1
|
Chen YM, Fei Q, Xia XR, Ke X, Ye JR, Zhu LH. Pinus massoniana somatic embryo maturation, mycorrhization of regenerated plantlets and its resistance to Bursaphelenchus xylophilus. FRONTIERS IN PLANT SCIENCE 2023; 14:1130471. [PMID: 37229134 PMCID: PMC10203517 DOI: 10.3389/fpls.2023.1130471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/14/2023] [Indexed: 05/27/2023]
Abstract
Pine wilt disease, caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus), is a major quarantine forest disease that poses a threat to various pine species, including Pinus massoniana (masson pine), worldwide. Breeding of PWN-resistant pine trees is an important approach to prevent the disease. To expedite the production of PWN-resistant P. massoniana accessions, we investigated the effects of maturation medium treatments on somatic embryo development, germination, survival, and rooting. Furthermore, we evaluated the mycorrhization and nematode resistance of regenerated plantlets. Abscisic acid was identified as the main factor affecting maturation, germination, and rooting of somatic embryos in P. massoniana, resulting in a maximum of 34.9 ± 9.4 somatic embryos per ml, 87.3 ± 9.1% germination rate, and 55.2 ± 29.3% rooting rate. Polyethylene glycol was identified as the main factor affecting the survival rate of somatic embryo plantlets, with a survival rate of up to 59.6 ± 6.8%, followed by abscisic acid. Ectomycorrhizal fungi inoculation with Pisolithus orientalis enhanced the shoot height of plantlets regenerated from embryogenic cell line (ECL) 20-1-7. Ectomycorrhizal fungi inoculation also improved the survival rate of plantlets during the acclimatization stage, with 85% of mycorrhized plantlets surviving four months after acclimatization in the greenhouse, compared with 37% non-mycorrhized plantlets. Following PWN inoculation, the wilting rate and the number of nematodes recovered from ECL 20-1-7 were lower than those recovered from ECL 20-1-4 and 20-1-16. The wilting ratios of mycorrhizal plantlets from all cell lines were significantly lower than those of non-mycorrhizal regenerated plantlets. This plantlet regeneration system and mycorrhization method could be used in the large-scale production of nematode-resistance plantlets and to study the interaction between nematode, pines, and mycorrhizal fungi.
Collapse
Affiliation(s)
- You-Mei Chen
- Jiangsu Key Laboratory of Pest Invasion Prevention and Control, Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing, China
- Institute of Forest Protection, College of Forest, Nanjing Forestry University, Nanjing, China
| | - Qi Fei
- Jiangsu Key Laboratory of Pest Invasion Prevention and Control, Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing, China
- Institute of Forest Protection, College of Forest, Nanjing Forestry University, Nanjing, China
| | - Xin-Rui Xia
- Jiangsu Key Laboratory of Pest Invasion Prevention and Control, Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing, China
- Institute of Forest Protection, College of Forest, Nanjing Forestry University, Nanjing, China
| | - Xin Ke
- Jiangsu Key Laboratory of Pest Invasion Prevention and Control, Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing, China
- Institute of Forest Protection, College of Forest, Nanjing Forestry University, Nanjing, China
| | - Jian-Ren Ye
- Jiangsu Key Laboratory of Pest Invasion Prevention and Control, Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing, China
- Institute of Forest Protection, College of Forest, Nanjing Forestry University, Nanjing, China
| | - Li-Hua Zhu
- Jiangsu Key Laboratory of Pest Invasion Prevention and Control, Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing, China
- Institute of Forest Protection, College of Forest, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
3
|
Vuosku J, Suorsa M, Ruottinen M, Sutela S, Muilu-Mäkelä R, Julkunen-Tiitto R, Sarjala T, Neubauer P, Häggman H. Polyamine metabolism during exponential growth transition in Scots pine embryogenic cell culture. TREE PHYSIOLOGY 2012; 32:1274-87. [PMID: 23022686 DOI: 10.1093/treephys/tps088] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Polyamine (PA) metabolism was studied in liquid cultures of Scots pine (Pinus sylvestris L.) embryogenic cells. The focus of the study was on the metabolic changes at the interphase between the initial lag phase and the exponential growth phase. PA concentrations fluctuated in the liquid cultures as follows. Putrescine (Put) concentrations increased, whereas spermidine (Spd) concentrations decreased in both free and soluble conjugated PA fractions. The concentrations of free and soluble conjugated spermine (Spm) remained low, and small amounts of excreted PAs were also found in the culture medium. The minor production of secondary metabolites reflected the undifferentiated stage of the embryogenic cell culture. Put was produced via the arginine decarboxylase (ADC) pathway. Futhermore, the gene expression data suggested that the accumulation of Put was caused neither by an increase in Put biosynthesis nor by a decrease in Put catabolism, but resulted mainly from the decrease in the biosynthesis of Spd and Spm. Put seemed to play an important role in cell proliferation in Scots pine embryogenic cells, but the low pH of the culture medium could also, at least partially, be the reason for the accumulation of endogenous Put. High Spd concentrations at the initiation of the culture, when cells were exposed to stress and cell death, suggested that Spd may act not only as a protector against stress but also as a growth suppressor, when proliferative growth is not promoted. All in all, Scots pine embryogenic cell culture was proved to be a favourable experimental platform to study PA metabolism and, furthermore, the developed system may also be beneficial in experiments where, e.g., the effect of specific stressors on PA metabolism is addressed.
Collapse
Affiliation(s)
- Jaana Vuosku
- Department of Biology, University of Oulu, 90014 Oulu, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Somatic embryogenesis (SE) has the potential to be the lowest-cost method to rapidly produce large numbers of high-value somatic seedlings with desired characteristics for plantation forestry. At least 24 of the 115-120 known Pinus species can undergo SE. Initiation for most species works best with immature megagametophytes as starting material, although a few pines can initiate SE cultures from isolated mature seed embryos. Successful initiation depends heavily on explant type, embryo developmental stage, and medium salt base. Most first reports of initiation used 2,4-D and BAP or a combination of cytokinins. More recent reports have optimized initiation for many Pinus spp., but still use mostly the combinations of auxin and cytokinins. Initiation can be stimulated with medium supplements including abscisic acid (ABA), brassinosteroids, ethylene inhibitors, gibberellin inhibitors, organic acids, putrescine, specific sugar types (maltose, galactose, D-chiro-inositol, and D-xylose), triacontanol, vitamins (B12, biotin, vitamin E, and folic acid), or manipulation of environmental factors including pH, water potential, cone cold storage, gelling agent concentration, and liquid medium. Embryo development and maturation usually occur best on medium containing ABA along with water potential reduction (with sugars and polyethylene glycol) or water availability reduction (with raised gelling agent increasing gel-strength). Activated carbon and maltose may also improve embryo maturation. The main issues holding SE technology back are related to the high cost of producing a somatic seedling, incurred from low initiation percentages for recalcitrant species, culture loss, and decline after initiation and poor embryo maturation resulting in no or poor germination. Although vast progress has been made in pine SE technology over the past 24 years, fundamental studies on seed and embryo physiology, biochemistry, and gene expression are still needed to help improve the technology to a point where large-scale commercialization is economically viable for a broad range of pine species.
Collapse
Affiliation(s)
- Gerald S Pullman
- School of Biology and Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA, USA.
| | | |
Collapse
|