1
|
Molecular evolution and structural variations in nuclear encoded chloroplast localized heat shock protein 26 (sHSP26) from genetically diverse wheat species. Comput Biol Chem 2019; 83:107144. [PMID: 31751884 DOI: 10.1016/j.compbiolchem.2019.107144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 07/01/2019] [Accepted: 10/05/2019] [Indexed: 11/20/2022]
Abstract
Heat shock proteins are an important class of molecular chaperones known to impart tolerance under high temperature stress. sHSP26, a member of small heat shock protein subfamily is specifically involved in protecting plant's photosynthetic machinery. The present study aimed at identifying and characterizing sequence and structural variations in sHSP26 from genetically diverse progenitor and non-progenitor species of wheat. In silico analysis identified three paralogous copies of TaHSP26 to reside on short arm of chromosome 4A while one homeologue each was localized on long arm of chromosome 4B and 4D of cultivated bread wheat. Wild DD-genome donor Aegilops tauschii carried an additional sHSP26 gene (AET4Gv20569400) which was absent in the cultivated DD genome of bread wheat. In vitro amplification of this novel gene in wild accessions of Ae. tauschii and synthetic hexaploid wheat but not in cultivated bread wheat validated this finding. Further, significant length polymorphism could be identified in exon1 from diverse sHSP26 sequences. Multiple sequence alignment of procured sequences revealed numerous sSNPs and nsSNPs. D3A, P125 L, Q242 K were designated as homeolog specific- while A49 G as non-progenitor specific amino acid replacements. A 9-bp indel in TmHSP26-1(GA) translated into a deletion of SPM amino acid segment in chloroplast specific conserved consensus region III. High degree of divergence in nucleotide sequence between cultivated and wild species appeared in the form of higher ω values (Ka/Ks >1) indicating positive selection during the course of evolution. Phylogenetic analysis elucidated ancestral relationships between wheat sHSP26 proteins and orthologous proteins across plant kingdom. Overall, data mining approach may be employed as an effective pre-breeding strategy to identify and mobilize novel stress responsive genes and distinct allelic variants from wider germplasm collections of wheat to enhance climate resilience of present day elite wheat cultivars.
Collapse
|
2
|
Pinheiro GMS, Ramos CHI. Initial characterization of newly identified mitochondrial and chloroplast small HSPs from sugarcane shows that these chaperones have different oligomerization states and substrate specificities. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:285-294. [PMID: 29909242 DOI: 10.1016/j.plaphy.2018.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
Chaperones belonging to the small heat shock protein (sHSP) family are ubiquitous and exhibit elevated expression under stresses conditions to protect proteins against aggregation, thereby contributing to the stress tolerance of the organism. Tropical plants are constantly exposed to high temperatures, and the mechanisms by which these plants tolerate heat stress are of foremost importance to basic science as well as applied agrobiotechnology. Therefore, this study aims to characterize sHSPs from different organelles from sugarcane, an important crop that is associated with sugar and bioenergy production. An expression sequence tag database of sugarcane was searched, and sHsp genes of mitochondrial and chloroplast organelles were selected and cloned. The proteins were expressed in Escherichia coli and isolated and purified by two chromatographic steps with high purity as single species. Circular dichroism and fluorescence spectroscopy showed that both proteins were purified in their folded states with a predominant β-sheet secondary structure. Determination of the molecular weight, diffusion coefficient and Stokes radius parameters showed that both chaperones form large spherical-like oligomers in solution. The two sHSPs had different oligomeric states and substrate specificities. The mitochondrial sHSP was a 20-mer with ability to protect model substrates that differ from that of the 16-meric sHSP from chloroplasts. These results indicate that both sHSPs are key agents to protect against stress confirming the importance of the great diversity of sHSP chaperones in plants for homeostasis maintenance. Moreover, to our knowledge, this is the first report about small HSPs from sugarcane organelles.
Collapse
Affiliation(s)
| | - Carlos H I Ramos
- Chemistry Institute, UNICAMP, P.O. Box 6154, Campinas, 13083-970, SP, Brazil.
| |
Collapse
|
3
|
Adão R, Zanphorlin LM, Lima TB, Sriranganadane D, Dahlström KM, Pinheiro GMS, Gozzo FC, Barbosa LRS, Ramos CHI. Revealing the interaction mode of the highly flexible Sorghum bicolor Hsp70/Hsp90 organizing protein (Hop): A conserved carboxylate clamp confers high affinity binding to Hsp90. J Proteomics 2018; 191:191-201. [PMID: 29425735 DOI: 10.1016/j.jprot.2018.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/02/2018] [Accepted: 02/04/2018] [Indexed: 12/27/2022]
Abstract
Proteostasis is dependent on the Hsp70/Hsp90 system (the two chaperones and their co-chaperones). Of these, Hop (Hsp70/Hsp90 organizing protein), also known as Sti1, forms an important scaffold to simultaneously binding to both Hsp70 and Hsp90. Hop/Sti1 has been implicated in several disease states, for instance cancer and transmissible spongiform encephalopathies. Therefore, human and yeast homologous have been better studied and information on plant homologous is still limited, even though plants are continuously exposed to environmental stress. Particularly important is the study of crops that are relevant for agriculture, such as Sorghum bicolor, a C4 grass that is among the five most important cereals and is considered as a bioenergy feedstock. To increase the knowledge on plant chaperones, the hop putative gene for Sorghum bicolor was cloned and the biophysical and structural characterization of the protein was done by cross-linking coupled to mass spectroscopy, small angle X-ray scattering and structural modeling. Additionally, the binding to a peptide EEVD motif, which is present in both Hsp70 and Hsp90, was studied by isothermal titration calorimetry and hydrogen/deuterium exchange and the interaction pattern structurally modeled. The results indicate SbHop as a highly flexible, mainly alpha-helical monomer consisting of nine tetratricopeptide repeat domains, of which one confers high affinity binding to Hsp90 through a conserved carboxylate clamp. Moreover, the present insights into the conserved interactions formed between Hop and Hsp90 can help to design strategies for potential therapeutic approaches for the diseases in which Hop has been implicated.
Collapse
Affiliation(s)
- Regina Adão
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Letícia M Zanphorlin
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Tatiani B Lima
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Dev Sriranganadane
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Käthe M Dahlström
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Glaucia M S Pinheiro
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Fabio C Gozzo
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | | | - Carlos H I Ramos
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
4
|
Massive expansion and differential evolution of small heat shock proteins with wheat (Triticum aestivum L.) polyploidization. Sci Rep 2017; 7:2581. [PMID: 28566710 PMCID: PMC5451465 DOI: 10.1038/s41598-017-01857-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/03/2017] [Indexed: 12/13/2022] Open
Abstract
Wheat (Triticum aestivum), one of the world’s most important crops, is facing unprecedented challenges due to global warming. To evaluate the gene resources for heat adaptation in hexaploid wheat, small heat shock proteins (sHSPs), the key plant heat protection genes, were comprehensively analysed in wheat and related species. We found that the sHSPs of hexaploid wheat were massively expanded in A and B subgenomes with intrachromosomal duplications during polyploidization. These expanded sHSPs were under similar purifying selection and kept the expressional patterns with the original copies. Generally, a strong purifying selection acted on the α-crystallin domain (ACD) and theoretically constrain conserved function. Meanwhile, weaker purifying selection and strong positive selection acted on the N-terminal region, which conferred sHSP flexibility, allowing adjustments to a wider range of substrates in response to genomic and environmental changes. Notably, in CI, CV, ER, MI and MII subfamilies, gene duplications, expression variations and functional divergence occurred before wheat polyploidization. Our results indicate the massive expansion of active sHSPs in hexaploid wheat may also provide more raw materials for evolving functional novelties and generating genetic diversity to face future global climate changes, and highlight the expansion of stress response genes with wheat polyploidization.
Collapse
|
5
|
Reddy PS, Sharma KK, Vadez V, Reddy MK. Molecular Cloning and Differential Expression of Cytosolic Class I Small Hsp Gene Family in Pennisetum glaucum (L.). Appl Biochem Biotechnol 2015; 176:598-612. [PMID: 25855236 DOI: 10.1007/s12010-015-1598-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/26/2015] [Indexed: 10/23/2022]
Abstract
Small heat shock protein (Hsp) family genes have been reported in several plant species that function as molecular chaperones to protect proteins from being denatured in extreme conditions. As a first step towards the isolation and characterization of genes that contribute to combating abiotic stresses particularly heat stress, construction and screening of the subtracted complementary DNA (cDNA) library is reported here. In this study, a subtractive heat stress cDNA library was constructed that was used to isolate members of small Hsps (sHsps) using PgsHsp17.9A gene as a probe. As a result, a total of 150 cDNA clones were isolated from the subtracted cDNA library screening, leading to 121 high-quality expressed sequence tags (ESTs), with an average size of 450 bp, comprising of 15 contigs, and majority of these isolated sHsp genes belong to cytosolic class I (CI) family. In silico sequence analysis of CI-sHsp family genes revealed that the length of sHsp proteins varied from 151 to 159 amino acids and showed large variation in isoelectric point value (5.03 to 10.05) and a narrow range of molecular weight (16.09 to 17.94 kDa). The real-time PCR results demonstrated that CI-sHsp genes are differentially expressed in Pennisetum leaves under different abiotic stress conditions particularly at high temperature. The results presented in this study provide basic information on PgCI-sHsp family genes and form the foundation for future functional studies of these genes.
Collapse
Affiliation(s)
- Palakolanu Sudhakar Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502324, Telangana, India,
| | | | | | | |
Collapse
|
6
|
Maciel BCM, Barbosa HS, Pessôa GS, Salazar MM, Pereira GAG, Gonçalves DC, Ramos CHI, Arruda MAZ. Comparative proteomics and metallomics studies in Arabidopsis thaliana leaf tissues: evaluation of the selenium addition in transgenic and nontransgenic plants using two-dimensional difference gel electrophoresis and laser ablation imaging. Proteomics 2014; 14:904-12. [PMID: 24678036 DOI: 10.1002/pmic.201300427] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/02/2013] [Accepted: 12/19/2013] [Indexed: 11/10/2022]
Abstract
The main goal of this work is to evaluate some differential protein species in transgenic (T) and nontransgenic (NT) Arabidopsis thaliana plants after their cultivation in the presence or absence of sodium selenite. The transgenic line was obtained through insertion of CaMV 35S controlling nptII gene. Comparative proteomics through 2D-DIGE is carried out in four different groups (NT × T; NT × Se-NT (where Se is selenium); Se-NT × Se-T, and T × Se-T). Although no differential proteins are achieved in the T × Se-T group, for the others, 68 differential proteins (by applying a regulation factor ≥1.5) are achieved, and 27 of them accurately characterized by ESI-MS/MS. These proteins are classified into metabolism, energy, signal transduction, disease/defense categories, and some of them are involved in the glycolysis pathway-Photosystems I and II and ROS combat. Additionally, laser ablation imaging is used for evaluating the Se and sulfur distribution in leaves of different groups, corroborating some results obtained and related to proteins involved in the glycolysis pathway. From these results, it is possible to conclude that the genetic modification also confers to the plant resistance to oxidative stress.
Collapse
Affiliation(s)
- Bruna C M Maciel
- Department of Analytical Chemistry, Group of Spectrometry, Sample Preparation and Mechanization-GEPAM, Institute of Chemistry, University of Campinas-Unicamp, Campinas, SP, Brazil; Institute of Chemistry, National Institute of Science and Technology for Bioanalytics, University of Campinas-Unicamp, Campinas, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Tiroli-Cepeda AO, Lima TB, Balbuena TS, Gozzo FC, Ramos CHI. Structural and functional characterization of the chaperone Hsp70 from sugarcane. Insights into conformational changes during cycling from cross-linking/mass spectrometry assays. J Proteomics 2014; 104:48-56. [PMID: 24530624 DOI: 10.1016/j.jprot.2014.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/28/2014] [Accepted: 02/02/2014] [Indexed: 01/20/2023]
Abstract
UNLABELLED Hsp70 cycles from an ATP-bound state, in which the affinity for unfolded polypeptides is low, to an ADP-bound state, in which the affinity for unfolded polypeptides is high, to assist with cell proteostasis. Such cycling also depends on co-chaperones because these proteins control both the Hsp70 ATPase activity and the delivery of unfolded polypeptide chains. Although it is very important, structural information on the entire protein is still scarce. This work describes the first cloning of a cDNA predicted to code for a cytosolic Saccharum spp. (sugarcane) Hsp70, named SsHsp70 here, the purification of the recombinant protein and the characterization of its structural conformation in solution by chemical cross-linking coupled to mass spectrometry. The in vivo expression of SsHsp70 in sugarcane extracts was confirmed by Western blot. Recombinant SsHsp70 was monomeric, both ADP and ATP binding increased its stability and it was efficient in cooperating with co-chaperones: ATPase activity was stimulated by Hsp40s, and it aided the refolding of an unfolded polypeptide delivered by a member of the small Hsp family. The structural conformation results favor a model in which nucleotide-free SsHsp70 is highly dynamic and may fluctuate among different conformations that may resemble those in which nucleotide is bound. BIOLOGICAL SIGNIFICANCE Validation of a sugarcane EST as a true mRNA that encodes a cytosolic Hsp70 (SsHsp70) as confirmed by in vivo expression and characterization of the structure and function of the recombinant protein. SsHsp70 was monomeric, both ADP and ATP binding increased its stability and was efficient in interacting and cooperating with co-chaperones to enhance ATPase activity and refold unfolded proteins. The conformation of nucleotide-free SsHsp70 in solution was much more dynamic than suggested by crystal structures of other Hsp70s. This article is part of a Special Issue entitled: Environmental and structural proteomics.
Collapse
Affiliation(s)
- Ana O Tiroli-Cepeda
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Brazil
| | - Tatiani B Lima
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Tiago S Balbuena
- Faculdade de Ciências Agrárias e Veterinárias, UNESP Universidade Estadual Paulista, Campus de Jaboticabal, Jaboticabal, SP 14884-900, Brazil
| | - Fábio C Gozzo
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Carlos H I Ramos
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Brazil.
| |
Collapse
|
8
|
da Silva VCH, Cagliari TC, Lima TB, Gozzo FC, Ramos CHI. Conformational and functional studies of a cytosolic 90 kDa heat shock protein Hsp90 from sugarcane. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 68:16-22. [PMID: 23619240 DOI: 10.1016/j.plaphy.2013.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/20/2013] [Indexed: 06/02/2023]
Abstract
Hsp90s are involved in several cellular processes, such as signaling, proteostasis, epigenetics, differentiation and stress defense. Although Hsp90s from different organisms are highly similar, they usually have small variations in conformation and function. Thus, the characterization of different Hsp90s is important to gain insight into the structure-function relationship that makes these chaperones key regulators in protein homeostasis. This work describes the characterization of a cytosolic Hsp90 from sugarcane and its comparison with Hsp90s from other plants. Previous expressed sequence tag (EST) studies in Saccharum spp. (sugarcane) predicted the presence of an mRNA coding for a cytosolic Hsp90. The corresponding cDNA was cloned, and the recombinant protein was purified and its conformation and function characterized. The structural conformation of Hsp90 was assessed by chemical cross-linking and hydrogen/deuterium exchange using mass spectrometry and hydrodynamic assays, which revealed regions accessible to solvent and that Hsp90 is an elongated dimer in solution. The in vivo expression of Hsp90 in sugarcane leaves was confirmed by western blot, and in vitro functional characterization indicated that sugarcane Hsp90 has strong chaperone activity.
Collapse
Affiliation(s)
- Viviane C H da Silva
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | | | | | | | | |
Collapse
|
9
|
Singh RK, Jena SN, Khan S, Yadav S, Banarjee N, Raghuvanshi S, Bhardwaj V, Dattamajumder SK, Kapur R, Solomon S, Swapna M, Srivastava S, Tyagi AK. Development, cross-species/genera transferability of novel EST-SSR markers and their utility in revealing population structure and genetic diversity in sugarcane. Gene 2013; 524:309-29. [PMID: 23587912 DOI: 10.1016/j.gene.2013.03.125] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/20/2013] [Accepted: 03/27/2013] [Indexed: 12/01/2022]
Abstract
Sugarcane (Saccharum spp. hybrid) with complex polyploid genome requires a large number of informative DNA markers for various applications in genetics and breeding. Despite the great advances in genomic technology, it is observed in several crop species, especially in sugarcane, the availability of molecular tools such as microsatellite markers are limited. Now-a-days EST-SSR markers are preferred to genomic SSR (gSSR) as they represent only the functional part of the genome, which can be easily associated with desired trait. The present study was taken up with a new set of 351 EST-SSRs developed from the 4085 non redundant EST sequences of two Indian sugarcane cultivars. Among these EST-SSRs, TNR containing motifs were predominant with a frequency of 51.6%. Thirty percent EST-SSRs showed homology with annotated protein. A high frequency of SSRs was found in the 5'UTR and in the ORF (about 27%) and a low frequency was observed in the 3'UTR (about 8%). Two hundred twenty-seven EST-SSRs were evaluated, in sugarcane, allied genera of sugarcane and cereals, and 134 of these have revealed polymorphism with a range of PIC value 0.12 to 0.99. The cross transferability rate ranged from 87.0% to 93.4% in Saccharum complex, 80.0% to 87.0% in allied genera, and 76.0% to 80.0% in cereals. Cloning and sequencing of EST-SSR size variant amplicons revealed that the variation in the number of repeat-units was the main source of EST-SSR fragment polymorphism. When 124 sugarcane accessions were analyzed for population structure using model-based approach, seven genetically distinct groups or admixtures thereof were observed in sugarcane. Results of principal coordinate analysis or UPGMA to evaluate genetic relationships delineated also the 124 accessions into seven groups. Thus, a high level of polymorphism adequate genetic diversity and population structure assayed with the EST-SSR markers not only suggested their utility in various applications in genetics and genomics in sugarcane but also enriched the microsatellite marker resources in sugarcane.
Collapse
Affiliation(s)
- Ram K Singh
- Indian Institute of Sugarcane Research (ICAR), Rai Bareli Road, Lucknow-226002, U.P., India.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Singh RK, Singh RB, Singh SP, Sharma ML. Genes tagging and molecular diversity of red rot susceptible/tolerant sugarcane hybrids using c-DNA and unigene derived markers. World J Microbiol Biotechnol 2011; 28:1669-79. [DOI: 10.1007/s11274-011-0974-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 12/02/2011] [Indexed: 10/14/2022]
|
11
|
Cagliari TC, da Silva VCH, Borges JC, Prando A, Tasic L, Ramos CHI. Sugarcane Hsp101 is a hexameric chaperone that binds nucleotides. Int J Biol Macromol 2011; 49:1022-30. [PMID: 21903129 DOI: 10.1016/j.ijbiomac.2011.08.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 10/17/2022]
Abstract
The Clp/Hsp100 AAA+ chaperone family is involved in recovering aggregated proteins and little is known about other orthologs of the well studied ClpB from Escherichia coli and Hsp104 from Saccharomyces cerevisiae. Plant Hsp101 is a good model for understanding the relationship between the structure and function of Hsp100 proteins and to investigate the role of these chaperones in disaggregation processes. Here, we present the cloning and purification of a sugarcane ortholog, SHsp101, which is expressed in sugarcane cells and is a folded hexamer that is capable of binding nucleotides. Thus SHsp101 has the structural and functional characteristics of the Clp/Hsp100 AAA+ family.
Collapse
Affiliation(s)
- Thiago C Cagliari
- Institute of Chemistry, University of Campinas-UNICAMP, PO Box 6154, 13083-970, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
12
|
Gupta V, Raghuvanshi S, Gupta A, Saini N, Gaur A, Khan MS, Gupta RS, Singh J, Duttamajumder SK, Srivastava S, Suman A, Khurana JP, Kapur R, Tyagi AK. The water-deficit stress- and red-rot-related genes in sugarcane. Funct Integr Genomics 2009; 10:207-14. [DOI: 10.1007/s10142-009-0144-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 09/16/2009] [Accepted: 09/16/2009] [Indexed: 11/30/2022]
|
13
|
Sarkar NK, Kim YK, Grover A. Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics 2009; 10:393. [PMID: 19703271 PMCID: PMC2746236 DOI: 10.1186/1471-2164-10-393] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 08/24/2009] [Indexed: 12/29/2022] Open
Abstract
Background Heat shock proteins (Hsps) constitute an important component in the heat shock response of all living systems. Among the various plant Hsps (i.e. Hsp100, Hsp90, Hsp70 and Hsp20), Hsp20 or small Hsps (sHsps) are expressed in maximal amounts under high temperature stress. The characteristic feature of the sHsps is the presence of α-crystallin domain (ACD) at the C-terminus. sHsps cooperate with Hsp100/Hsp70 and co-chaperones in ATP-dependent manner in preventing aggregation of cellular proteins and in their subsequent refolding. Database search was performed to investigate the sHsp gene family across rice genome sequence followed by comprehensive expression analysis of these genes. Results We identified 40 α-crystallin domain containing genes in rice. Phylogenetic analysis showed that 23 out of these 40 genes constitute sHsps. The additional 17 genes containing ACD clustered with Acd proteins of Arabidopsis. Detailed scrutiny of 23 sHsp sequences enabled us to categorize these proteins in a revised scheme of classification constituting of 16 cytoplasmic/nuclear, 2 ER, 3 mitochondrial, 1 plastid and 1 peroxisomal genes. In the new classification proposed herein nucleo-cytoplasmic class of sHsps with 9 subfamilies is more complex in rice than in Arabidopsis. Strikingly, 17 of 23 rice sHsp genes were noted to be intronless. Expression analysis based on microarray and RT-PCR showed that 19 sHsp genes were upregulated by high temperature stress. Besides heat stress, expression of sHsp genes was up or downregulated by other abiotic and biotic stresses. In addition to stress regulation, various sHsp genes were differentially upregulated at different developmental stages of the rice plant. Majority of sHsp genes were expressed in seed. Conclusion We identified twenty three sHsp genes and seventeen Acd genes in rice. Three nucleocytoplasmic sHsp genes were found only in monocots. Analysis of expression profiling of sHsp genes revealed that these genes are differentially expressed under stress and at different stages in the life cycle of rice plant.
Collapse
Affiliation(s)
- Neelam K Sarkar
- Department of Plant Molecular Biology, University of Delhi South Campus, N Delhi 110021, India.
| | | | | |
Collapse
|