1
|
Otero-Coronel S, Preuss T, Medan V. Multisensory integration enhances audiovisual responses in the Mauthner cell. eLife 2024; 13:RP99424. [PMID: 39636208 PMCID: PMC11620741 DOI: 10.7554/elife.99424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Multisensory integration (MSI) combines information from multiple sensory modalities to create a coherent perception of the world. In contexts where sensory information is limited or equivocal, it also allows animals to integrate individually ambiguous stimuli into a clearer or more accurate percept and, thus, react with a more adaptive behavioral response. Although responses to multisensory stimuli have been described at the neuronal and behavioral levels, a causal or direct link between these two is still missing. In this study, we studied the integration of audiovisual inputs in the Mauthner cell, a command neuron necessary and sufficient to trigger a stereotypical escape response in fish. We performed intracellular recordings in adult goldfish while presenting a diverse range of stimuli to determine which stimulus properties affect their integration. Our results show that stimulus modality, intensity, temporal structure, and interstimulus delay affect input summation. Mechanistically, we found that the distinct decay dynamics of FFI triggered by auditory and visual stimuli can account for certain aspects of input integration. Altogether, this is a rare example of the characterization of MSI in a cell with clear behavioral relevance, providing both phenomenological and mechanistic insights into how MSI depends on stimulus properties.
Collapse
Affiliation(s)
- Santiago Otero-Coronel
- Instituto de Fisiología y Biología Molecular y Celular, Consejo Nacional de Investigaciones Científicas y TecnológicasBuenos AiresArgentina
| | - Thomas Preuss
- Department Psychology, Hunter College, City University of New YorkNew YorkUnited States
| | - Violeta Medan
- Instituto de Fisiología y Biología Molecular y Celular, Consejo Nacional de Investigaciones Científicas y TecnológicasBuenos AiresArgentina
- Department Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
2
|
Heagy FK, Clements KN, Adams CL, Blain E, Issa FA. Socially induced plasticity of the posterior tuberculum and motor behavior in zebrafish (Danio rerio). J Exp Biol 2024; 227:jeb248148. [PMID: 39422204 PMCID: PMC11626077 DOI: 10.1242/jeb.248148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Social dominance is prevalent throughout the animal kingdom. It facilitates the stabilization of social relationships and allows animals to divide resources according to social rank. Zebrafish form stable dominance relationships that consist of dominants and subordinates. Although social status-dependent differences in behavior must arise as a result of neural plasticity, mechanisms by which neural circuits are reconfigured to cope with social dominance are poorly described. Here, we describe how the posterior tuberculum nucleus (PTN), which integrates sensory social information to modulate spinal motor circuits, is morphologically and functionally influenced by social status. We combined non-invasive behavioral monitoring of motor activity (startle escape and swim) and histological approaches to investigate how social dominance affects the morphological structure, axosomatic synaptic connectivity and functional activity of the PTN in relation to changes in motor behavior. We show that dopaminergic cell number significantly increases in dominants compared with subordinates, while PTN synaptic interconnectivity, demonstrated with PSD-95 expression, is higher in subordinates than in dominants. Secondly, these socially induced morphological differences emerge after 1 week of dominance formation and correlate with differences in cellular activities illustrated with higher phosphor-S6 ribosomal protein expression in dominants compared with subordinates. Thirdly, these morphological differences are reversible as the social environment evolves and correlate with adaptations in startle escape and swim behaviors. Our results provide new insights into the neural bases of social behavior that may be applicable to other social species with similar structural and functional organization.
Collapse
Affiliation(s)
- Faith K. Heagy
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Katie N. Clements
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Carrie L. Adams
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Elena Blain
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Fadi A. Issa
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
3
|
Lee HB, Shams S, Dang Thi VH, Boyum GE, Modhurima R, Hall EM, Green IK, Cervantes EM, Miguez FE, Clark KJ. Key HPI axis receptors facilitate light adaptive behavior in larval zebrafish. Sci Rep 2024; 14:7759. [PMID: 38565594 PMCID: PMC10987622 DOI: 10.1038/s41598-024-57707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
The vertebrate stress response (SR) is mediated by the hypothalamic-pituitary-adrenal (HPA) axis and contributes to generating context appropriate physiological and behavioral changes. Although the HPA axis plays vital roles both in stressful and basal conditions, research has focused on the response under stress. To understand broader roles of the HPA axis in a changing environment, we characterized an adaptive behavior of larval zebrafish during ambient illumination changes. Genetic abrogation of glucocorticoid receptor (nr3c1) decreased basal locomotor activity in light and darkness. Some key HPI axis receptors (mc2r [ACTH receptor], nr3c1), but not nr3c2 (mineralocorticoid receptor), were required to adapt to light more efficiently but became dispensable when longer illumination was provided. Such light adaptation was more efficient in dimmer light. Our findings show that the HPI axis contributes to the SR, facilitating the phasic response and maintaining an adapted basal state, and that certain adaptations occur without HPI axis activity.
Collapse
Affiliation(s)
- Han B Lee
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Soaleha Shams
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Viet Ha Dang Thi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Grace E Boyum
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Rodsy Modhurima
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Emma M Hall
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Izzabella K Green
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Karl J Clark
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
- Neuroscience, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA.
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
4
|
Read E, Hindges R. A novel locomotion-based prepulse inhibition assay in zebrafish larvae. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.000914. [PMID: 38344062 PMCID: PMC10853821 DOI: 10.17912/micropub.biology.000914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/20/2023] [Accepted: 01/11/2024] [Indexed: 03/07/2024]
Abstract
Sensory gating, measured using prepulse inhibition (PPI), is an endophenotype of neuropsychiatric disorders that can be assessed in larval zebrafish models. However, current PPI assays require high-speed cameras to capture rapid c-bend startle behaviours of the larvae. In this study, we designed and employed a PPI paradigm that uses locomotion as a read-out of zebrafish larval startle responses. PPI percentage was measured at a maximum of 87% and strongly reduced upon administration of the NMDA receptor antagonist, MK-801. This work provides the foundation for simpler and more accessible PPI assays using larval zebrafish to model key endophenotypes of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Emily Read
- Centre for Developmental Neurobiology & MRC Centre for Neurodevelopmental Disorders, King's College London, London, England, United Kingdom
| | - Robert Hindges
- Centre for Developmental Neurobiology & MRC Centre for Neurodevelopmental Disorders, King's College London, London, England, United Kingdom
| |
Collapse
|
5
|
Clements KN, Ahn S, Park C, Heagy FK, Miller TH, Kassai M, Issa FA. Socially Mediated Shift in Neural Circuits Activation Regulated by Synergistic Neuromodulatory Signaling. eNeuro 2023; 10:ENEURO.0311-23.2023. [PMID: 37914408 PMCID: PMC10683552 DOI: 10.1523/eneuro.0311-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023] Open
Abstract
Animals exhibit context-dependent behavioral decisions that are mediated by specific motor circuits. In social species these decisions are often influenced by social status. Although social status-dependent neural plasticity of motor circuits has been investigated in vertebrates, little is known of how cellular plasticity translates into differences in motor activity. Here, we used zebrafish (Danio rerio) as a model organism to examine how social dominance influences the activation of swimming and the Mauthner-mediated startle escape behaviors. We show that the status-dependent shift in behavior patterns whereby dominants increase swimming and reduce sensitivity of startle escape while subordinates reduce their swimming and increase startle sensitivity is regulated by the synergistic interactions of dopaminergic, glycinergic, and GABAergic inputs to shift the balance of activation of the underlying motor circuits. This shift is driven by socially induced differences in expression of dopaminergic receptor type 1b (Drd1b) on glycinergic neurons and dopamine (DA) reuptake transporter (DAT). Second, we show that GABAergic input onto glycinergic neurons is strengthened in subordinates compared with dominants. Complementary neurocomputational modeling of the empirical results show that drd1b functions as molecular regulator to facilitate the shift between excitatory and inhibitory pathways. The results illustrate how reconfiguration in network dynamics serves as an adaptive strategy to cope with changes in social environment and are likely conserved and applicable to other social species.
Collapse
Affiliation(s)
- Katie N Clements
- Department of Biology, East Carolina University, Greenville, NC 27858
| | - Sungwoo Ahn
- Department of Mathematics, East Carolina University, Greenville, NC 27858
| | - Choongseok Park
- Department of Mathematics, North Carolina A&T State University, Greensboro, NC 27411
| | - Faith K Heagy
- Department of Biology, East Carolina University, Greenville, NC 27858
| | - Thomas H Miller
- Department of Biology, East Carolina University, Greenville, NC 27858
| | - Miki Kassai
- Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, NC 27858
| | - Fadi A Issa
- Department of Biology, East Carolina University, Greenville, NC 27858
| |
Collapse
|
6
|
Lee H, Shams S, Dang Thi VH, Boyum G, Modhurima R, Hall E, Green I, Cervantes E, Miguez F, Clark K. The canonical HPA axis facilitates and maintains light adaptive behavior. RESEARCH SQUARE 2023:rs.3.rs-3240080. [PMID: 37720015 PMCID: PMC10503838 DOI: 10.21203/rs.3.rs-3240080/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The vertebrate stress response (SR) is mediated by the hypothalamic-pituitary-adrenal (HPA) axis and contributes to generating context appropriate physiological and behavioral changes. Although the HPA axis plays vital roles both in stressful and basal conditions, research has focused on the response under stress. To understand broader roles of the HPA axis in a changing environment, we characterized an adaptive behavior of larval zebrafish during ambient illumination changes. The glucocorticoid receptor (nr3c1) was necessary to maintain basal locomotor activity in light and darkness. The HPA axis was required to adapt to light more efficiently but became dispensable when longer illumination was provided. Light adaptation was more efficient in dimmer light and did not require the mineralocorticoid receptor (nr3c2). Our findings show that the HPA axis contributes to the SR at various stages, facilitating the phasic response and maintaining an adapted basal state, and that certain adaptations occur without HPA axis activity.
Collapse
|
7
|
Baeza-Loya S, Raible DW. Vestibular physiology and function in zebrafish. Front Cell Dev Biol 2023; 11:1172933. [PMID: 37143895 PMCID: PMC10151581 DOI: 10.3389/fcell.2023.1172933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023] Open
Abstract
The vestibular system of the inner ear provides information about head motion and spatial orientation relative to gravity to ensure gaze stability, balance, and postural control. Zebrafish, like humans, have five sensory patches per ear that serve as peripheral vestibular organs, with the addition of the lagena and macula neglecta. The zebrafish inner ear can be easily studied due to its accessible location, the transparent tissue of larval fish, and the early development of vestibular behaviors. Thus, zebrafish are an excellent model for studying the development, physiology, and function of the vestibular system. Recent work has made great strides to elucidate vestibular neural circuitry in fish, tracing sensory transmission from receptors in the periphery to central computational circuits driving vestibular reflexes. Here we highlight recent work that illuminates the functional organization of vestibular sensory epithelia, innervating first-order afferent neurons, and second-order neuronal targets in the hindbrain. Using a combination of genetic, anatomical, electrophysiological, and optical techniques, these studies have probed the roles of vestibular sensory signals in fish gaze, postural, and swimming behaviors. We discuss remaining questions in vestibular development and organization that are tractable in the zebrafish model.
Collapse
Affiliation(s)
| | - David W. Raible
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-HNS and Biological Structure, University of Washington, Seattle, WA, United States
| |
Collapse
|
8
|
Machnik P, Biazar N, Schuster S. Recordings in an integrating central neuron reveal the mode of action of isoeugenol. Commun Biol 2023; 6:309. [PMID: 36959338 PMCID: PMC10036640 DOI: 10.1038/s42003-023-04695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/10/2023] [Indexed: 03/25/2023] Open
Abstract
Although isoeugenol is one of the most widely used anesthetics in fish, its actual mode of action and thus its applicability for particular interventions is poorly understood. Here we determined effects of isoeugenol on various aspects of sensory and neural function, taking advantage of intracellular in vivo recordings in a uniquely suited identified neuron, the Mauthner neuron in the brain of goldfish. We show that isoeugenol strongly affects hearing and vision, but sensitivity and time course of action differed largely in these two senses. The action potential, chemical and electric synaptic transmission at the central neuron were not affected at low but efficient anesthesia. Effects seen at high concentration thereby do not support current views of how isoeugenol might act on central neurons. We show that isoeugenol is highly useful to anesthetize fish for handling, but that in more severe treatment its application needs to be carefully adapted to task.
Collapse
Affiliation(s)
- Peter Machnik
- Department of Animal Physiology, University of Bayreuth, (Universitätsstraße 30, D-95440 Bayreuth), Bayreuth, Germany.
| | - Nastaran Biazar
- Department of Animal Physiology, University of Bayreuth, (Universitätsstraße 30, D-95440 Bayreuth), Bayreuth, Germany
| | - Stefan Schuster
- Department of Animal Physiology, University of Bayreuth, (Universitätsstraße 30, D-95440 Bayreuth), Bayreuth, Germany
| |
Collapse
|
9
|
Zheng A, Schmid S. A review of the neural basis underlying the acoustic startle response with a focus on recent developments in mammals. Neurosci Biobehav Rev 2023; 148:105129. [PMID: 36914078 DOI: 10.1016/j.neubiorev.2023.105129] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
The startle response consists of whole-body muscle contractions, eye-blink, accelerated heart rate, and freezing in response to a strong, sudden stimulus. It is evolutionarily preserved and can be observed in any animal that can perceive sensory signals, indicating the important protective function of startle. Startle response measurements and its alterations have become a valuable tool for exploring sensorimotor processes and sensory gating, especially in the context of pathologies of psychiatric disorders. The last reviews on the neural substrates underlying acoustic startle were published around 20 years ago. Advancements in methods and techniques have since allowed new insights into acoustic startle mechanisms. This review is focused on the neural circuitry that drives the primary acoustic startle response in mammals. However, there have also been very successful efforts to identify the acoustic startle pathway in other vertebrates and invertebrates in the past decades, so at the end we briefly summarize these studies and comment on the similarities and differences between species.
Collapse
Affiliation(s)
- Alice Zheng
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, Canada
| | - Susanne Schmid
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, Canada.
| |
Collapse
|
10
|
Lutek K, Donatelli CM, Standen EM. Patterns and processes in amphibious fish: biomechanics and neural control of fish terrestrial locomotion. J Exp Biol 2022; 225:275243. [PMID: 35502693 DOI: 10.1242/jeb.242395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amphibiousness in fishes spans the actinopterygian tree from the earliest to the most recently derived species. The land environment requires locomotor force production different from that in water, and a diversity of locomotor modes have evolved across the actinopterygian tree. To compare locomotor mode between species, we mapped biomechanical traits on an established amphibious fish phylogeny. Although the diversity of fish that can move over land is large, we noted several patterns, including the rarity of morphological and locomotor specialization, correlations between body shape and locomotor mode, and an overall tendency for amphibious fish to be small. We suggest two idealized empirical metrics to consider when gauging terrestrial 'success' in fishes and discuss patterns of terrestriality in fishes considering biomechanical scaling, physical consequences of shape, and tissue plasticity. Finally, we suggest four ways in which neural control could change in response to a novel environment, highlighting the importance and challenges of deciphering when these control mechanisms are used. We aim to provide an overview of the diversity of successful amphibious locomotion strategies and suggest several frameworks that can guide the study of amphibious fish and their locomotion.
Collapse
Affiliation(s)
- K Lutek
- Department of Biology, University of Ottawa, Ottawa, Canada, K1N 6N5
| | - C M Donatelli
- Department of Biology, University of Ottawa, Ottawa, Canada, K1N 6N5
| | - E M Standen
- Department of Biology, University of Ottawa, Ottawa, Canada, K1N 6N5
| |
Collapse
|
11
|
Harry GJ, McBride S, Witchey SK, Mhaouty-Kodja S, Trembleau A, Bridge M, Bencsik A. Roadbumps at the Crossroads of Integrating Behavioral and In Vitro Approaches for Neurotoxicity Assessment. FRONTIERS IN TOXICOLOGY 2022; 4:812863. [PMID: 35295216 PMCID: PMC8915899 DOI: 10.3389/ftox.2022.812863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
With the appreciation that behavior represents the integration and complexity of the nervous system, neurobehavioral phenotyping and assessment has seen a renaissance over the last couple of decades, resulting in a robust database on rodent performance within various testing paradigms, possible associations with human disorders, and therapeutic interventions. The interchange of data across behavior and other test modalities and multiple model systems has advanced our understanding of fundamental biology and mechanisms associated with normal functions and alterations in the nervous system. While there is a demonstrated value and power of neurobehavioral assessments for examining alterations due to genetic manipulations, maternal factors, early development environment, the applied use of behavior to assess environmental neurotoxicity continues to come under question as to whether behavior represents a sensitive endpoint for assessment. Why is rodent behavior a sensitive tool to the neuroscientist and yet, not when used in pre-clinical or chemical neurotoxicity studies? Applying new paradigms and evidence on the biological basis of behavior to neurobehavioral testing requires expertise and refinement of how such experiments are conducted to minimize variability and maximize information. This review presents relevant issues of methods used to conduct such test, sources of variability, experimental design, data analysis, interpretation, and reporting. It presents beneficial and critical limitations as they translate to the in vivo environment and considers the need to integrate across disciplines for the best value. It proposes that a refinement of behavioral assessments and understanding of subtle pronounced differences will facilitate the integration of data obtained across multiple approaches and to address issues of translation.
Collapse
Affiliation(s)
- G. Jean Harry
- Neurotoxicology Group, Molecular Toxicology Branch, Division National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Sandra McBride
- Social & Scientific Systems, Inc., a DLH Holdings Company, Durham, NC, United States
| | - Shannah K. Witchey
- Division National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine – Institut de Biologie Paris Seine, Paris, France
| | - Alain Trembleau
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France
| | - Matthew Bridge
- Social & Scientific Systems, Inc., a DLH Holdings Company, Durham, NC, United States
| | - Anna Bencsik
- Anses Laboratoire de Lyon, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université de Lyon 1, Lyon, France
| |
Collapse
|
12
|
Audiovisual integration in the Mauthner cell enhances escape probability and reduces response latency. Sci Rep 2022; 12:1097. [PMID: 35058502 PMCID: PMC8776867 DOI: 10.1038/s41598-022-04998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractFast and accurate threat detection is critical for animal survival. Reducing perceptual ambiguity by integrating multiple sources of sensory information can enhance perception and reduce response latency. However, studies addressing the link between behavioral correlates of multisensory integration and its underlying neural basis are rare. Fish that detect an urgent threat escape with an explosive behavior known as C-start. The C-start is driven by an identified neural circuit centered on the Mauthner cell, an identified neuron capable of triggering escapes in response to visual and auditory stimuli. Here we demonstrate that goldfish can integrate visual looms and brief auditory stimuli to increase C-start probability. This multisensory enhancement is inversely correlated to the salience of the stimuli, with weaker auditory cues producing a proportionally stronger multisensory effect. We also show that multisensory stimuli reduced C-start response latency, with most escapes locked to the presentation of the auditory cue. We make a direct link between behavioral data and its underlying neural mechanism by reproducing the behavioral data with an integrate-and-fire computational model of the Mauthner cell. This model of the Mauthner cell circuit suggests that excitatory inputs integrated at the soma are key elements in multisensory decision making during fast C-start escapes. This provides a simple but powerful mechanism to enhance threat detection and survival.
Collapse
|
13
|
Light-stimulus intensity modulates startle reflex habituation in larval zebrafish. Sci Rep 2021; 11:22410. [PMID: 34789729 PMCID: PMC8599482 DOI: 10.1038/s41598-021-00535-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
The startle reflex in larval zebrafish describes a C-bend of the body occurring in response to sudden, unexpected, stimuli of different sensory modalities. Alterations in the startle reflex habituation (SRH) have been reported in various human and animal models of neurological and psychiatric conditions and are hence considered an important behavioural marker of neurophysiological function. The amplitude, offset and decay constant of the auditory SRH in larval zebrafish have recently been characterised, revealing that the measures are affected by variation in vibratory frequency, intensity, and interstimulus-interval. Currently, no study provides a model-based analysis of the effect of physical properties of light stimuli on the visual SRH. This study assessed the effect of incremental light-stimulus intensity on the SRH of larval zebrafish through a repeated-measures design. Their total locomotor responses were normalised for the time factor, based on the behaviour of a (non-stimulated) control group. A linear regression indicated that light intensity positively predicts locomotor responses due to larger SRH decay constants and offsets. The conclusions of this study provide important insights as to the effect of light properties on the SRH in larval zebrafish. Our methodology and findings constitute a relevant reference framework for further investigation in translational neurophysiological research.
Collapse
|
14
|
Nadler LE, McCormick MI, Johansen JL, Domenici P. Social familiarity improves fast-start escape performance in schooling fish. Commun Biol 2021; 4:897. [PMID: 34285330 PMCID: PMC8292327 DOI: 10.1038/s42003-021-02407-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/30/2021] [Indexed: 11/09/2022] Open
Abstract
Using social groups (i.e. schools) of the tropical damselfish Chromis viridis, we test how familiarity through repeated social interactions influences fast-start responses, the primary defensive behaviour in a range of taxa, including fish, sharks, and larval amphibians. We focus on reactivity through response latency and kinematic performance (i.e. agility and propulsion) following a simulated predator attack, while distinguishing between first and subsequent responders (direct response to stimulation versus response triggered by integrated direct and social stimulation, respectively). In familiar schools, first and subsequent responders exhibit shorter latency than unfamiliar individuals, demonstrating that familiarity increases reactivity to direct and, potentially, social stimulation. Further, familiarity modulates kinematic performance in subsequent responders, demonstrated by increased agility and propulsion. These findings demonstrate that the benefits of social recognition and memory may enhance individual fitness through greater survival of predator attacks.
Collapse
Affiliation(s)
- Lauren E Nadler
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia. .,College of Science and Engineering, James Cook University, Townsville, QLD, Australia. .,Department of Marine and Environmental Sciences, Nova Southeastern University, Dania Beach, FL, USA.
| | - Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Jacob L Johansen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Manoa, Kaneohe, HI, USA
| | | |
Collapse
|
15
|
Xu L, Guan NN, Huang CX, Hua Y, Song J. A neuronal circuit that generates the temporal motor sequence for the defensive response in zebrafish larvae. Curr Biol 2021; 31:3343-3357.e4. [PMID: 34289386 DOI: 10.1016/j.cub.2021.06.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/06/2021] [Accepted: 06/21/2021] [Indexed: 01/11/2023]
Abstract
Animals use a precisely timed motor sequence to escape predators. This requires the nervous system to coordinate several motor behaviors and execute them in a temporal and smooth manner. We here describe a neuronal circuit that faithfully generates a defensive motor sequence in zebrafish larvae. The temporally specific defensive motor sequence consists of an initial escape and a subsequent swim behavior and can be initiated by unilateral stimulation of a single Mauthner cell (M-cell). The smooth transition from escape behavior to swim behavior is achieved by activating a neuronal chain circuit, which permits an M-cell to drive descending neurons in bilateral nucleus of medial longitudinal fascicle (nMLF) via activation of an intermediate excitatory circuit formed by interconnected hindbrain cranial relay neurons. The sequential activation of M-cells and neurons in bilateral nMLF via activation of hindbrain cranial relay neurons ensures the smooth execution of escape and swim behaviors in a timely manner. We propose an existence of a serial model that executes a temporal motor sequence involving three different brain regions that initiates the escape behavior and triggers a subsequent swim. This model has general implications regarding the neural control of complex motor sequences.
Collapse
Affiliation(s)
- Lulu Xu
- Motor Control Laboratory, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anatomy, Histology and Embryology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Na N Guan
- Motor Control Laboratory, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anatomy, Histology and Embryology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092 Shanghai, China
| | - Chun-Xiao Huang
- Motor Control Laboratory, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anatomy, Histology and Embryology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yunfeng Hua
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Jianren Song
- Motor Control Laboratory, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anatomy, Histology and Embryology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092 Shanghai, China.
| |
Collapse
|
16
|
Corradi L, Filosa A. Neuromodulation and Behavioral Flexibility in Larval Zebrafish: From Neurotransmitters to Circuits. Front Mol Neurosci 2021; 14:718951. [PMID: 34335183 PMCID: PMC8319623 DOI: 10.3389/fnmol.2021.718951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Animals adapt their behaviors to their ever-changing needs. Internal states, such as hunger, fear, stress, and arousal are important behavioral modulators controlling the way an organism perceives sensory stimuli and reacts to them. The translucent zebrafish larva is an ideal model organism for studying neuronal circuits regulating brain states, owning to the possibility of easy imaging and manipulating activity of genetically identified neurons while the animal performs stereotyped and well-characterized behaviors. The main neuromodulatory circuits present in mammals can also be found in the larval zebrafish brain, with the advantage that they contain small numbers of neurons. Importantly, imaging and behavioral techniques can be combined with methods for generating targeted genetic modifications to reveal the molecular underpinnings mediating the functions of such circuits. In this review we discuss how studying the larval zebrafish brain has contributed to advance our understanding of circuits and molecular mechanisms regulating neuromodulation and behavioral flexibility.
Collapse
Affiliation(s)
- Laura Corradi
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alessandro Filosa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
17
|
The Formin Fmn2b Is Required for the Development of an Excitatory Interneuron Module in the Zebrafish Acoustic Startle Circuit. eNeuro 2021; 8:ENEURO.0329-20.2021. [PMID: 34193512 PMCID: PMC8272403 DOI: 10.1523/eneuro.0329-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 01/22/2023] Open
Abstract
The formin family member Fmn2 is a neuronally enriched cytoskeletal remodeling protein conserved across vertebrates. Recent studies have implicated Fmn2 in neurodevelopmental disorders, including sensory processing dysfunction and intellectual disability in humans. Cellular characterization of Fmn2 in primary neuronal cultures has identified its function in the regulation of cell-substrate adhesion and consequently growth cone translocation. However, the role of Fmn2 in the development of neural circuits in vivo, and its impact on associated behaviors have not been tested. Using automated analysis of behavior and systematic investigation of the associated circuitry, we uncover the role of Fmn2b in zebrafish neural circuit development. As reported in other vertebrates, the zebrafish ortholog of Fmn2 is also enriched in the developing zebrafish nervous system. We find that Fmn2b is required for the development of an excitatory interneuron pathway, the spiral fiber neuron, which is an essential circuit component in the regulation of the Mauthner cell (M-cell)-mediated acoustic startle response. Consistent with the loss of the spiral fiber neurons tracts, high-speed video recording revealed a reduction in the short latency escape events while responsiveness to the stimuli was unaffected. Taken together, this study provides evidence for a circuit-specific requirement of Fmn2b in eliciting an essential behavior in zebrafish. Our findings underscore the importance of Fmn2 in neural development across vertebrate lineages and highlight zebrafish models in understanding neurodevelopmental disorders.
Collapse
|
18
|
A computational model of the shrimp-goby escape and communication system. J Comput Neurosci 2021; 49:395-405. [PMID: 33999326 DOI: 10.1007/s10827-021-00787-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Fish escape from approaching threats via a stereotyped escape behavior. This behavior, and the underlying neural circuit organized around the Mauthner cell command neurons, have both been extensively investigated experimentally, mainly in two laboratory model organisms, the goldfish and the zebrafish. However, fish biodiversity is enormous, a number of variants of the basal escape behavior exist. In marine gobies (a family of small benthic fishes) which share burrows with alpheid shrimp, the escape behavior has likely been partially modified into a tactile communication system which allow the fish to communicate the approach of a predatory fish to the shrimp. In this communication system, the goby responds to intermediate-strength threats with a brief tail-flick which the shrimp senses with its antennae.We investigated the shrimp goby escape and communication system with computational models. We asked how the circuitry of the basal escape behavior could be modified to produce behavior akin to the shrimp-goby communication system. In a simple model, we found that mutual inhibitions between Mauthner cells can be tuned to produce an oscillatory response to intermediate strength inputs, albeit only in a narrow parameter range.Using a more detailed model, we found that two modifications of the fish locomotor system transform it into a model reproducing the shrimp goby behavior. These modifications are: 1. modifying the central pattern generator which drives swimming such that it is quiescent when receiving no inputs; 2. introducing a direct sensory input to this central pattern generator, bypassing the Mauthner cells.
Collapse
|
19
|
A model-based quantification of startle reflex habituation in larval zebrafish. Sci Rep 2021; 11:846. [PMID: 33436805 PMCID: PMC7804396 DOI: 10.1038/s41598-020-79923-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023] Open
Abstract
Zebrafish is an established animal model for the reproduction and study of neurobiological pathogenesis of human neurological conditions. The 'startle reflex' in zebrafish larvae is an evolutionarily preserved defence response, manifesting as a quick body-bend in reaction to sudden sensory stimuli. Changes in startle reflex habituation characterise several neuropsychiatric disorders and hence represent an informative index of neurophysiological health. This study aimed at establishing a simple and reliable experimental protocol for the quantification of startle reflex response and habituation. The fish were stimulated with 20 repeated pulses of specific vibratory frequency, acoustic intensity/power, light-intensity and interstimulus-interval, in three separate studies. The cumulative distance travelled, namely the sum of the distance travelled (mm) during all 20 stimuli, was computed as a group-level description for all the experimental conditions in each study. Additionally, by the use of bootstrapping, the data was fitted to a model of habituation with a first-order exponential representing the decay of locomotor distance travelled over repeated stimulation. Our results suggest that startle habituation is a stereotypic first-order process with a decay constant ranging from 1 to 2 stimuli. Habituation memory lasts no more than 5 min, as manifested by the locomotor activity recovering to baseline levels. We further observed significant effects of vibratory frequency, acoustic intensity/power and interstimulus-interval on the amplitude, offset, decay constant and cumulative distance travelled. Instead, the intensity of the flashed light did not contribute to significant behavioural variations. The findings provide novel insights as to the influence of different stimuli parameters on the startle reflex habituation and constitute a helpful reference framework for further investigation.
Collapse
|
20
|
Otero Coronel S, Martorell N, Beron de Astrada M, Medan V. Stimulus Contrast Information Modulates Sensorimotor Decision Making in Goldfish. Front Neural Circuits 2020; 14:23. [PMID: 32547371 PMCID: PMC7270408 DOI: 10.3389/fncir.2020.00023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/15/2020] [Indexed: 11/24/2022] Open
Abstract
Animal survival relies on environmental information gathered by their sensory systems. We found that contrast information of a looming stimulus biases the type of defensive behavior that goldfish (Carassius auratus) perform. Low-contrast looms only evoke subtle alarm reactions whose probability is independent of contrast. As looming contrast increases, the probability of eliciting a fast escape maneuver, the C-start response, increases dramatically. Contrast information also modulates the decision of when to escape. Although response latency is known to depend on looming retinal size, we found that contrast acts as an additional parameter influencing this decision. When presenting progressively higher contrast stimuli, animals need shorter periods of stimulus processing to initiate the response. Our results comply with the notion that the decision to escape is a flexible process initiated with stimulus detection and followed by assessment of the perceived risk posed by the stimulus. Highly disruptive behaviors as the C-start are only observed when a multifactorial threshold that includes stimulus contrast is surpassed.
Collapse
Affiliation(s)
- Santiago Otero Coronel
- Department Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolás Martorell
- Department Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Beron de Astrada
- Department Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Violeta Medan
- Department Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
21
|
Early life exposure to cortisol in zebrafish (Danio rerio): similarities and differences in behaviour and physiology between larvae of the AB and TL strains. Behav Pharmacol 2020; 30:260-271. [PMID: 30724799 DOI: 10.1097/fbp.0000000000000470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Maternal stress and early life stress affect development. Zebrafish (Danio rerio) are ideally suited to study this, as embryos develop externally into free-feeding larvae. The objective of this study was therefore to assess the effects of increased levels of cortisol, mimicking thereby maternal stress, on larval physiology and behaviour. We studied the effects in two common zebrafish strains, that is, AB and Tupfel long-fin (TL), to assess strain dependency of effects. Fertilized eggs were exposed to a cortisol-containing medium (1.1 μmol/l) or control medium from 0 to 6 h following fertilization, after which at 5-day following fertilization, larval behaviour and baseline hypothalamus-pituitary-interrenal cells axis functioning were measured. The data confirmed earlier observed differences between AB larvae and TL larvae: a lower hypothalamus-pituitary-interrenal axis activity in TL larvae than AB larvae, and slower habituation to repeated acoustic/vibrational stimuli in TL larvae than AB larvae. Following cortisol treatment, increased baseline levels of cortisol were found in AB larvae but not TL larvae. At the behavioural level, increased thigmotaxis or 'wall hugging' was found in AB larvae, but decreased thigmotaxis in TL larvae; however, both AB larvae and TL larvae showed decreased habituation to repeated acoustic/vibrational stimuli. The data emphasize that strain is a critical factor in zebrafish research. The habituation data suggest a robust effect of cortisol exposure, which is likely an adaptive response to increase the likelihood of detecting or responding to potentially threatening stimuli. This may enhance early life survival. Along with other studies, our study underlines the notion that zebrafish may be a powerful model animal to study the effects of maternal and early life stress on life history.
Collapse
|
22
|
Datta SR, Anderson DJ, Branson K, Perona P, Leifer A. Computational Neuroethology: A Call to Action. Neuron 2019; 104:11-24. [PMID: 31600508 PMCID: PMC6981239 DOI: 10.1016/j.neuron.2019.09.038] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
The brain is worthy of study because it is in charge of behavior. A flurry of recent technical advances in measuring and quantifying naturalistic behaviors provide an important opportunity for advancing brain science. However, the problem of understanding unrestrained behavior in the context of neural recordings and manipulations remains unsolved, and developing approaches to addressing this challenge is critical. Here we discuss considerations in computational neuroethology-the science of quantifying naturalistic behaviors for understanding the brain-and propose strategies to evaluate progress. We point to open questions that require resolution and call upon the broader systems neuroscience community to further develop and leverage measures of naturalistic, unrestrained behavior, which will enable us to more effectively probe the richness and complexity of the brain.
Collapse
Affiliation(s)
| | - David J Anderson
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Pasadena, CA, 91125, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kristin Branson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Pietro Perona
- Division of Engineering & Applied Sciences 136-93, California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrew Leifer
- Department of Physics, Princeton University, Princeton, NJ 08544, USA; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
23
|
Social context influences sensorimotor gating in female African cichlid fish Astatotilapia burtoni. Behav Brain Res 2019; 370:111925. [PMID: 31102599 DOI: 10.1016/j.bbr.2019.111925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 11/23/2022]
Abstract
Disruption in prepulse inhibition (PPI), a sensorimotor gating phenomenon found in many species, has been associated with various psychiatric disorders in humans. Social defeat has been identified as a mediator of naturally evoked reductions of PPI in African cichlid fish Astatotilapia burtoni where males reversibly alter social status and their sensorimotor gating abilities. Here we investigated A. burtoni females, which establish a male-like social hierarchy with dominant (DOM) and subordinate (SUB) individuals when housed in communities without males. We asked if DOM and SUB females demonstrate socially induced PPI differences comparable to their male DOM and SUB counterparts. Results suggest that social defeat reduced PPI in SUB females as compared to DOM females (p = 0.033) and mixed-sex community female controls (p = 0.017). However, socially defeated females in same-sex communities remained proactive when engaging in antagonistic behaviors, which appears beneficial in avoiding substantial reductions in PPI as seen in reactive, socially defeated males. In open field swimming tests, SUB females exhibited increased anxiety-related behavior (thigmotaxis) as compared to females from mixed-sex communities (COM). Taken together, our results emphasize social defeat is a reliable modulator of PPI independent of sex, and anxiety related to social defeat might be a factor in mediating PPI plasticity.
Collapse
|
24
|
McIntyre C, Preuss T. Influence of Stimulus Intensity on Multimodal Integration in the Startle Escape System of Goldfish. Front Neural Circuits 2019; 13:7. [PMID: 30833888 PMCID: PMC6387905 DOI: 10.3389/fncir.2019.00007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/24/2019] [Indexed: 12/16/2022] Open
Abstract
Processing of multimodal information is essential for an organism to respond to environmental events. However, how multimodal integration in neurons translates into behavior is far from clear. Here, we investigate integration of biologically relevant visual and auditory information in the goldfish startle escape system in which paired Mauthner-cells (M-cells) initiate the behavior. Sound pips and visual looms as well as multimodal combinations of these stimuli were tested for their effectiveness of evoking the startle response. Results showed that adding a low intensity sound early during a visual loom (low visual effectiveness) produced a supralinear increase in startle responsiveness as compared to an increase expected from a linear summation of the two unimodal stimuli. In contrast, adding a sound pip late during the loom (high visual effectiveness) increased responsiveness consistent with a linear multimodal integration of the two stimuli. Together the results confirm the Inverse Effectiveness Principle (IEP) of multimodal integration proposed in other species. Given the well-established role of the M-cell as a multimodal integrator, these results suggest that IEP is computed in individual neurons that initiate vital behavioral decisions.
Collapse
Affiliation(s)
| | - Thomas Preuss
- Department of Psychology, Hunter College, City University of New York, New York, NY, United States
| |
Collapse
|
25
|
do Carmo Silva RX, Lima-Maximino MG, Maximino C. The aversive brain system of teleosts: Implications for neuroscience and biological psychiatry. Neurosci Biobehav Rev 2018; 95:123-135. [DOI: 10.1016/j.neubiorev.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022]
|
26
|
López-Schier H. Neuroplasticity in the acoustic startle reflex in larval zebrafish. Curr Opin Neurobiol 2018; 54:134-139. [PMID: 30359930 DOI: 10.1016/j.conb.2018.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022]
Abstract
Learning is essential for animal survival under changing environments. Even in its simplest form, learning involves interactions between a handful of neuronal circuits, hundreds of neurons and many thousand synapses. In this review I will focus on habituation - a form of non-associative learning during which organisms decrease their response to repetitions of identical sensory stimuli. I will discuss how recent studies of the acoustic startle reflex mediated by the Mauthner cell in the zebrafish larva are helping to understand the neuroplastic processes that underlie habituation. In addition to being a fascinating biological process, habituation is clinically relevant because it is affected in various neuropsychiatric disorders in humans, including autism, schizophrenia, Fragile-X and Tourette's syndromes.
Collapse
Affiliation(s)
- Hernán López-Schier
- Research Unit Sensory Biology & Organogenesis, Helmholtz Zentrum Munich, Neuherberg 85764, Germany.
| |
Collapse
|
27
|
Carreira-Rosario A, Zarin AA, Clark MQ, Manning L, Fetter RD, Cardona A, Doe CQ. MDN brain descending neurons coordinately activate backward and inhibit forward locomotion. eLife 2018; 7:38554. [PMID: 30070205 PMCID: PMC6097840 DOI: 10.7554/elife.38554] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/28/2018] [Indexed: 01/04/2023] Open
Abstract
Command-like descending neurons can induce many behaviors, such as backward locomotion, escape, feeding, courtship, egg-laying, or grooming (we define ‘command-like neuron’ as a neuron whose activation elicits or ‘commands’ a specific behavior). In most animals, it remains unknown how neural circuits switch between antagonistic behaviors: via top-down activation/inhibition of antagonistic circuits or via reciprocal inhibition between antagonistic circuits. Here, we use genetic screens, intersectional genetics, circuit reconstruction by electron microscopy, and functional optogenetics to identify a bilateral pair of Drosophila larval ‘mooncrawler descending neurons’ (MDNs) with command-like ability to coordinately induce backward locomotion and block forward locomotion; the former by stimulating a backward-active premotor neuron, and the latter by disynaptic inhibition of a forward-specific premotor neuron. In contrast, direct monosynaptic reciprocal inhibition between forward and backward circuits was not observed. Thus, MDNs coordinate a transition between antagonistic larval locomotor behaviors. Interestingly, larval MDNs persist into adulthood, where they can trigger backward walking. Thus, MDNs induce backward locomotion in both limbless and limbed animals. When we choose to make one kind of movement, it often prevents us making another. We cannot move forward and backward at the same time, for example, and a horse cannot simultaneously gallop and walk. These ‘antagonistic’ behaviors often use the same group of muscles, but the muscles contract in a different order. This requires exquisite control over muscle contractions. Neurons located in the central nervous system form circuits to produce distinct patterns of muscle contractions and to switch between these patterns. Smooth, rapid switching between behaviors is important for animal escape and survival, as well as for performing fine movements. However, we know little about how the activity of the neuronal circuits enables this. Carreira-Rosario, Zarin, Clark et al. set out to identify the underlying neuronal circuitry that allows larval fruit flies to transition between crawling forward and backward. Results from a combination of genetics and microscopy techniques revealed that a neuron called the Mooncrawler Descending Neuron (MDN) induces a switch from forward to backward travel. MDN activates a neuron that stops the larvae crawling forward, and at the same time activates a different neuron that is only active when the larvae crawl backward. Carreira-Rosario et al. also found that MDN triggers backward crawling in the six-limbed adult fly. Understanding how a single neuron – in this case MDN – can trigger a smooth switch between opposing behaviors could be beneficial for the medical and robotics fields. In the medical field, understanding how movement is generated could help to improve therapies that fix damage to the relevant neuronal circuits. Understanding how behavioral transitions occur may also help to design autonomous robots that can navigate complex terrain.
Collapse
Affiliation(s)
- Arnaldo Carreira-Rosario
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Aref Arzan Zarin
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Matthew Q Clark
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Laurina Manning
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Richard D Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| |
Collapse
|
28
|
Park C, Clements KN, Issa FA, Ahn S. Effects of Social Experience on the Habituation Rate of Zebrafish Startle Escape Response: Empirical and Computational Analyses. Front Neural Circuits 2018; 12:7. [PMID: 29459823 PMCID: PMC5807392 DOI: 10.3389/fncir.2018.00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022] Open
Abstract
While the effects of social experience on nervous system function have been extensively investigated in both vertebrate and invertebrate systems, our understanding of how social status differentially affects learning remains limited. In the context of habituation, a well-characterized form of non-associative learning, we investigated how the learning processes differ between socially dominant and subordinate in zebrafish (Danio rerio). We found that social status and frequency of stimulus inputs influence the habituation rate of short latency C-start escape response that is initiated by the Mauthner neuron (M-cell). Socially dominant animals exhibited higher habituation rates compared to socially subordinate animals at a moderate stimulus frequency, but low stimulus frequency eliminated this difference of habituation rates between the two social phenotypes. Moreover, habituation rates of both dominants and subordinates were higher at a moderate stimulus frequency compared to those at a low stimulus frequency. We investigated a potential mechanism underlying these status-dependent differences by constructing a simplified neurocomputational model of the M-cell escape circuit. The computational study showed that the change in total net excitability of the model M-cell was able to replicate the experimental results. At moderate stimulus frequency, the model M-cell with lower total net excitability, that mimicked a dominant-like phenotype, exhibited higher habituation rates. On the other hand, the model with higher total net excitability, that mimicked the subordinate-like phenotype, exhibited lower habituation rates. The relationship between habituation rates and characteristics (frequency and amplitude) of the repeated stimulus were also investigated. We found that habituation rates are decreasing functions of amplitude and increasing functions of frequency while these rates depend on social status (higher for dominants and lower for subordinates). Our results show that social status affects habituative learning in zebrafish, which could be mediated by a summative neuromodulatory input to the M-cell escape circuit, which enables animals to readily learn to adapt to changes in their social environment.
Collapse
Affiliation(s)
- Choongseok Park
- Department of Mathematics, North Carolina A&T State University, Greensboro, NC, United States
| | - Katie N Clements
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Fadi A Issa
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Sungwoo Ahn
- Department of Mathematics, East Carolina University, Greenville, NC, United States
| |
Collapse
|
29
|
Medan V, Mäki-Marttunen T, Sztarker J, Preuss T. Differential processing in modality-specific Mauthner cell dendrites. J Physiol 2017; 596:667-689. [PMID: 29148564 DOI: 10.1113/jp274861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/11/2017] [Indexed: 12/23/2022] Open
Abstract
KEY POINTS The present study examines dendritic integrative processes that occur in many central neurons but have been challenging to study in vivo in the vertebrate brain. The Mauthner cell of goldfish receives auditory and visual information via two separate dendrites, providing a privileged scenario for in vivo examination of dendritic integration. The results show differential attenuation properties in the Mauthner cell dendrites arising at least partly from differences in cable properties and the nonlinear behaviour of the respective dendritic membranes. In addition to distinct modality-dependent membrane specialization in neighbouring dendrites of the Mauthner cell, we report cross-modal dendritic interactions via backpropagating postsynaptic potentials. Broadly, the results of the present study provide an exceptional example for the processing power of single neurons. ABSTRACT Animals process multimodal information for adaptive behavioural decisions. In fish, evasion of a diving bird that breaks the water surface depends on integrating visual and auditory stimuli with very different characteristics. How do neurons process such differential sensory inputs at the dendritic level? For that, we studied the Mauthner cells (M-cells) in the goldfish startle circuit, which receive visual and auditory inputs via two separate dendrites, both accessible for in vivo recordings. We investigated whether electrophysiological membrane properties and dendrite morphology, studied in vivo, play a role in selective sensory processing in the M-cell. The results obtained show that anatomical and electrophysiological differences between the dendrites combine to produce stronger attenuation of visually evoked postsynaptic potentials (PSPs) than to auditory evoked PSPs. Interestingly, our recordings showed also cross-modal dendritic interaction because auditory evoked PSPs invade the ventral dendrite (VD), as well as the opposite where visual PSPs invade the lateral dendrite (LD). However, these interactions were asymmetrical, with auditory PSPs being more prominent in the VD than visual PSPs in the LD. Modelling experiments imply that this asymmetry is caused by active conductances expressed in the proximal segments of the VD. The results obtained in the present study suggest modality-dependent membrane specialization in M-cell dendrites suited for processing stimuli of different time domains and, more broadly, provide a compelling example of information processing in single neurons.
Collapse
Affiliation(s)
- Violeta Medan
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA.,Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Tuomo Mäki-Marttunen
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland.,Institute of Clinical Medicine, University of Oslo, OUS, Nydalen, Oslo, Norway.,Simula Research Laboratory, Lysaker, Norway
| | - Julieta Sztarker
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Thomas Preuss
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA
| |
Collapse
|
30
|
Bronson DR, Preuss T. Cellular Mechanisms of Cortisol-Induced Changes in Mauthner-Cell Excitability in the Startle Circuit of Goldfish. Front Neural Circuits 2017; 11:68. [PMID: 29033795 PMCID: PMC5625080 DOI: 10.3389/fncir.2017.00068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/11/2017] [Indexed: 11/13/2022] Open
Abstract
Predator pressure and olfactory cues (alarm substance) have been shown to modulate Mauthner cell (M-cell) initiated startle escape responses (C-starts) in teleost fish. The regulation of such adaptive responses to potential threats is thought to involve the release of steroid hormones such as cortisol. However, the mechanism by which cortisol may regulate M-cell excitability is not known. Here, we used intrasomatic, in vivo recordings to elucidate the acute effects of cortisol on M-cell membrane properties and sound evoked post-synaptic potentials (PSPs). Cortisol tonically decreased threshold current in the M-cell within 10 min before trending towards baseline excitability over an hour later, which may indicate the involvement of non-genomic mechanisms. Consistently, current ramp injection experiments showed that cortisol increased M-cell input resistance in the depolarizing membrane, i.e., by a voltage-dependent postsynaptic mechanism. Cortisol also increases the magnitude of sound-evoked M-cell PSPs by reducing the efficacy of local feedforward inhibition (FFI). Interestingly, another pre-synaptic inhibitory network mediating prepulse inhibition (PPI) remained unaffected. Together, our results suggest that cortisol rapidly increases M-cell excitability via a post-synaptic effector mechanism, likely a chloride conductance, which, in combination with its dampening effect on FFI, will modulate information processing to reach threshold. Given the central role of the M-cell in initiating startle, these results are consistent with a role of cortisol in mediating the expression of a vital behavior.
Collapse
Affiliation(s)
- Daniel R Bronson
- The Graduate Center, City University of New York, New York, NY, United States
| | - Thomas Preuss
- Hunter College, City University of New York, New York, NY, United States
| |
Collapse
|
31
|
Socially induced plasticity in sensorimotor gating in the African cichlid fish Astatotilapia burtoni. Behav Brain Res 2017; 332:32-39. [DOI: 10.1016/j.bbr.2017.05.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 01/01/2023]
|
32
|
Further characterisation of differences between TL and AB zebrafish (Danio rerio): Gene expression, physiology and behaviour at day 5 of the larval stage. PLoS One 2017; 12:e0175420. [PMID: 28419104 PMCID: PMC5395159 DOI: 10.1371/journal.pone.0175420] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/24/2017] [Indexed: 11/19/2022] Open
Abstract
Zebrafish (Danio rerio) have become popular as model organism in research. Many strains are readily available, which not only differ morphologically, but also genetically, physiologically and behaviourally. Here, we focus on the AB and Tupfel long-fin (TL) strain for which we have previously shown that adults differ in baseline hypothalamus-pituitary-interrenal (HPI)-axis activity (AB higher than TL) affecting inhibitory avoidance behaviour (absent in AB). To assess whether strain differences are already present in early life stages, we compared baseline HPI-axis related gene expression as well as cortisol levels, (neuro)development related as well as (innate) immune system related gene expression, and light-dark as well as startle behaviour in larvae 5 days post fertilisation. The data show that AB and TL larvae differ in baseline HPI-axis activity (AB higher than TL), expression of (neuro)development and immune system related genes (AB higher than TL), habituation to acoustic/vibrational stimuli (AB habituate faster than TL) and light-dark induced changes in motor behaviour (AB stronger than TL). Our data show that already in larval stages differences exist between zebrafish of the AB and TL strain confirming and extending data of earlier studies. To what extent the mutation in connexin 41.8, leading to spots rather than stripes in TL, but also (possibly) affecting eye, heart and brain function, is involved in the expression of (some of) these differences needs to be studied. These results emphasise that differences between strains need to be taken into account to enhance reproducibility both within, and between, laboratories.
Collapse
|
33
|
Social Status-Dependent Shift in Neural Circuit Activation Affects Decision Making. J Neurosci 2017; 37:2137-2148. [PMID: 28093472 DOI: 10.1523/jneurosci.1548-16.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 11/21/2022] Open
Abstract
In a social group, animals make behavioral decisions that fit their social ranks. These behavioral choices are dependent on the various social cues experienced during social interactions. In vertebrates, little is known of how social status affects the underlying neural mechanisms regulating decision-making circuits that drive competing behaviors. Here, we demonstrate that social status in zebrafish (Danio rerio) influences behavioral decisions by shifting the balance in neural circuit activation between two competing networks (escape and swim). We show that socially dominant animals enhance activation of the swim circuit. Conversely, social subordinates display a decreased activation of the swim circuit, but an enhanced activation of the escape circuit. In an effort to understand how social status mediates these effects, we constructed a neurocomputational model of the escape and swim circuits. The model replicates our findings and suggests that social status-related shift in circuit dynamics could be mediated by changes in the relative excitability of the escape and swim networks. Together, our results reveal that changes in the excitabilities of the Mauthner command neuron for escape and the inhibitory interneurons that regulate swimming provide a cellular mechanism for the nervous system to adapt to changes in social conditions by permitting the animal to select a socially appropriate behavioral response.SIGNIFICANCE STATEMENT Understanding how social factors influence nervous system function is of great importance. Using zebrafish as a model system, we demonstrate how social experience affects decision making to enable animals to produce socially appropriate behavior. Based on experimental evidence and computational modeling, we show that behavioral decisions reflect the interplay between competing neural circuits whose activation thresholds shift in accordance with social status. We demonstrate this through analysis of the behavior and neural circuit responses that drive escape and swim behaviors in fish. We show that socially subordinate animals favor escape over swimming, while socially dominants favor swimming over escape. We propose that these differences are mediated by shifts in relative circuit excitability.
Collapse
|
34
|
Chicoli A, Paley DA. Probabilistic information transmission in a network of coupled oscillators reveals speed-accuracy trade-off in responding to threats. CHAOS (WOODBURY, N.Y.) 2016; 26:116311. [PMID: 27907996 PMCID: PMC5135719 DOI: 10.1063/1.4966682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
Individuals in a group may obtain information from other group members about the environment, including the location of a food source or the presence of a predator. Here, we model how information spreads in a group using a susceptible-infected-removed epidemic model. We apply this model to a simulated shoal of fish using the motion dynamics of a coupled oscillator model, in order to test the biological hypothesis that polarized or aligned shoaling leads to faster and more accurate escape responses. The contributions of this study are the (i) application of a probabilistic model of epidemics to the study of collective animal behavior; (ii) testing the biological hypothesis that group cohesion improves predator escape; (iii) quantification of the effect of social cues on startle propagation; and (iv) investigation of the variation in response based on network connectivity. We find that when perfectly aligned individuals in a group are startled, there is a rapid escape by individuals that directly detect the threat, as well as by individuals responding to their neighbors. However, individuals that are not startled do not head away from the threat. In startled groups that are randomly oriented, there is a rapid, accurate response by individuals that directly detect the threat, followed by less accurate responses by individuals responding to neighbor cues. Over the simulation duration, however, even unstartled individuals head away from the threat. This study illustrates a potential speed-accuracy trade-off in the startle response of animal groups, in agreement with several previous experimental studies. Additionally, the model can be applied to a variety of group decision-making processes, including those involving higher-dimensional motion.
Collapse
Affiliation(s)
- Amanda Chicoli
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Derek A Paley
- Department of Aerospace Engineering and Institute for Systems Research, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
35
|
Roberts AC, Pearce KC, Choe RC, Alzagatiti JB, Yeung AK, Bill BR, Glanzman DL. Long-term habituation of the C-start escape response in zebrafish larvae. Neurobiol Learn Mem 2016; 134 Pt B:360-8. [PMID: 27555232 DOI: 10.1016/j.nlm.2016.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/10/2016] [Accepted: 08/18/2016] [Indexed: 01/01/2023]
Abstract
The cellular and molecular basis of long-term memory in vertebrates remains poorly understood. Knowledge regarding long-term memory has been impeded by the enormous complexity of the vertebrate brain, particularly the mammalian brain, as well as by the relative complexity of the behavioral alterations examined in most studies of long-term memory in vertebrates. Here, we demonstrate a long-term form of nonassociative learning-specifically, long-term habituation (LTH)-of a simple reflexive escape response, the C-start, in zebrafish larvae. The C-start is triggered by the activation of one of a pair of giant neurons in the zebrafish's hindbrain, the Mauthner cells. We show that LTH of the C-start requires the activity of NMDA receptors and involves macromolecular synthesis. We further show that the long-term habituated reflex can by rapidly dishabituated by a brief tactile stimulus. Our results set the stage for rigorous, mechanistic investigations of the long-term memory for habituation of a reflexive behavioral response, one that is mediated by a relatively simple, neurobiologically tractable, neural circuit. Moreover, the demonstration of NMDAR and transcriptionally dependent LTH in a translucent vertebrate organism should facilitate the use of optical recording, and optogenetic manipulation, of neuronal activity to elucidate the cellular basis of a long-term vertebrate memory.
Collapse
Affiliation(s)
- Adam C Roberts
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States
| | - Kaycey C Pearce
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States
| | - Ronny C Choe
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States
| | - Joseph B Alzagatiti
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States
| | - Anthony K Yeung
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States
| | - Brent R Bill
- Center for Autism Research and Program in Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, United States; Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Department of Biology, University of Texas at Tyler, Tyler, TX, United States
| | - David L Glanzman
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Integrative Center for Learning and Memory, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
36
|
Leibold C, Monsalve-Mercado MM. Asymmetry of Neuronal Combinatorial Codes Arises from Minimizing Synaptic Weight Change. Neural Comput 2016; 28:1527-52. [PMID: 27348595 DOI: 10.1162/neco_a_00854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Synaptic change is a costly resource, particularly for brain structures that have a high demand of synaptic plasticity. For example, building memories of object positions requires efficient use of plasticity resources since objects can easily change their location in space and yet we can memorize object locations. But how should a neural circuit ideally be set up to integrate two input streams (object location and identity) in case the overall synaptic changes should be minimized during ongoing learning? This letter provides a theoretical framework on how the two input pathways should ideally be specified. Generally the model predicts that the information-rich pathway should be plastic and encoded sparsely, whereas the pathway conveying less information should be encoded densely and undergo learning only if a neuronal representation of a novel object has to be established. As an example, we consider hippocampal area CA1, which combines place and object information. The model thereby provides a normative account of hippocampal rate remapping, that is, modulations of place field activity by changes of local cues. It may as well be applicable to other brain areas (such as neocortical layer V) that learn combinatorial codes from multiple input streams.
Collapse
Affiliation(s)
- Christian Leibold
- Department Biology II, Ludwig-Maximilians-Universität München, and Bernstein Center for Computational Neuroscience Munich, 82152 Martisreid, Germany
| | | |
Collapse
|
37
|
Umeda K, Ishizuka T, Yawo H, Shoji W. Position- and quantity-dependent responses in zebrafish turning behavior. Sci Rep 2016; 6:27888. [PMID: 27292818 PMCID: PMC4904276 DOI: 10.1038/srep27888] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/27/2016] [Indexed: 11/30/2022] Open
Abstract
Neural reflexes are stereotypical automatic responses often modulated by both intrinsic and environmental factors. We report herein that zebrafish larval C-shaped turning is modulated by the stimulated position of Rohon-Beard (RB) neurons. Targeted stimulation of more anterior RB neurons produces larger trunk flexion, which anticipates adult escape behavior by coordinated turning toward the appropriate direction. We also demonstrated that turning laterality varies with the numbers of stimulated neurons. Multi-cell stimulation of RB neurons elicits contralateral turning, as seen in the touch response to physical contact, while minimum input from single-cell stimulation induces ipsilateral turning, a phenomenon not previously reported. This ipsilateral response, but not the contralateral one, is impaired by transecting the ascending neural tract known as the dorsolateral fascicule (DLF), indicating that two, distinct neural circuits trigger these two responses. Our results suggest that RB neurons transmit the position and quantity of sensory information, which are then processed separately to modulate behavioral strength and to select turning laterality.
Collapse
Affiliation(s)
- Keiko Umeda
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 9808578, Japan
| | - Toru Ishizuka
- Department of Developmental Biology &Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, 9808577, Japan
| | - Hiromu Yawo
- Department of Developmental Biology &Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, 9808577, Japan
| | - Wataru Shoji
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 9808578, Japan.,Department of Project Programs, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 9808575, Japan
| |
Collapse
|
38
|
Bhandiwad AA, Sisneros JA. Revisiting Psychoacoustic Methods for the Assessment of Fish Hearing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 877:157-84. [PMID: 26515314 DOI: 10.1007/978-3-319-21059-9_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Behavioral methods have been critical in the study of auditory perception and discrimination in fishes. In this chapter, we review some of the common methods used in fish psychoacoustics. We discuss associative methods, such as operant, avoidance, and classical conditioning, and their use in constructing audiograms, measuring frequency selectivity, and auditory stream segregation. We also discuss the measurement of innate behavioral responses, such as the acoustic startle response (ASR), prepulse inhibition (PPI), and phonotaxis, and their use in the assessment of fish hearing to determine auditory thresholds and in the testing of mechanisms for sound source localization. For each psychoacoustic method, we provide examples of their use and discuss the parameters and situations where such methods can be best utilized. In the case of the ASR, we show how this method can be used to construct and compare audiograms between two species of larval fishes, the three-spined stickleback (Gasterosteus aculeatus) and the zebrafish (Danio rerio). We also discuss considerations for experimental design with respect to stimulus presentation and threshold criteria and how these techniques can be used in future studies to investigate auditory perception in fishes.
Collapse
Affiliation(s)
- Ashwin A Bhandiwad
- Department of Psychology, University of Washington, Seattle, WA, 98103, USA.
| | - Joseph A Sisneros
- Department of Psychology, University of Washington, Seattle, WA, 98103, USA.,Department of Biology, University of Washington, Seattle, WA, 98103, USA
| |
Collapse
|
39
|
Gao Y, Zhang G, Jelfs B, Carmer R, Venkatraman P, Ghadami M, Brown SA, Pang CP, Leung YF, Chan RHM, Zhang M. Computational classification of different wild-type zebrafish strains based on their variation in light-induced locomotor response. Comput Biol Med 2015; 69:1-9. [PMID: 26688204 DOI: 10.1016/j.compbiomed.2015.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 11/24/2022]
Abstract
Zebrafish larvae display a rapid and characteristic swimming behaviour after abrupt light onset or offset. This light-induced locomotor response (LLR) has been widely used for behavioural research and drug screening. However, the locomotor responses have long been shown to be different between different wild-type (WT) strains. Thus, it is critical to define the differences in the WT LLR to facilitate accurate interpretation of behavioural data. In this investigation, we used support vector machine (SVM) models to classify LLR data collected from three WT strains: AB, TL and TLAB (a hybrid of AB and TL), during early embryogenesis, from 3 to 9 days post-fertilisation (dpf). We analysed both the complete dataset and a subset of the data during the first 30after light change. This initial period of activity is substantially driven by vision, and is also known as the visual motor response (VMR). The analyses have resulted in three major conclusions: First, the LLR is different between the three WT strains, and at different developmental stages. Second, the distinguishable information in the VMR is comparable to, if not better than, the full dataset for classification purposes. Third, the distinguishable information of WT strains in the light-onset response differs from that in the light-offset response. While the classification accuracies were higher for the light-offset than light-onset response when using the complete LLR dataset, a reverse trend was observed when using a shorter VMR dataset. Together, our results indicate that one should use caution when extrapolating interpretations of LLR/VMR obtained from one WT strain to another.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Gaonan Zhang
- Department of Biological Sciences, Purdue University, 915W. State Street, West Lafayette, IN 47907, USA
| | - Beth Jelfs
- Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Robert Carmer
- Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Department of Statistics, Purdue University, 250N. University Street, West Lafayette, IN 47907, USA
| | - Prahatha Venkatraman
- Department of Biological Sciences, Purdue University, 915W. State Street, West Lafayette, IN 47907, USA
| | - Mohammad Ghadami
- Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Skye A Brown
- Department of Biological Sciences, Purdue University, 915W. State Street, West Lafayette, IN 47907, USA
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong
| | - Yuk Fai Leung
- Department of Biological Sciences, Purdue University, 915W. State Street, West Lafayette, IN 47907, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-Lafayette, 625 Harrison Street, West Lafayette, IN 47907, USA.
| | - Rosa H M Chan
- Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| | - Mingzhi Zhang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China.
| |
Collapse
|