1
|
Ahnaou A, Chave L, Manyakov NV, Drinkenburg WHIM. Odour Retrieval Processing in Mice: Cholinergic Modulation of Oscillatory Coupling in Olfactory Bulb-Piriform Networks. Neuropsychobiology 2022; 80:374-392. [PMID: 33588406 DOI: 10.1159/000513511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/26/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Olfactory dysfunction can provide valuable insight into early pathophysiological processes of brain disorders. Olfactory processing of chemosensory and odour sensitivity relies on segregating salient odours from background odours cues. Odour-evoked fast oscillations in the olfactory bulb (OB) are hypothesized to be an important index of odour quality coding. The present preclinical work aimed at better understanding connectivity associated with odour coding and behavioural odour discrimination. METHODS Network oscillations and functional connectivity (FC) were measured in C57BL/6 mice performing the olfactory associative odour learning (OL) test, using multichannel local field potential recordings in key olfactory networks. Cholinergic modulation of odour processing was investigated using the muscarinic antagonist scopolamine. RESULTS At the behavioural level, olfactory memory, which refers to the acquisition and recollection of a reference odour by reduced exploration time, was observed in animals that correctly learned the task. Significant decrease in mean investigation and retrieval time of the associated odour-food reward was observed between trials. At the network level, the associated odour during sniffing behaviour was associated with enhanced coherence in the β and γ frequency oscillations across the olfactory pathway, with marked changes observed between the OB and anterior piriform cortex (PC). The enhanced phase-amplitude cross-frequency coupling in the OB and the weak coupling index in the hippocampal CA1 suggests a role of the OB network in olfaction encoding and processing. Scopolamine impaired behavioural and FC underlying recall and retrieval of the associated odour. CONCLUSION The results suggest that the acquisition and formation of odour reference memory rely primarily on FC at the OB-PC network and confirm the role of muscarinic receptors in olfactory retrieval processing.
Collapse
Affiliation(s)
- Abdallah Ahnaou
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium,
| | - Lucile Chave
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Nikolay V Manyakov
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Wilhelmus H I M Drinkenburg
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| |
Collapse
|
2
|
Kosenko PO, Smolikov AB, Voynov VB, Shaposhnikov PD, Saevskiy AI, Kiroy VN. Effect of Xylazine-Tiletamine-Zolazepam on the Local Field Potential of the Rat Olfactory Bulb. Comp Med 2020; 70:492-498. [PMID: 33168131 DOI: 10.30802/aalas-cm-20-990015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Neural oscillations of the mammalian olfactory system have been studied for decades. This research suggests they are linked to various processes involved in odor information analysis, depending on the vigilance state and presentation of stimuli. In addition, the effects of various anesthetics, including commonly used ones like chloral hydrate, pentobarbital, ketamine, and urethane, on the local field potential (LFP) in the olfactory bulb (OB) have been studied. In particular, the combination of xylazine and tiletamine-zolazepam has been shown to produce steady anesthesia for an extended period and relatively few adverse effects; however, their effects on the LFP in the OB remain unknown. To study those effects, we recorded the LFP in the OB of rats under xylazine-tiletamine-zolazepam anesthesia. During the period of anesthesia, the spectral powers of the 1-4, 9-16, 31-64, 65-90 frequency bands increased significantly, and that of 91-170 Hz frequency band decreased significantly, whereas no significant changes were observed in the 5-8 and 17-30 Hz ranges. These results reveal dynamic changes in the time and frequency characteristics of the LFP in the OB of rats under xylazine-tiletamine- zolazepam anesthesia and suggest that this combination of anesthetics could be used for studying oscillatory processes in the OB of rats.
Collapse
|
3
|
Functional Alterations in the Olfactory Neuronal Circuit Occur before Hippocampal Plasticity Deficits in the P301S Mouse Model of Tauopathy: Implications for Early Diagnosis and Translational Research in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21155431. [PMID: 32751531 PMCID: PMC7432464 DOI: 10.3390/ijms21155431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/18/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by neuronal loss and impaired synaptic transmission, ultimately leading to cognitive deficits. Early in the disease, the olfactory track seems most sensitive to tauopathy, while most plasticity studies focused on the hippocampal circuits. Functional network connectivity (FC) and long-term potentiation (LTP), considered as the plasticity substrate of learning and memory, were longitudinally assessed in mice of the P301S model of tauopathy following the course (time and location) of progressively neurodegenerative pathology (i.e., at 3, 6, and 9 months of age) and in their wild type (WT) littermates. Using in vivo local field potential (LFP) recordings, early (at three months) dampening in the gamma oscillatory activity and impairments in the phase-amplitude theta-gamma coupling (PAC) were found in the olfactory bulb (OB) circuit of P301S mice, which were maintained through the whole course of pathology development. In contrast, LFP oscillatory activity and PAC indices were normal in the entorhinal cortex, hippocampal CA1 and CA3 nuclei. Field excitatory postsynaptic potential (fEPSP) recordings from the Shaffer collateral (SC)-CA1 hippocampal stratum pyramidal revealed a significant altered synaptic LTP response to high-frequency stimulation (HFS): at three months of age, no significant difference between genotypes was found in basal synaptic activity, while signs of a deficit in short term plasticity were revealed by alterations in the fEPSPs. At six months of age, a slight deviance was found in basal synaptic activity and significant differences were observed in the LTP response. The alterations in network oscillations at the OB level and impairments in the functioning of the SC-CA1 pyramidal synapses strongly suggest that the progression of tau pathology elicited a brain area, activity-dependent disturbance in functional synaptic transmission. These findings point to early major alterations of neuronal activity in the OB circuit prior to the disturbance of hippocampal synaptic plasticity, possibly involving tauopathy in the anomalous FC. Further research should determine whether those early deficits in the OB network oscillations and FC are possible mechanisms that potentially promote the emergence of hippocampal synaptic impairments during the progression of tauopathy.
Collapse
|
4
|
Kulkarni AS, del Mar Cortijo M, Roberts ER, Suggs TL, Stover HB, Pena-Bravo JI, Steiner JA, Luk KC, Brundin P, Wesson DW. Perturbation of in vivo Neural Activity Following α-Synuclein Seeding in the Olfactory Bulb. JOURNAL OF PARKINSON'S DISEASE 2020; 10:1411-1427. [PMID: 32925105 PMCID: PMC8018612 DOI: 10.3233/jpd-202241] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Parkinson's disease (PD) neuropathology is characterized by intraneuronal protein aggregates composed of misfolded α-Synuclein (α-Syn), as well as degeneration of substantia nigra dopamine neurons. Deficits in olfactory perception and aggregation of α-Syn in the olfactory bulb (OB) are observed during early stages of PD, and have been associated with the PD prodrome, before onset of the classic motor deficits. α-Syn fibrils injected into the OB of mice cause progressive propagation of α-Syn pathology throughout the olfactory system and are coupled to olfactory perceptual deficits. OBJECTIVE We hypothesized that accumulation of pathogenic α-Syn in the OB impairs neural activity in the olfactory system. METHODS To address this, we monitored spontaneous and odor-evoked local field potential dynamics in awake wild type mice simultaneously in the OB and piriform cortex (PCX) one, two, and three months following injection of pathogenic preformed α-Syn fibrils in the OB. RESULTS We detected α-Syn pathology in both the OB and PCX. We also observed that α-Syn fibril injections influenced odor-evoked activity in the OB. In particular, α-Syn fibril-injected mice displayed aberrantly high odor-evoked power in the beta spectral range. A similar change in activity was not detected in the PCX, despite high levels of α-Syn pathology. CONCLUSION Together, this work provides evidence that synucleinopathy impacts in vivo neural activity in the olfactory system at the network-level.
Collapse
Affiliation(s)
- Aishwarya S. Kulkarni
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr.; Gainesville, FL, 32610, U.S.A
| | - Maria del Mar Cortijo
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr.; Gainesville, FL, 32610, U.S.A
| | - Elizabeth R. Roberts
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr.; Gainesville, FL, 32610, U.S.A
| | - Tamara L. Suggs
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr.; Gainesville, FL, 32610, U.S.A
| | - Heather B. Stover
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr.; Gainesville, FL, 32610, U.S.A
| | - José I. Pena-Bravo
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr.; Gainesville, FL, 32610, U.S.A
| | - Jennifer A. Steiner
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, U.S.A
| | - Kelvin C. Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research and Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, U.S.A
| | - Daniel W. Wesson
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr.; Gainesville, FL, 32610, U.S.A
| |
Collapse
|
5
|
Fourcaud-Trocmé N, Briffaud V, Thévenet M, Buonviso N, Amat C. In vivo beta and gamma subthreshold oscillations in rat mitral cells: origin and gating by respiratory dynamics. J Neurophysiol 2017; 119:274-289. [PMID: 29021388 DOI: 10.1152/jn.00053.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In mammals, olfactory bulb (OB) dynamics are paced by slow and fast oscillatory rhythms at multiple levels: local field potential, spike discharge, and/or membrane potential oscillations. Interactions between these levels have been well studied for the slow rhythm linked to animal respiration. However, less is known regarding rhythms in the fast beta (10-35 Hz) and gamma (35-100 Hz) frequency ranges, particularly at the membrane potential level. Using a combination of intracellular and extracellular recordings in the OB of freely breathing rats, we show that beta and gamma subthreshold oscillations (STOs) coexist intracellularly and are related to extracellular local field potential (LFP) oscillations in the same frequency range. However, they are differentially affected by changes in cell excitability and by odor stimulation. This leads us to suggest that beta and gamma STOs may rely on distinct mechanisms: gamma STOs would mainly depend on mitral cell intrinsic resonance, while beta STOs could be mainly driven by synaptic activity. In a second study, we find that STO occurrence and timing are constrained by the influence of the slow respiratory rhythm on mitral and tufted cells. First, respiratory-driven excitation seems to favor gamma STOs, while respiratory-driven inhibition favors beta STOs. Second, the respiratory rhythm is needed at the subthreshold level to lock gamma and beta STOs in similar phases as their LFP counterparts and to favor the correlation between STO frequency and spike discharge. Overall, this study helps us to understand how the interaction between slow and fast rhythms at all levels of OB dynamics shapes its functional output. NEW & NOTEWORTHY In the mammalian olfactory bulb of a freely breathing anesthetized rat, we show that both beta and gamma membrane potential fast oscillation ranges exist in the same mitral and tufted (M/T) cell. Importantly, our results suggest they have different origins and that their interaction with the slow subthreshold oscillation (respiratory rhythm) is a key mechanism to organize their dynamics, favoring their functional implication in olfactory bulb information processing.
Collapse
Affiliation(s)
- Nicolas Fourcaud-Trocmé
- INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Equipe CMO, Université Lyon 1, Lyon, France
| | - Virginie Briffaud
- INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Equipe CMO, Université Lyon 1, Lyon, France
| | - Marc Thévenet
- INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Equipe CMO, Université Lyon 1, Lyon, France
| | - Nathalie Buonviso
- INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Equipe CMO, Université Lyon 1, Lyon, France
| | - Corine Amat
- INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Equipe CMO, Université Lyon 1, Lyon, France
| |
Collapse
|
6
|
Samson RD, Lester AW, Duarte L, Venkatesh A, Barnes CA. Emergence of β-Band Oscillations in the Aged Rat Amygdala during Discrimination Learning and Decision Making Tasks. eNeuro 2017; 4:ENEURO.0245-17.2017. [PMID: 29034315 PMCID: PMC5629614 DOI: 10.1523/eneuro.0245-17.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/14/2017] [Accepted: 09/23/2017] [Indexed: 11/21/2022] Open
Abstract
Older adults tend to use strategies that differ from those used by young adults to solve decision-making tasks. MRI experiments suggest that altered strategy use during aging can be accompanied by a change in extent of activation of a given brain region, inter-hemispheric bilateralization or added brain structures. It has been suggested that these changes reflect compensation for less effective networks to enable optimal performance. One way that communication can be influenced within and between brain networks is through oscillatory events that help structure and synchronize incoming and outgoing information. It is unknown how aging impacts local oscillatory activity within the basolateral complex of the amygdala (BLA). The present study recorded local field potentials (LFPs) and single units in old and young rats during the performance of tasks that involve discrimination learning and probabilistic decision making. We found task- and age-specific increases in power selectively within the β range (15-30 Hz). The increased β power occurred after lever presses, as old animals reached the goal location. Periods of high-power β developed over training days in the aged rats, and was greatest in early trials of a session. β Power was also greater after pressing for the large reward option. These data suggest that aging of BLA networks results in strengthened synchrony of β oscillations when older animals are learning or deciding between rewards of different size. Whether this increased synchrony reflects the neural basis of a compensatory strategy change of old animals in reward-based decision-making tasks, remains to be verified.
Collapse
Affiliation(s)
- Rachel D. Samson
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85724
- Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ 85724
| | - Adam W. Lester
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85724
- Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ 85724
| | - Leroy Duarte
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85724
- Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ 85724
| | - Anu Venkatesh
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85724
- Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ 85724
| | - Carol A. Barnes
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85724
- Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ 85724
- Departments of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
7
|
Development of Odor Hedonics: Experience-Dependent Ontogeny of Circuits Supporting Maternal and Predator Odor Responses in Rats. J Neurosci 2017; 36:6634-50. [PMID: 27335397 DOI: 10.1523/jneurosci.0632-16.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/09/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED A major component of perception is hedonic valence: perceiving stimuli as pleasant or unpleasant. Here, we used early olfactory experiences that shape odor preferences and aversions to explore developmental plasticity in circuits mediating odor hedonics. We used 2-deoxyglucose autoradiographic mapping of neural activity to identify circuits differentially activated by biologically relevant preferred and avoided odors across rat development. We then further probed this system by increasing or decreasing hedonic value. Using both region of interest and functional connectivity analyses, we identified regions within primary olfactory, amygdala/hippocampal, and prefrontal cortical networks that were activated differentially by maternal and male odors. Although some activated regions remained stable across development (postnatal days 7-23), there was a developmental emergence of others that resulted in an age-dependent elaboration of hedonic-response-specific circuitry despite stable behavioral responses (approach/avoidance) to the odors across age. Hedonic responses to these biologically important odors were modified through diet suppression of the maternal odor and co-rearing with a male. This allowed assessment of hedonic circuits in isolation of the specific odor quality and/or intensity. Early experience significantly modified odor-evoked circuitry in an age-dependent manner. For example, co-rearing with a male, which induced pup attraction to male odor, reduced activity in amygdala regions normally activated by the unfamiliar avoided male odor, making this region more consistent with maternal odor. Understanding the development of odor hedonics, particularly within the context of altered early life experience, provides insight into the development of sensory processes, food preferences, and the formation of social affiliations, among other behaviors. SIGNIFICANCE STATEMENT Odor hedonic valence controls approach-avoidance behaviors, but also modulates ongoing behaviors ranging from food preferences and social affiliation with the caregiver to avoidance of predator odors. Experiences can shape hedonic valence. This study explored brain circuitry involved in odor hedonic encoding throughout development using maternal and predator odors and assessed the effects of early life experience on odor hedonic encoding by increasing/decreasing the hedonic value of these odors. Understanding the role of changing brain circuitry during development and its impact on behavioral function is critical for understanding sensory processing across development. These data converge with exciting literature on the brain's hedonic network and highlight the significant role of early life experience in shaping the neural networks of highly biologically relevant stimuli.
Collapse
|
8
|
Nunez-Parra A, Li A, Restrepo D. Coding odor identity and odor value in awake rodents. PROGRESS IN BRAIN RESEARCH 2015; 208:205-22. [PMID: 24767484 DOI: 10.1016/b978-0-444-63350-7.00008-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
In the last decade, drastic changes in the understanding of the role of the olfactory bulb and piriform cortex in odor detection have taken place through awake behaving recording in rodents. It is clear that odor responses in mitral and granule cells are strikingly different in the olfactory bulb of anesthetized versus awake animals. In addition, sniff recording has evidenced that mitral cell responses to odors during the sniff can convey information on the odor identity and sniff phase. Moreover, we review studies that show that the mitral cell conveys information on not only odor identity but also whether the odor is rewarded or not (odor value). Finally, we discuss how the substantial increase in awake behaving recording raises questions for future studies.
Collapse
Affiliation(s)
- Alexia Nunez-Parra
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center and Neuroscience Program, University of Colorado Medical School, Aurora, CO, USA
| | - Anan Li
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center and Neuroscience Program, University of Colorado Medical School, Aurora, CO, USA; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan, China
| | - Diego Restrepo
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center and Neuroscience Program, University of Colorado Medical School, Aurora, CO, USA.
| |
Collapse
|
9
|
Li B, Gong L, Wu R, Li A, Xu F. Complex relationship between BOLD-fMRI and electrophysiological signals in different olfactory bulb layers. Neuroimage 2014; 95:29-38. [DOI: 10.1016/j.neuroimage.2014.03.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/06/2014] [Accepted: 03/17/2014] [Indexed: 01/09/2023] Open
|
10
|
Carlson KS, Dillione MR, Wesson DW. Odor- and state-dependent olfactory tubercle local field potential dynamics in awake rats. J Neurophysiol 2014; 111:2109-23. [PMID: 24598519 DOI: 10.1152/jn.00829.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The olfactory tubercle (OT), a trilaminar structure located in the basal forebrain of mammals, is thought to play an important role in olfaction. While evidence has accumulated regarding the contributions of the OT to odor information processing, studies exploring the role of the OT in olfaction in awake animals remain unavailable. In the present study, we begin to address this void through multiday recordings of local field potential (LFP) activity within the OT of awake, freely exploring Long-Evans rats. We observed spontaneous OT LFP activity consisting of theta- (2-12 Hz), beta- (15-35 Hz) and gamma- (40-80 Hz) band activity, characteristic of previous reports of LFPs in other principle olfactory structures. Beta- and gamma-band powers were enhanced upon odor presentation. Simultaneous recordings of OT and upstream olfactory bulb (OB) LFPs revealed odor-evoked LFP power at statistically similar levels in both structures. Strong spectral coherence was observed between the OT and OB during both spontaneous and odor-evoked states. Furthermore, the OB theta rhythm more strongly cohered with the respiratory rhythm, and respiratory-coupled theta cycles in the OT occurred following theta cycles in the OB. Finally, we found that the animal's internal state modulated LFP activity in the OT. Together, these data provide initial insights into the network activity of the OT in the awake rat, including spontaneous rhythmicity, odor-evoked modulation, connectivity with upstream sensory input, and state-dependent modulation.
Collapse
Affiliation(s)
- Kaitlin S Carlson
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; and
| | - Maggie R Dillione
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; and
| | - Daniel W Wesson
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; and Department of Biology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
11
|
Merrick C, Godwin CA, Geisler MW, Morsella E. The olfactory system as the gateway to the neural correlates of consciousness. Front Psychol 2014; 4:1011. [PMID: 24454300 PMCID: PMC3887364 DOI: 10.3389/fpsyg.2013.01011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/18/2013] [Indexed: 11/30/2022] Open
Abstract
How consciousness is generated by the nervous system remains one of the greatest mysteries in science. Investigators from diverse fields have begun to unravel this puzzle by contrasting conscious and unconscious processes. In this way, it has been revealed that the two kinds of processes differ in terms of the underlying neural events and associated cognitive mechanisms. We propose that, for several reasons, the olfactory system provides a unique portal through which to examine this contrast. For this purpose, the olfactory system is beneficial in terms of its (a) neuroanatomical aspects, (b) phenomenological and cognitive/mechanistic properties, and (c) neurodynamic (e.g., brain oscillations) properties. In this review, we discuss how each of these properties and aspects of the olfactory system can illuminate the contrast between conscious and unconscious processing in the brain. We conclude by delineating the most fruitful avenues of research and by entertaining hypotheses that, in order for an olfactory content to be conscious, that content must participate in a network that is large-scale, both in terms of the neural systems involved and the scope of information integration.
Collapse
Affiliation(s)
- Christina Merrick
- Department of Psychology, San Francisco State UniversitySan Francisco, CA, USA
| | | | - Mark W. Geisler
- Department of Psychology, San Francisco State UniversitySan Francisco, CA, USA
| | - Ezequiel Morsella
- Department of Psychology, San Francisco State UniversitySan Francisco, CA, USA
- Department of Neurology, University of California San FranciscoSan Francisco, CA, USA
| |
Collapse
|
12
|
Alvarado-Martínez R, Salgado-Puga K, Peña-Ortega F. Amyloid beta inhibits olfactory bulb activity and the ability to smell. PLoS One 2013; 8:e75745. [PMID: 24086624 PMCID: PMC3784413 DOI: 10.1371/journal.pone.0075745] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/20/2013] [Indexed: 11/17/2022] Open
Abstract
Early olfactory dysfunction has been consistently reported in both Alzheimer's disease (AD) and in transgenic mice that reproduce some features of this disease. In AD transgenic mice, alteration in olfaction has been associated with increased levels of soluble amyloid beta protein (Aβ) as well as with alterations in the oscillatory network activity recorded in the olfactory bulb (OB) and in the piriform cortex. However, since AD is a multifactorial disease and transgenic mice suffer a variety of adaptive changes, it is still unknown if soluble Aβ, by itself, is responsible for OB dysfunction both at electrophysiological and behavioral levels. Thus, here we tested whether or not Aβ directly affects OB network activity in vitro in slices obtained from mice and rats and if it affects olfactory ability in these rodents. Our results show that Aβ decreases, in a concentration- and time-dependent manner, the network activity of OB slices at clinically relevant concentrations (low nM) and in a reversible manner. Moreover, we found that intrabulbar injection of Aβ decreases the olfactory ability of rodents two weeks after application, an effect that is not related to alterations in motor performance or motivation to seek food and that correlates with the presence of Aβ deposits. Our results indicate that Aβ disrupts, at clinically relevant concentrations, the network activity of the OB in vitro and can trigger a disruption in olfaction. These findings open the possibility of exploring the cellular mechanisms involved in early pathological AD as an approach to reduce or halt its progress.
Collapse
Affiliation(s)
- Reynaldo Alvarado-Martínez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Campus Juriquilla, Querétaro, México
| | - Karla Salgado-Puga
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Campus Juriquilla, Querétaro, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Campus Juriquilla, Querétaro, México
| |
Collapse
|
13
|
Lang J, Li A, Luo W, Wu R, Li P, Xu F. Odor representation in the olfactory bulb under different brain states revealed by intrinsic optical signals imaging. Neuroscience 2013; 243:54-63. [PMID: 23567814 DOI: 10.1016/j.neuroscience.2013.03.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/17/2013] [Accepted: 03/23/2013] [Indexed: 10/27/2022]
Abstract
The olfactory system responds to the same stimulus with great variability according to the current state of the brain. At the levels of multi-unit activity and local field potentials, the response of the olfactory bulb (OB) to a given olfactory stimulus during a state of lower background activity is stronger than the response that occurs during higher background activity, but the distribution pattern of activity remains similar. However, these results have only been established at the individual neuron and neuron cluster scales in previous studies. It remains unclear whether these results are consistent at a larger scale (e.g., OB regions); therefore, intrinsic optical signals imaging was employed in the present study to clarify this issue. The basal brain states of rats were manipulated by using different levels of anesthesia. Under a state of low basal brain activity, the intensity of the activity pattern elicited in the dorsal OB by a given odorant was significantly higher than that under high basal brain activity, but the topography was highly similar across different brain states. These results were consistent across the levels of individual neurons, neuron clusters, glomeruli, and the OB regions, which suggest that the OB contains as yet unknown neural mechanisms that ensure the high-fidelity representation of the same olfactory stimulation under different brain states.
Collapse
Affiliation(s)
- J Lang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Stability of fast oscillations in the mammalian olfactory bulb: experiments and modeling. ACTA ACUST UNITED AC 2011; 105:59-70. [PMID: 21843638 DOI: 10.1016/j.jphysparis.2011.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/06/2011] [Accepted: 07/13/2011] [Indexed: 12/27/2022]
Abstract
In the rat olfactory bulb (OB), fast oscillations of the local field potential (LFP) are observed during the respiratory cycle. Gamma-range oscillations (40-90 Hz) occur at the end of inspiration, followed by beta-range oscillations (15-30 Hz) during exhalation. These oscillations are highly stereotypical, and their frequencies are stable under various conditions. In this study, we investigate the effect of stimulus intensity on activity in the OB. Using a double-cannulation protocol, we showed that although the frequency of the LFP oscillation does depend on the respiratory cycle phase, it is relatively independent of the intensity of odorant stimulation. In contrast, we found that the individual firing rate of mitral OB cells dramatically changed with the intensity of the stimulation. This suggests that OB fast oscillation parameters, particularly frequency, are fully determined by intrinsic OB network parameters. To test this hypothesis, we explored a model of the OB where fast oscillations are generated by the interplay between excitatory mitral/tufted cells and inhibitory granule cells with graded inhibition. We found that our model has two distinct activity regimes depending on the amount of noise. In a low-noise regime, the model displays oscillation in the beta range with a stable frequency across a wide range of excitatory inputs. In a high-noise regime, the model displays oscillatory dynamics with irregular cell discharges and fast oscillations, similar to what is observed during gamma oscillations but without stability of the oscillation frequency with respect to the network external input. Simulations of the full model and theoretical studies of the network's linear response show that the characteristics of the low-noise regime are induced by non-linearities in the model, notably, the saturation of graded inhibition. Finally, we discuss how this model can account for the experimentally observed stability of the oscillatory regimes.
Collapse
|
16
|
Parker D. Neuronal network analyses: premises, promises and uncertainties. Philos Trans R Soc Lond B Biol Sci 2010; 365:2315-28. [PMID: 20603354 DOI: 10.1098/rstb.2010.0043] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuronal networks assemble the cellular components needed for sensory, motor and cognitive functions. Any rational intervention in the nervous system will thus require an understanding of network function. Obtaining this understanding is widely considered to be one of the major tasks facing neuroscience today. Network analyses have been performed for some years in relatively simple systems. In addition to the direct insights these systems have provided, they also illustrate some of the difficulties of understanding network function. Nevertheless, in more complex systems (including human), claims are made that the cellular bases of behaviour are, or will shortly be, understood. While the discussion is necessarily limited, this issue will examine these claims and highlight some traditional and novel aspects of network analyses and their difficulties. This introduction discusses the criteria that need to be satisfied for network understanding, and how they relate to traditional and novel approaches being applied to addressing network function.
Collapse
Affiliation(s)
- David Parker
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
Migliore M, Hines ML, McTavish TS, Shepherd GM. Functional roles of distributed synaptic clusters in the mitral-granule cell network of the olfactory bulb. Front Integr Neurosci 2010; 4:122. [PMID: 21258619 PMCID: PMC3024007 DOI: 10.3389/fnint.2010.00122] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 09/01/2010] [Indexed: 12/22/2022] Open
Abstract
Odors are encoded in spatio-temporal patterns within the olfactory bulb, but the mechanisms of odor recognition and discrimination are poorly understood. It is reasonable to postulate that the olfactory code is sculpted by lateral and feedforward inhibition mediated by granule cells onto the mitral cells. Recent viral tracing and physiological studies revealed patterns of distributed granule cell synaptic clusters that provided additional clues to the possible mechanisms at the network level. The emerging properties and functional roles of these patterns, however, are unknown. Here, using a realistic model of 5 mitral and 100 granule cells we show how their synaptic network can dynamically self-organize and interact through an activity-dependent dendrodendritic mechanism. The results suggest that the patterns of distributed mitral–granule cell connectivity may represent the most recent history of odor inputs, and may contribute to the basic processes underlying mixture perception and odor qualities. The model predicts how and why the dynamical interactions between the active mitral cells through the granule cell synaptic clusters can account for a variety of puzzling behavioral results on odor mixtures and on the emergence of synthetic or analytic perception.
Collapse
Affiliation(s)
- Michele Migliore
- Institute of Biophysics, National Research Council Palermo, Italy
| | | | | | | |
Collapse
|
18
|
Nica R, Matter SF, Griff ER. Physiological evidence for two classes of mitral cells in the rat olfactory bulb. Brain Res 2010; 1358:81-8. [PMID: 20709034 DOI: 10.1016/j.brainres.2010.08.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/26/2010] [Accepted: 08/09/2010] [Indexed: 10/19/2022]
Abstract
The spontaneous activity of mitral cells was recorded in vivo from the main olfactory bulb of freely breathing anesthetized rats. Single units recorded extracellularly from the mitral cell body layer were further identified as mitral cells by antidromic activation of the lateral olfactory tract and the posterior piriform cortex. Hierarchical cluster analysis of their spontaneous activity showed that at least two classes of mitral cells could be distinguished. A post-hoc multivariate analysis of variance indicated significant differences between the two groups based on mean rate, latency, and the coefficient of variation in interspike interval. Univariate tests showed that the groups differed in mean rate, but not in latency, or in the coefficient of variation in interspike interval. Autocorrelation analysis showed that the high frequency group tended to fire in bursts. Functional implications of these putative subclasses of mitral cells are discussed.
Collapse
Affiliation(s)
- Romanita Nica
- Department of Biological Sciences, University of Cincinnati, Cincinnati OH 45221-0006, USA
| | | | | |
Collapse
|
19
|
Migliore M, Hines ML, McTavish TS, Shepherd GM. Functional roles of distributed synaptic clusters in the mitral-granule cell network of the olfactory bulb. Front Integr Neurosci 2010. [PMID: 21258619 DOI: 10.3389/fnint.2010.00005/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Odors are encoded in spatio-temporal patterns within the olfactory bulb, but the mechanisms of odor recognition and discrimination are poorly understood. It is reasonable to postulate that the olfactory code is sculpted by lateral and feedforward inhibition mediated by granule cells onto the mitral cells. Recent viral tracing and physiological studies revealed patterns of distributed granule cell synaptic clusters that provided additional clues to the possible mechanisms at the network level. The emerging properties and functional roles of these patterns, however, are unknown. Here, using a realistic model of 5 mitral and 100 granule cells we show how their synaptic network can dynamically self-organize and interact through an activity-dependent dendrodendritic mechanism. The results suggest that the patterns of distributed mitral-granule cell connectivity may represent the most recent history of odor inputs, and may contribute to the basic processes underlying mixture perception and odor qualities. The model predicts how and why the dynamical interactions between the active mitral cells through the granule cell synaptic clusters can account for a variety of puzzling behavioral results on odor mixtures and on the emergence of synthetic or analytic perception.
Collapse
Affiliation(s)
- Michele Migliore
- Institute of Biophysics, National Research Council Palermo, Italy
| | | | | | | |
Collapse
|
20
|
The functional role of the medio dorsal thalamic nucleus in olfaction. ACTA ACUST UNITED AC 2009; 62:109-26. [PMID: 19800366 DOI: 10.1016/j.brainresrev.2009.09.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/25/2009] [Accepted: 09/28/2009] [Indexed: 11/23/2022]
Abstract
Olfaction is unique relative to other sensory modalities in terms of how its neuroanatomy is organized within the brain and its perceptual properties. Olfactory information processing occurs via connections made directly from primary processing areas (piriform cortex) to neocortical structures (orbitofrontal cortex) as well as indirectly via the medio-dorsal nucleus of the thalamus (MDNT). To date, little is known about the functional significance of the MDNT in olfactory information processing. The aim of this article is to review and discuss thalamic function in olfaction. We draw upon research in human neuroimaging, neuropsychology, as well as animal and neurophysiological studies on the thalamus and MDNT in general, before focusing our discussion on the effects of MDNT lesions specific to olfactory function. Finally, although these data are currently limited and sometimes conflicting, especially those based upon human pathology, the putative roles of the MDNT in olfactory information processing and notably its role in attention, are discussed.
Collapse
|
21
|
Abstract
The neural basis of olfactory information processing and olfactory percept formation is a topic of intense investigation as new genetic, optical, and psychophysical tools are brought to bear to identify the sites and interaction modes of cortical areas involved in the central processing of olfactory information. New methods for recording cellular interactions and network events in the awake, behaving brain during olfactory processing and odor-based decision making have shown remarkable new properties of neuromodulation and synaptic interactions distinct from those observed in anesthetized brains. Psychophysical, imaging, and computational studies point to the orbitofrontal cortex as the likely locus of odor percept formation in mammals, but further work is needed to identify a causal link between perceptual and neural events in this area.
Collapse
Affiliation(s)
- Alan Gelperin
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
22
|
Restrepo D, Whitesell J, Doucette W. Need for related multipronged approaches to understand olfactory bulb signal processing. Ann N Y Acad Sci 2009; 1170:298-305. [PMID: 19686151 PMCID: PMC2859900 DOI: 10.1111/j.1749-6632.2009.04375.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent work from our laboratory in awake behaving animals shows that olfactory bulb processing changes depending profoundly on behavioral context. Thus, we find that when recording from the olfactory bulb in a mouse during a go-no go association learning task, it is not unusual to find a mitral cell that initially does not respond to the rewarded or unrewarded odors but develops a differential response to the stimuli during the learning session. This places a challenge on how to approach understanding of olfactory bulb processing, because neural interactions differ depending on the status of the animal. Here we address the question of how the different approaches to study olfactory bulb neuron responses, including studies in anesthetized and unanesthetized animals in vivo and recordings in slices, complement each other. We conclude that more critical understanding of the relationship between the measurements in the different preparations is necessary for future advances in the understanding of olfactory bulb processing of odor information.
Collapse
Affiliation(s)
- Diego Restrepo
- Department of Cell and Developmental Biology, Neuroscience Program, and Rocky Mountain Taste and Smell Center, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA.
| | | | | |
Collapse
|
23
|
Kowski A, Veh R, Weiss T. Dopaminergic activation excites rat lateral habenular neurons in vivo. Neuroscience 2009; 161:1154-65. [DOI: 10.1016/j.neuroscience.2009.04.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/07/2009] [Accepted: 04/09/2009] [Indexed: 10/20/2022]
|
24
|
Kay LM, Beshel J, Brea J, Martin C, Rojas-Líbano D, Kopell N. Olfactory oscillations: the what, how and what for. Trends Neurosci 2009; 32:207-14. [PMID: 19243843 DOI: 10.1016/j.tins.2008.11.008] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 11/01/2008] [Accepted: 11/09/2008] [Indexed: 10/21/2022]
Abstract
Olfactory system oscillations play out with beautiful temporal and behavioral regularity on the oscilloscope and seem to scream 'meaning'. Always there is the fear that, although attractive, these symbols of dynamic regularity might be just seductive epiphenomena. There are now many studies that have isolated some of the neural mechanisms involved in these oscillations, and recent work argues that they are functional and even necessary at the physiological and cognitive levels. However, much remains to be done for a full understanding of their functions.
Collapse
Affiliation(s)
- Leslie M Kay
- Department of Psychology, The University of Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Doucette W, Restrepo D. Profound context-dependent plasticity of mitral cell responses in olfactory bulb. PLoS Biol 2008; 6:e258. [PMID: 18959481 PMCID: PMC2573932 DOI: 10.1371/journal.pbio.0060258] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 09/11/2008] [Indexed: 11/19/2022] Open
Abstract
On the basis of its primary circuit it has been postulated that the olfactory bulb (OB) is analogous to the retina in mammals. In retina, repeated exposure to the same visual stimulus results in a neural representation that remains relatively stable over time, even as the meaning of that stimulus to the animal changes. Stability of stimulus representation at early stages of processing allows for unbiased interpretation of incoming stimuli by higher order cortical centers. The alternative is that early stimulus representation is shaped by previously derived meaning, which could allow more efficient sampling of odor space providing a simplified yet biased interpretation of incoming stimuli. This study helps place the olfactory system on this continuum of subjective versus objective early sensory representation. Here we show that odor responses of the output cells of the OB, mitral cells, change transiently during a go-no-go odor discrimination task. The response changes occur in a manner that increases the ability of the circuit to convey information necessary to discriminate among closely related odors. Remarkably, a switch between which of the two odors is rewarded causes mitral cells to switch the polarity of their divergent responses. Taken together these results redefine the function of the OB as a transiently modifiable (active) filter, shaping early odor representations in behaviorally meaningful ways.
Collapse
Affiliation(s)
- Wilder Doucette
- Department of Cell and Developmental Biology, Neuroscience Program and Rocky Mountain Taste and Smell Center, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Diego Restrepo
- Department of Cell and Developmental Biology, Neuroscience Program and Rocky Mountain Taste and Smell Center, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|