1
|
Pandit S, Goel R, Mishra G. Phosphatidic acid binds to and stimulates the activity of ARGAH2 from Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:344-355. [PMID: 35752016 DOI: 10.1016/j.plaphy.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Phosphatidic acid (PA) has emerged as an important lipid signal during abiotic and biotic stress conditions such as drought, salinity, freezing, nutrient starvation, wounding and microbial elicitation. PA acts during stress responses primarily via binding and translocating target proteins or through modulating their activity. Owing to the importance of PA during stress signaling and developmental stages, it is imperative to identify PA interacting proteins and decipher their specific roles. In the present study, we have identified PA binding proteins from the leaves of Arabidopsis thaliana. Mass spectroscopy analysis led to the identification of 21 PA binding proteins with known roles in various cellular processes. One of the PA-binding proteins identified during this study, AtARGAH2, was further studied to unravel the role of PA interaction. Recombinant AtARGAH2 binding with immobilized PA on a solid support validated PA-AtARGAH2 binding invitro. PA binding to AtARGAH2 leads to the enhancement of arginase enzymatic activity in a dose dependent manner. Enzyme kinetics of recombinant AtARGAH2 demonstrated a lower Km value in presence of PA, suggesting role of PA in efficient enzyme-substrate binding. This simple approach could systematically be applied to perform an inclusive study on lipid binding proteins to elucidate their role in physiology of plants.
Collapse
Affiliation(s)
- Shatakshi Pandit
- Department of Botany, University of Delhi, Delhi, 110007, India.
| | - Renu Goel
- Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India.
| | - Girish Mishra
- Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
2
|
Hidayah N, McNeil M, Li J, Bhuiyan S, Galea V, Aitken K. Resistance mechanisms and expression of disease resistance-related genes in sugarcane (Sacchrum officinarum) to Sporisorium scitamineum infection. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:1302-1314. [PMID: 34724620 DOI: 10.1071/fp21122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Resistance of sugarcane (Saccharum officinarum L.) to smut disease (caused by Sporisorium scitamineum) is driven by two separate mechanisms, external and internal resistance. Two progenies generated from an introgression cross, with contrasting responses to smut infection were used to investigate this interaction. Histopathological screening at different stages of the plant growth was used to determine the extent of mycelium growth within sugarcane tissues. Ten disease resistance-related genes were selected, and the relative expression determined using quantitative real-time reverse transcription PCR (real-time RT-qPCR). The results revealed that PR10, HCT1 and ScChi were down-regulated in the susceptible progeny and up-regulated in the resistant progeny early infection process. This may reflect an early attempt to halt pathogen development by increasing the lignin deposition at the infection site. At 8 weeks post-inoculation, they were highly up-regulated in the susceptible progeny coincided with whip development. This reveals a major role for these genes to whip development in the susceptible progeny and indicates that while PR10 is involved in the resistance mechanism of resistant progeny early infection process it also has a role in susceptibility. These results on genetically related progeny with different responses to smut infection reveal a complex interaction of genes and gene networks being induced in response to fungal invasion.
Collapse
Affiliation(s)
- Nurul Hidayah
- Indonesian Agency for Agricultural Research and Development, Jl Ragunan 29, Pasar Minggu, Jakarta Selatan 12540, Indonesia; and School of Agriculture and Food Sciences, The University of Queensland, Gatton Campus, Qld 4343, Australia
| | - Meredith McNeil
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Qld 4067, Australia
| | - Jingchuan Li
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Qld 4067, Australia
| | - Shamsul Bhuiyan
- Sugar Research Australia Woodford Station, 90 Old Cove Rd, Woodford, Qld 4514, Australia
| | - Victor Galea
- School of Agriculture and Food Sciences, The University of Queensland, Gatton Campus, Qld 4343, Australia
| | - Karen Aitken
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Qld 4067, Australia
| |
Collapse
|
3
|
Physiological Basis of Smut Infectivity in the Early Stages of Sugar Cane Colonization. J Fungi (Basel) 2021; 7:jof7010044. [PMID: 33445484 PMCID: PMC7827540 DOI: 10.3390/jof7010044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 12/11/2022] Open
Abstract
Sugar cane smut (Sporisorium scitamineum) interactions have been traditionally considered from the plant’s point of view: How can resistant sugar cane plants defend themselves against smut disease? Resistant plants induce several defensive mechanisms that oppose fungal attacks. Herein, an overall view of Sporisorium scitamineum’s mechanisms of infection and the defense mechanisms of plants are presented. Quorum sensing effects and a continuous reorganization of cytoskeletal components, where actin, myosin, and microtubules are required to work together, seem to be some of the keys to a successful attack.
Collapse
|
4
|
Siddappa S, Marathe GK. What we know about plant arginases? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:600-610. [PMID: 33069114 DOI: 10.1016/j.plaphy.2020.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/01/2020] [Indexed: 05/14/2023]
Abstract
Nitrogen is one of the essential element required for plant growth and development. In plants, most of the nitrogen is stored in arginine. Hence, metabolism of arginine to urea by arginase and its further hydrolysis to ammonia by urease is involved in nitrogen recycling to meet the metabolic demands of growing plants. In this respect, plant arginases differ from that of animals. Animals excrete urea while plants recycle the urea. However, the studies on the biochemical and biophysical characteristics of plant arginase are limited when compared to animal arginase(s). In this review, the structural and biochemical characteristics of various plant arginases are discussed. Moreover, the significance of arginase in nitrogen recycling is explained and recent literature on function and activation of plant arginases in response to various environmental (biotic and abiotic) insults is also presented.
Collapse
Affiliation(s)
- Shiva Siddappa
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, 570006, Karnataka, India
| | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, 570006, Karnataka, India; Department of Studies in Molecular Biology, University of Mysore, Manasagangothri, Mysuru, 570006, Karnataka, India.
| |
Collapse
|
5
|
Sánchez-Elordi E, Sterling RM, Santiago R, de Armas R, Vicente C, Legaz ME. Increase in cytotoxic lignans production after smut infection in sugar cane plants. JOURNAL OF PLANT PHYSIOLOGY 2020; 244:153087. [PMID: 31816510 DOI: 10.1016/j.jplph.2019.153087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Smut infection alters the transcription of dirigent proteins (DIR) by sugarcane plants. Here, we show that these alterations are associated to an elevated production of cytotoxic lignans. Smut-resistant sugarcane varieties display a fivefold increase in pinoresinol and also produce elevated amounts of secoisolariciresinol. Conversely, smut-sensitive varieties do not produce pinoresinol or secoisolariciresinol upon infection, synthesizing instead small amounts of matairesinol. Our data indicate that commercial pinoresinol and secoisolariciresinol seem to prevent smut teliospore germination and sporidia release from sprouted teliospores. Consistently, we observed abundant morphological alterations of sporidia incubated in the presence of these lignans. However, commercial lignans do not block the development of the pathogen in a definitive way. Additional experiments demonstrate that only the extracts from healthy or smut-exposed resistant plants inhibit sporidia growth in vitro, indicating that a specific mixture of lignans from resistant plants is necessary to constitute an effective defense mechanism.
Collapse
Affiliation(s)
- Elena Sánchez-Elordi
- Intercellular Communication in Plant Symbiosis Team, Faculty of Biology, Complutense University, 12, José Antonio Novais Av., 28040 Madrid, Spain
| | - Roberto M Sterling
- Intercellular Communication in Plant Symbiosis Team, Faculty of Biology, Complutense University, 12, José Antonio Novais Av., 28040 Madrid, Spain
| | - Rocío Santiago
- Intercellular Communication in Plant Symbiosis Team, Faculty of Biology, Complutense University, 12, José Antonio Novais Av., 28040 Madrid, Spain
| | - Roberto de Armas
- Department of Plant Biology, Havana University, Havana City, Cuba
| | - Carlos Vicente
- Intercellular Communication in Plant Symbiosis Team, Faculty of Biology, Complutense University, 12, José Antonio Novais Av., 28040 Madrid, Spain
| | - M Estrella Legaz
- Intercellular Communication in Plant Symbiosis Team, Faculty of Biology, Complutense University, 12, José Antonio Novais Av., 28040 Madrid, Spain.
| |
Collapse
|
6
|
Sugarcane glycoproteins control dynamics of cytoskeleton during teliospore germination of Sporisorium scitamineum. Mycol Prog 2019. [DOI: 10.1007/s11557-019-01510-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Sánchez-Elordi E, de Los Ríos LM, Vicente C, Legaz ME. Polyamines levels increase in smut teliospores after contact with sugarcane glycoproteins as a plant defensive mechanism. JOURNAL OF PLANT RESEARCH 2019; 132:405-417. [PMID: 30864048 DOI: 10.1007/s10265-019-01098-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Previous studies have already highlighted the correlation between Sporisorium scitamineum pathogenicity and sugarcane polyamine accumulation. It was shown that high infectivity correlates with an increase in the amount of spermidine, spermine and cadaverine conjugated to phenols in the sensitive cultivars whereas resistant plants mainly produce free putrescine. However, these previous studies did not clarify the role of these polyamides in the disorders caused to the plant. Therefore, the purpose of this research is to clarify the effect of polyamines on the development of smut disease. In this paper, commercial polyamines were firstly assayed on smut teliospores germination. Secondly, effects were correlated to changes in endogenous polyamines after contact with defense sugarcane glycoproteins. Low concentrations of spermidine significantly activated teliospore germination, while putrescine had no activating effect on germination. Interestingly, it was observed that the diamine caused nuclear decondensation and breakage of the teliospore cell wall whereas the treatment of teliospores with spermidine did not induce nuclear decondensation or cell wall breakdown. Moreover, the number of polymerized microtubules increased in the presence of 7.5 mM spermidine but it decreased with putrescine which indicates that polyamines effects on Sporisorium scitamineum teliospore germination could be mediated through microtubules interaction. An increased production of polyamines in smut teliospores has been related to sugarcane resistance to the disease. Teliospores incubation with high molecular mass glycoproteins (HMMG) from the uninoculated resistant variety of sugarcane, Mayari 55-14, caused an increase of the insoluble fraction of putrescine, spermidine and spermine inside the teliospore cells. Moreover, the level of the soluble fraction of spermidine (S fraction) increased inside teliospores and the excess was released to the medium. The HMMG glycoproteins purified from Mayarí 55-14 plants previously inoculated with the pathogen significantly increased the levels of both retained and secreted soluble putrescine and spermidine. Polyamines levels did not increase in teliospores after incubation with HMMG produced by non resistant variety Barbados 42231 which could be related to the incapacity of these plants to defend themselves against smut disease. Thus, a hypothesis about the role of polyamines in sugarcane-smut interaction is explained.
Collapse
Affiliation(s)
- Elena Sánchez-Elordi
- Team of Cell Interactions in Plant Symbioses, Faculty of Biology, Complutense University, 12, José Antonio Novais Av., 28040, Madrid, Spain
| | - Laura Morales de Los Ríos
- Team of Cell Interactions in Plant Symbioses, Faculty of Biology, Complutense University, 12, José Antonio Novais Av., 28040, Madrid, Spain
| | - Carlos Vicente
- Team of Cell Interactions in Plant Symbioses, Faculty of Biology, Complutense University, 12, José Antonio Novais Av., 28040, Madrid, Spain.
| | - María-Estrella Legaz
- Team of Cell Interactions in Plant Symbioses, Faculty of Biology, Complutense University, 12, José Antonio Novais Av., 28040, Madrid, Spain
| |
Collapse
|
8
|
Proteomic Analysis of the Resistance Mechanisms in Sugarcane during Sporisorium scitamineum Infection. Int J Mol Sci 2019; 20:ijms20030569. [PMID: 30699953 PMCID: PMC6387155 DOI: 10.3390/ijms20030569] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/26/2019] [Accepted: 01/27/2019] [Indexed: 01/10/2023] Open
Abstract
Smut disease is caused by Sporisorium scitamineum, an important sugarcane fungal pathogen causing an extensive loss in yield and sugar quality. The available literature suggests that there are two types of smut resistance mechanisms: external resistance by physical or chemical barriers and intrinsic internal resistance mechanisms operating at host–pathogen interaction at cellular and molecular levels. The nature of smut resistance mechanisms, however, remains largely unknown. The present study investigated the changes in proteome occurring in two sugarcane varieties with contrasting susceptibility to smut—F134 and NCo310—at whip development stage after S. scitamineum infection. Total proteins from pathogen inoculated and uninoculated (control) leaves were separated by two-dimensional gel electrophoresis (2D-PAGE). Protein identification was performed using BLASTp and tBLASTn against NCBI nonredundant protein databases and EST databases, respectively. A total of thirty proteins spots representing differentially expressed proteins (DEPs), 16 from F134 and 14 from NCo310, were identified and analyzed by MALDI-TOF/TOF MS. In F134, 4 DEPs were upregulated and nine were downregulated, while, nine were upregulated and three were downregulated in NCo310. The DEPs were associated with DNA binding, metabolic processes, defense, stress response, photorespiration, protein refolding, chloroplast, nucleus and plasma membrane. Finally, the expression of CAT, SOD, and PAL with recognized roles in S. scitamineum infection in both sugarcane verities were analyzed by real-time quantitative PCR (RT-qPCR) technique. Identification of genes critical for smut resistance in sugarcane will increase our knowledge of S. scitamineum-sugarcane interaction and help to develop molecular and conventional breeding strategies for variety improvement.
Collapse
|
9
|
Sánchez-Elordi E, Contreras R, de Armas R, Benito MC, Alarcón B, de Oliveira E, Del Mazo C, Díaz-Peña EM, Santiago R, Vicente C, Legaz ME. Differential expression of SofDIR16 and SofCAD genes in smut resistant and susceptible sugarcane cultivars in response to Sporisorium scitamineum. JOURNAL OF PLANT PHYSIOLOGY 2018; 226:103-113. [PMID: 29753910 DOI: 10.1016/j.jplph.2018.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 05/25/2023]
Abstract
Proteomic profiling of the stalk of a smut resistant and a susceptible sugarcane cultivars revealed the presence of dirigent and dirigent-like proteins in abundance in the pool of high molecular mass (HMMG) and mid-molecular mass (MMMG) glycoproteins, produced as part of the defensive response to the fungal smut pathogen. Quantitative RT-PCR analysis showed that expression levels of SofDIR16 (sugarcane dirigent16) and SofCAD (sugarcane cinnamyl alcohol dehydrogenase) were higher in the smut resistant My 55-14 cultivar than in the sensitive B 42231 cultivar prior to infection. Inoculation with fungal sporidia or water decreased the level of SofCAD transcripts in My 55-14, indicating that regulation of SofCAD expression does not take part of the specific response to smut infection. In contrast, SofDIR16 expression was almost nullified in My 55-14 after inoculation with fungal sporidia, but not after water injection. It is proposed that the decreased expression of dirigent proteins induces the formation of lignans, which are involved in the defense response of the smut resistant My 55-14 cultivar.
Collapse
Affiliation(s)
- Elena Sánchez-Elordi
- Intercellular Communication in Plant Symbiosis Team, Faculty of Biology, Complutense University, 28040 Madrid, Spain
| | - Roberto Contreras
- Department of Genetics, Faculty of Biology, Complutense University, 28040 Madrid, Spain
| | | | - Mario C Benito
- Department of Genetics, Faculty of Biology, Complutense University, 28040 Madrid, Spain
| | - Borja Alarcón
- Intercellular Communication in Plant Symbiosis Team, Faculty of Biology, Complutense University, 28040 Madrid, Spain
| | - Eliandre de Oliveira
- Plataforma de Proteómica, Parc Cientific de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Del Mazo
- Intercellular Communication in Plant Symbiosis Team, Faculty of Biology, Complutense University, 28040 Madrid, Spain
| | - Eva M Díaz-Peña
- Intercellular Communication in Plant Symbiosis Team, Faculty of Biology, Complutense University, 28040 Madrid, Spain
| | - Rocío Santiago
- Department of Biochemistry and Department of Geographical Sciences, Universidade Federal de Pernambuco, Recife, Brazil
| | - Carlos Vicente
- Intercellular Communication in Plant Symbiosis Team, Faculty of Biology, Complutense University, 28040 Madrid, Spain
| | - María E Legaz
- Intercellular Communication in Plant Symbiosis Team, Faculty of Biology, Complutense University, 28040 Madrid, Spain.
| |
Collapse
|
10
|
Siddappa S, Basrur V, Ravishankar Rai V, Marathe GK. Biochemical and functional characterization of an atypical plant l-arginase from Cilantro (Coriandrum sativam L.). Int J Biol Macromol 2018; 118:844-856. [PMID: 29944940 DOI: 10.1016/j.ijbiomac.2018.06.096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/20/2022]
Abstract
Arginase is one of the key enzymes responsible for maintaining the essential levels of nitrogen among plants, but biochemical and functional characterization of arginase among plants is limited. While screening for stable plant arginase, we found cilantro possessing an abundant and stable arginase. We purified arginase to apparent homogeneity (3300-fold purification) with a specific activity of 81,728 nmoles of urea formed/mg of protein/min and its eight-tryptic fragments had amino acid sequences identical to Arabidopsis thaliana arginase. Cilantro arginase exhibited absolute requirement for Mn2+ (0.5 mM-1 mM). Unlike other known plant arginases, cilantro arginase did not hydrolyse d-arginine and other arginine analogues. While for sulfhydryl reagents the enzyme was sensitive, l-NOHA, an arginase inhibitor showed only moderate inhibition - a property distinct from tomato arginase. We also found arginine derived amino acids and polyamines can regulate cilantro arginase in vitro. In addition, we also noticed an increase in cilantro arginase activity to both biotic and abiotic stress. We conclude that, cilantro may be used as a model plant to study plant arginases and to delineate arginase role, beyond its classical role in nitrogen recycling and polyamine biosynthesis.
Collapse
Affiliation(s)
- Shiva Siddappa
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru 570006, Karnataka, India
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
| | - Vittal Ravishankar Rai
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru 570006, Karnataka, India; Department of Studies in Molecular biology, University of Mysore, Manasagangothri, Mysuru, 570006, Karnataka, India.
| |
Collapse
|
11
|
Analysis of the resistance mechanisms in sugarcane during Sporisorium scitamineum infection using RNA-seq and microscopy. PLoS One 2018; 13:e0197840. [PMID: 29795614 PMCID: PMC5993111 DOI: 10.1371/journal.pone.0197840] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/09/2018] [Indexed: 02/03/2023] Open
Abstract
Smut caused by biotrophic fungus Sporisorium scitamineum is a major disease of cultivated sugarcane that can cause considerable yield losses. It has been suggested in literature that there are at least two types of resistance mechanisms in sugarcane plants: an external resistance, due to chemical or physical barriers in the sugarcane bud, and an internal resistance governed by the interaction of plant and fungus within the plant tissue. Detailed molecular studies interrogating these two different resistance mechanisms in sugarcane are scarce. Here, we use light microscopy and global expression profiling with RNA-seq to investigate these mechanisms in sugarcane cultivar CP74-2005, a cultivar that possibly possesses both internal and external defence mechanisms. A total of 861 differentially expressed genes (DEGs) were identified in a comparison between infected and non-infected buds at 48 hours post-inoculation (hpi), with 457 (53%) genes successfully annotated using BLAST2GO software. This includes genes involved in the phenylpropanoid pathway, cell wall biosynthesis, plant hormone signal transduction and disease resistance genes. Finally, the expression of 13 DEGs with putative roles in S. scitamineum resistance were confirmed by quantitative real-time reverse transcription PCR (qRT-PCR) analysis, and the results were consistent with the RNA-seq data. These results highlight that the early sugarcane response to S. scitamineum infection is complex and many of the disease response genes are attenuated in sugarcane cultivar CP74-2005, while others, like genes involved in the phenylpropanoid pathway, are induced. This may point to the role of the different disease resistance mechanisms that operate in cultivars such as CP74-2005, whereby the early response is dominated by external mechanisms and then as the infection progresses, the internal mechanisms are switched on. Identification of genes underlying resistance in sugarcane will increase our knowledge of the sugarcane-S. scitamineum interaction and facilitate the introgression of new resistance genes into commercial sugarcane cultivars.
Collapse
|
12
|
Marques JPR, Hoy JW, Appezzato-da-Glória B, Viveros AFG, Vieira MLC, Baisakh N. Sugarcane Cell Wall-Associated Defense Responses to Infection by Sporisorium scitamineum. FRONTIERS IN PLANT SCIENCE 2018; 9:698. [PMID: 29875793 PMCID: PMC5974332 DOI: 10.3389/fpls.2018.00698] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/07/2018] [Indexed: 05/08/2023]
Abstract
The plant cell wall is known to be the first barrier against plant pathogens. Detailed information about sugarcane cell wall-associated defense responses to infection by the causal agent of smut, Sporisorium scitamineum, is scarce. Herein, (immuno)histochemical analysis of two smut resistant and two susceptible sugarcane cultivars was conducted to understand host cell wall structural and compositional modifications in response to fungal infection. Results showed that the fungus grew on the surface and infected the outermost bud scale of both susceptible and resistant cultivars. The present findings also supported the existence of early (24 h after inoculation) and later (72-96 h after inoculation) inducible histopathological responses related to the cell wall modification in resistant cultivars. Lignin and phenolic compounds accumulated during early stages of infection. Later infection response was characterized by the formation of a protective barrier layer with lignin, cellulose and arabinoxylan in the cell walls. Overall, the results suggest possible induction of cell wall-modified responses in smut resistant cultivars to prevent initial entry of the fungus into the meristematic tissues.
Collapse
Affiliation(s)
- João P. R. Marques
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Jeffrey W. Hoy
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Beatriz Appezzato-da-Glória
- Biological Science Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Andrés F. G. Viveros
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Maria L. C. Vieira
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Niranjan Baisakh
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| |
Collapse
|
13
|
Souza TP, Dias RO, Silva-Filho MC. Defense-related proteins involved in sugarcane responses to biotic stress. Genet Mol Biol 2017; 40:360-372. [PMID: 28222203 PMCID: PMC5452140 DOI: 10.1590/1678-4685-gmb-2016-0057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 09/27/2016] [Indexed: 11/22/2022] Open
Abstract
Sugarcane is one of the most important agricultural crops in the world. However, pathogen infection and herbivore attack cause constant losses in yield. Plants respond to pathogen infection by inducing the expression of several protein types, such as glucanases, chitinases, thaumatins, peptidase inhibitors, defensins, catalases and glycoproteins. Proteins induced by pathogenesis are directly or indirectly involved in plant defense, leading to pathogen death or inducing other plant defense responses. Several of these proteins are induced in sugarcane by different pathogens or insects and have antifungal or insecticidal activity. In this review, defense-related proteins in sugarcane are described, with their putative mechanisms of action, pathogen targets and biotechnological perspectives.
Collapse
Affiliation(s)
- Thais P Souza
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Renata O Dias
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Marcio C Silva-Filho
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
14
|
Schaker PDC, Peters LP, Cataldi TR, Labate CA, Caldana C, Monteiro-Vitorello CB. Metabolome Dynamics of Smutted Sugarcane Reveals Mechanisms Involved in Disease Progression and Whip Emission. FRONTIERS IN PLANT SCIENCE 2017; 8:882. [PMID: 28620397 PMCID: PMC5450380 DOI: 10.3389/fpls.2017.00882] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/10/2017] [Indexed: 05/02/2023]
Abstract
Sugarcane smut disease, caused by the biotrophic fungus Sporisorium scitamineum, is characterized by the development of a whip-like structure from the plant meristem. The disease causes negative effects on sucrose accumulation, fiber content and juice quality. The aim of this study was to exam whether the transcriptomic changes already described during the infection of sugarcane by S. scitamineum result in changes at the metabolomic level. To address this question, an analysis was conducted during the initial stage of the interaction and through disease progression in a susceptible sugarcane genotype. GC-TOF-MS allowed the identification of 73 primary metabolites. A set of these compounds was quantitatively altered at each analyzed point as compared with healthy plants. The results revealed that energetic pathways and amino acid pools were affected throughout the interaction. Raffinose levels increased shortly after infection but decreased remarkably after whip emission. Changes related to cell wall biosynthesis were characteristic of disease progression and suggested a loosening of its structure to allow whip growth. Lignin biosynthesis related to whip formation may rely on Tyr metabolism through the overexpression of a bifunctional PTAL. The altered levels of Met residues along with overexpression of SAM synthetase and ACC synthase genes suggested a role for ethylene in whip emission. Moreover, unique secondary metabolites antifungal-related were identified using LC-ESI-MS approach, which may have potential biomarker applications. Lastly, a putative toxin was the most important fungal metabolite identified whose role during infection remains to be established.
Collapse
Affiliation(s)
- Patricia D. C. Schaker
- Department of Genetics, “Luiz de Queiroz”' College of Agriculture, University of São PauloSão Paulo, Brazil
| | - Leila P. Peters
- Department of Genetics, “Luiz de Queiroz”' College of Agriculture, University of São PauloSão Paulo, Brazil
| | - Thais R. Cataldi
- Department of Genetics, “Luiz de Queiroz”' College of Agriculture, University of São PauloSão Paulo, Brazil
| | - Carlos A. Labate
- Department of Genetics, “Luiz de Queiroz”' College of Agriculture, University of São PauloSão Paulo, Brazil
| | - Camila Caldana
- Brazilian Bioethanol Science and Technology LaboratorySão Paulo, Brazil
- Max Planck Partner Group at Brazilian Bioethanol Science and Technology LaboratorySão Paulo, Brazil
| | - Claudia B. Monteiro-Vitorello
- Department of Genetics, “Luiz de Queiroz”' College of Agriculture, University of São PauloSão Paulo, Brazil
- *Correspondence: Claudia B. Monteiro-Vitorello
| |
Collapse
|
15
|
Sánchez-Elordi E, Baluška F, Echevarría C, Vicente C, Legaz ME. Defence sugarcane glycoproteins disorganize microtubules and prevent nuclear polarization and germination of Sporisorium scitamineum teliospores. JOURNAL OF PLANT PHYSIOLOGY 2016; 200:111-123. [PMID: 27372179 DOI: 10.1016/j.jplph.2016.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 06/06/2023]
Abstract
Microtubules (MTs) are involved in the germination of Sporisorium scitamineum teliospores. Resistant varieties of sugar cane plants produce defence glycoproteins that prevent the infection of the plants by the filamentous fungi Sporisorium scitamineum. Here, we show that a fraction of these glycoproteins prevents the correct arrangement of MTs and causes nuclear fragmentation defects. As a result, nuclei cannot correctly migrate through the growing hyphae, causing germinative failure. Arginase activity contained in defence glycoproteins is already described for preventing fungal germination. Now, its enzymatically active form is presented as a link between the defensive capacity of glycoproteins and the MT disorganization in fungal cells. Active arginase is produced in healthy and resistant plants; conversely, it is not detected in the juice from susceptible varieties, which explains why MT depolarization, nuclear disorganization as well as germination of teliospores are not significantly affected by glycoproteins from non-resistant plants. Our results also suggest that susceptible plants try to increase their levels of arginase after detecting the presence of the pathogen. However, this signal comes "too late" and such defensive mechanism fails.
Collapse
Affiliation(s)
- Elena Sánchez-Elordi
- Team of Intercellular Communication in Plant Symbiosis, Faculty of Biology, Complutense University. 12 José Antonio Novais Av., 28040 Madrid, Spain
| | - František Baluška
- Department of Plant Cell Biology, Institute of Cellular and Molecular Botany (IZMB), University Bonn. 1 Kirschallee St., D-53115 Bonn, Germany
| | - Clara Echevarría
- Team of Intercellular Communication in Plant Symbiosis, Faculty of Biology, Complutense University. 12 José Antonio Novais Av., 28040 Madrid, Spain
| | - Carlos Vicente
- Team of Intercellular Communication in Plant Symbiosis, Faculty of Biology, Complutense University. 12 José Antonio Novais Av., 28040 Madrid, Spain.
| | - M Estrella Legaz
- Team of Intercellular Communication in Plant Symbiosis, Faculty of Biology, Complutense University. 12 José Antonio Novais Av., 28040 Madrid, Spain
| |
Collapse
|
16
|
Santiago R, Alarcón B, de Armas R, Vicente C, Legaz ME. Changes in cinnamyl alcohol dehydrogenase activities from sugarcane cultivars inoculated with Sporisorium scitamineum sporidia. PHYSIOLOGIA PLANTARUM 2012; 145:245-59. [PMID: 22248248 DOI: 10.1111/j.1399-3054.2012.01577.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This study describes a method for determining cinnamyl alcohol dehydrogenase activity in sugarcane stems using reverse phase (RP) high-performance liquid chromatography to elucidate their possible lignin origin. Activity is assayed using the reverse mode, the oxidation of hydroxycinnamyl alcohols into hydroxycinnamyl aldehydes. Appearance of the reaction products, coniferaldehyde and sinapaldehyde is determined by measuring absorbance at 340 and 345 nm, respectively. Disappearance of substrates, coniferyl alcohol and sinapyl alcohol is measured at 263 and 273 nm, respectively. Isocratic elution with acetonitrile:acetic acid through an RP Mediterranea sea C18 column is performed. As case examples, we have examined two different cultivars of sugarcane; My 5514 is resistant to smut, whereas B 42231 is susceptible to the pathogen. Inoculation of sugarcane stems elicits lignification and produces significant increases of coniferyl alcohol dehydrogenase (CAD) and sinapyl alcohol dehydrogenase (SAD). Production of lignin increases about 29% in the resistant cultivar and only 13% in the susceptible cultivar after inoculation compared to uninoculated plants. Our results show that the resistance of My 5514 to smut is likely derived, at least in part, to a marked increase of lignin concentration by the activation of CAD and SAD.
Collapse
Affiliation(s)
- Rocío Santiago
- Department of Plant Biology I (Plant Physiology), Faculty of Biology, Complutense University, 12 José Antonio Novais Av., Madrid 28040, Spain
| | | | | | | | | |
Collapse
|
17
|
Lao M, Arencibia AD, Carmona ER, Acevedo R, Rodríguez E, León O, Santana I. Differential expression analysis by cDNA-AFLP of Saccharum spp. after inoculation with the host pathogen Sporisorium scitamineum. PLANT CELL REPORTS 2008; 27:1103-11. [PMID: 18379790 DOI: 10.1007/s00299-008-0524-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 01/28/2008] [Accepted: 02/20/2008] [Indexed: 05/18/2023]
Abstract
A differential expression study on the Saccharum spp.-Sporisorium scitamineum pathogenic interaction was carried out in the susceptible Ja60-5 and the resistant M31/45 genotypes. Using cDNA-AFLP analysis, a total of 64 transcript-derived fragments (TDFs) was found to be differentially expressed, with the majority (67.2%) of the differential TDFs up-regulated in the resistant M31/45 cultivar. The plant response against S. scitamineum infection was complex, representing major genes involved in oxidative burst, defensive response, ethylene and auxins pathways during the first 72 h post-inoculation. Results obtained suggest a key role for genes involved in the oxidative burst and the lignin pathways in the initial sugarcane defense against the S. scitamineum infection.
Collapse
Affiliation(s)
- María Lao
- National Institute for Sugarcane Research, CUJAE Km 2 1/2 Road. Boyeros, 19390 Havana City, Cuba
| | | | | | | | | | | | | |
Collapse
|