hawk
- Center for Neuroscience and Behavior, Miami University, Oxford, OH 45056, United States; Graduate Program in Cell, Molecular, and Structural Biology, Miami University, Oxford, OH 45056, United States
| | - Brian F Walsh
- Department of Biology, Miami University, Oxford, OH 45056, United States
| | - Aminata Coulibaly
- Center for Neuroscience and Behavior, Miami University, Oxford, OH 45056, United States; Graduate Program in Cell, Molecular, and Structural Biology, Miami University, Oxford, OH 45056, United States
| | - Lori G Isaacson
- Center for Neuroscience and Behavior, Miami University, Oxford, OH 45056, United States; Graduate Program in Cell, Molecular, and Structural Biology, Miami University, Oxford, OH 45056, United States; Department of Biology, Miami University, Oxford, OH 45056, United States.
| |
Collapse
|
3
|
Gioia M, Fasciglione GF, Sbardella D, Sciandra F, Casella M, Camerini S, Crescenzi M, Gori A, Tarantino U, Cozza P, Brancaccio A, Coletta M, Bozzi M. The enzymatic processing of α-dystroglycan by MMP-2 is controlled by two anchoring sites distinct from the active site. PLoS One 2018; 13:e0192651. [PMID: 29447293 PMCID: PMC5813964 DOI: 10.1371/journal.pone.0192651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/26/2018] [Indexed: 11/19/2022] Open
Abstract
Dystroglycan (DG) is a membrane receptor, belonging to the dystrophin-glycoprotein complex (DGC) and formed by two subunits, α-dystroglycan (α-DG) and β-dystroglycan (β -DG). The C-terminal domain of α-DG and the N-terminal extracellular domain of β -DG are connected, providing a link between the extracellular matrix and the cytosol. Under pathological conditions, such as cancer and muscular dystrophies, DG may be the target of metalloproteinases MMP-2 and MMP-9, contributing to disease progression. Previously, we reported that the C-terminal domain α-DG (483–628) domain is particularly susceptible to the catalytic activity of MMP-2; here we show that the α-DG 621–628 region is required to carry out its complete digestion, suggesting that this portion may represent a MMP-2 anchoring site. Following this observation, we synthesized an α-DG based-peptide, spanning the (613–651) C-terminal region. The analysis of the kinetic and thermodynamic parameters of the whole and the isolated catalytic domain of MMP-2 (cdMMP-2) has shown its inhibitory properties, indicating the presence of (at least) two binding sites for the peptide, both located within the catalytic domain, only one of the two being topologically distinct from the catalytic active groove. However, the different behavior between whole MMP-2 and cdMMP-2 envisages the occurrence of an additional binding site for the peptide on the hemopexin-like domain of MMP-2. Interestingly, mass spectrometry analysis has shown that α-DG (613–651) peptide is cleavable even though it is a very poor substrate of MMP-2, a feature that renders this molecule a promising template for developing a selective MMP-2 inhibitor.
Collapse
Affiliation(s)
- Magda Gioia
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Roma, Italy
- CIRCMSB, Bari, Italy
- * E-mail: (MG); (MB)
| | - Giovanni Francesco Fasciglione
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Roma, Italy
- CIRCMSB, Bari, Italy
| | - Diego Sbardella
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Roma, Italy
- CIRCMSB, Bari, Italy
| | | | | | | | | | | | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Roma, Italy
| | - Paola Cozza
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Roma, Italy
| | - Andrea Brancaccio
- CNR Institute for Molecular Recognition, Roma Italy
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Roma, Italy
- CIRCMSB, Bari, Italy
| | - Manuela Bozzi
- CNR Institute for Molecular Recognition, Roma Italy
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Roma Italy
- * E-mail: (MG); (MB)
| |
Collapse
|
4
|
Bozzi M, Sciandra F, Brancaccio A. Role of gelatinases in pathological and physiological processes involving the dystrophin–glycoprotein complex. Matrix Biol 2015; 44-46:130-7. [DOI: 10.1016/j.matbio.2015.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 12/16/2022]
|
5
|
Crawford BD, Po MD, Saranyan PV, Forsberg D, Schulz R, Pilgrim DB. Mmp25β facilitates elongation of sensory neurons during zebrafish development. Genesis 2014; 52:833-48. [PMID: 25074687 DOI: 10.1002/dvg.22803] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/23/2014] [Accepted: 07/25/2014] [Indexed: 02/04/2023]
Abstract
Matrix metalloproteinases (MMPs) are a large and complex family of zinc-dependent endoproteinases widely recognized for their roles in remodeling the extracellular matrix (ECM) during embryonic development, wound healing, and tissue homeostasis. Their misregulation is central to many pathologies, and they have therefore been the focus of biomedical research for decades. These proteases have also recently emerged as mediators of neural development and synaptic plasticity in vertebrates, however, understanding of the mechanistic basis of these roles and the molecular identities of the MMPs involved remains far from complete. We have identified a zebrafish orthologue of mmp25 (a.k.a. leukolysin; MT6-MMP), a membrane-type, furin-activated MMP associated with leukocytes and invasive carcinomas, but which we find is expressed by a subset of the sensory neurons during normal embryonic development. We detect high levels of Mmp25β expression in the trigeminal, craniofacial, and posterior lateral line ganglia in the hindbrain, and in Rohon-Beard cells in the dorsal neural tube during the first 48 h of embryonic development. Knockdown of Mmp25β expression with morpholino oligonucleotides results in larvae that are uncoordinated and insensitive to touch, and which exhibit defects in the development of sensory neural structures. Using in vivo zymography, we observe that Mmp25β morphant embryos show reduced Type IV collagen degradation in regions of the head traversed by elongating axons emanating from the trigeminal ganglion, suggesting that Mmp25β may play a pivotal role in mediating ECM remodeling in the vicinity of these elongating axons.
Collapse
Affiliation(s)
- Bryan D Crawford
- Department of Biology, University of New Brunswick, New Brunswick, Canada; Department of Biological Sciences, University of Alberta, Alberta, Canada; Department of Pharmacology, University of Alberta, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
6
|
Noël G, Stevenson S, Moukhles H. A high throughput screen identifies chemical modulators of the laminin-induced clustering of dystroglycan and aquaporin-4 in primary astrocytes. PLoS One 2011; 6:e17559. [PMID: 21408176 PMCID: PMC3049781 DOI: 10.1371/journal.pone.0017559] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 01/26/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Aquaporin-4 (AQP4) constitutes the principal water channel in the brain and is clustered at the perivascular astrocyte endfeet. This specific distribution of AQP4 plays a major role in maintaining water homeostasis in the brain. A growing body of evidence points to a role of the dystroglycan complex and its interaction with perivascular laminin in the clustering of AQP4 at perivascular astrocyte endfeet. Indeed, mice lacking components of this complex or in which laminin-dystroglycan interaction is disrupted show a delayed onset of brain edema due to a redistribution of AQP4 away from astrocyte endfeet. It is therefore important to identify inhibitory drugs of laminin-dependent AQP4 clustering which may prevent or reduce brain edema. METHODOLOGY/PRINCIPAL FINDINGS In the present study we used primary rat astrocyte cultures to screen a library of >3,500 chemicals and identified 6 drugs that inhibit the laminin-induced clustering of dystroglycan and AQP4. Detailed analysis of the inhibitory drug, chloranil, revealed that its inhibition of the clustering is due to the metalloproteinase-2-mediated ß-dystroglycan shedding and subsequent loss of laminin interaction with dystroglycan. Furthermore, chemical variants of chloranil induced a similar effect on ß-dystroglycan and this was prevented by the antioxidant N-acetylcysteine. CONCLUSION/SIGNIFICANCE These findings reveal the mechanism of action of chloranil in preventing the laminin-induced clustering of dystroglycan and AQP4 and validate the use of high-throughput screening as a tool to identify drugs that modulate AQP4 clustering and that could be tested in models of brain edema.
Collapse
Affiliation(s)
- Geoffroy Noël
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Sarah Stevenson
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Hakima Moukhles
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
7
|
Satellite glial cells in sympathetic and parasympathetic ganglia: in search of function. ACTA ACUST UNITED AC 2010; 64:304-27. [PMID: 20441777 DOI: 10.1016/j.brainresrev.2010.04.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 04/14/2010] [Accepted: 04/27/2010] [Indexed: 01/08/2023]
Abstract
Glial cells are established as essential for many functions of the central nervous system, and this seems to hold also for glial cells in the peripheral nervous system. The main type of glial cells in most types of peripheral ganglia - sensory, sympathetic, and parasympathetic - is satellite glial cells (SGCs). These cells usually form envelopes around single neurons, which create a distinct functional unit consisting of a neuron and its attending SGCs. This review presents the knowledge on the morphology of SGCs in sympathetic and parasympathetic ganglia, and the (limited) available information on their physiology and pharmacology. It appears that SGCs carry receptors for ATP and can thus respond to the release of this neurotransmitter by the neurons. There is evidence that SGCs have an uptake mechanism for GABA, and possibly other neurotransmitters, which enables them to control the neuronal microenvironment. Damage to post- or preganglionic nerve fibers influences both the ganglionic neurons and the SGCs. One major consequence of postganglionic nerve section is the detachment of preganglionic nerve terminals, resulting in decline of synaptic transmission. It appears that, at least in sympathetic ganglia, SGCs participate in the detachment process, and possibly in the subsequent recovery of the synaptic connections. Unlike sensory neurons, neurons in autonomic ganglia receive synaptic inputs, and SGCs are in very close contact with synaptic boutons. This places the SGCs in a position to influence synaptic transmission and information processing in autonomic ganglia, but this topic requires much further work.
Collapse
|
8
|
Cauwe B, Van den Steen PE, Opdenakker G. The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit Rev Biochem Mol Biol 2007; 42:113-85. [PMID: 17562450 DOI: 10.1080/10409230701340019] [Citation(s) in RCA: 279] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Matrix metalloproteinases (MMPs) constitute a family of more than 20 endopeptidases. Identification of specific matrix and non-matrix components as MMP substrates showed that, aside from their initial role as extracellular matrix modifiers, MMPs play significant roles in highly complex processes such as the regulation of cell behavior, cell-cell communication, and tumor progression. Thanks to the comprehensive examination of the expanded MMP action radius, the initial view of proteases acting in the soluble phase has evolved into a kaleidoscope of proteolytic reactions connected to the cell surface. Important classes of cell surface molecules include adhesion molecules, mediators of apoptosis, receptors, chemokines, cytokines, growth factors, proteases, intercellular junction proteins, and structural molecules. Proteolysis of cell surface proteins by MMPs may have extremely diverse biological implications, ranging from maturation and activation, to inactivation or degradation of substrates. In this way, modification of membrane-associated proteins by MMPs is crucial for communication between cells and the extracellular milieu, and determines cell fate and the integrity of tissues. Hence, insights into the processing of cell surface proteins by MMPs and the concomitant effects on physiological processes as well as on disease onset and evolution, leads the way to innovative therapeutic approaches for cancer, as well as degenerative and inflammatory diseases.
Collapse
Affiliation(s)
- Bénédicte Cauwe
- Rega Institute for Medical Research, Laboratory of Immunobiology, University of Leuven, Leuven, Belgium
| | | | | |
Collapse
|