1
|
Zhou J, Zhang H, Huang Y, Jiao S, Zheng X, Lu W, Jiang W, Bai X. Impact of Sulfur Deficiency and Excess on the Growth and Development of Soybean Seedlings. Int J Mol Sci 2024; 25:11253. [PMID: 39457037 PMCID: PMC11508489 DOI: 10.3390/ijms252011253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Sulfur is a critical element for plant growth and development, serving as a component of amino acids (cysteine and methionine), iron-sulfur clusters, proteins, glutathione, coenzymes, and auxin precursors. Deficiency or low concentrations of sulfur in the soil can lead to significant growth retardation in plants. The objective of our study was to examine the effects of sulfur (S) deficiency and excess on morphological symptoms, sulfur and nitrogen (N) metabolism, as well as antioxidant activity in soybean. We found that S starvation decreased the fine root length, biomass, and activity, and the chlorophyll content was reduced, while excess sulfur promotes lateral root growth. In contrast to sulfur excess, sulfur deficiency inhibits N and S metabolism levels in both subsurface and above-ground parts, and induced the expression of some sulfur transporters (SULTRs). In this study, we created soybean hairy root lines overexpressing the SULTR gene (GmSULTR2;1a) to observe metabolic changes following sulfur deficiency treatment. The results showed that GmSULTR2;1a saved the sulfur-deficient phenotype, and the antioxidant enzyme activity was much higher than that of the wildtype in the absence of sulfur. Our study revealed the important role of sulfur element in soybean growth and development and the regulation of sulfur deficiency by GmSULTR2;1a.
Collapse
Affiliation(s)
- Jingwen Zhou
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| | - Huimin Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| | - Yifan Huang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| | - Shuang Jiao
- Key Laboratory of Soybean Molecular Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China;
| | - Xiangmin Zheng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| | - Wentian Lu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| | - Wenjing Jiang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| | - Xi Bai
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| |
Collapse
|
2
|
Chen K, Yu B, Xue W, Sun Y, Zhang C, Gao X, Zhou X, Deng Y, Yang J, Zhang B. Citric Acid Inhibits Cd Absorption and Transportation by Improving the Antagonism of Essential Elements in Rice Organs. TOXICS 2024; 12:431. [PMID: 38922111 PMCID: PMC11209394 DOI: 10.3390/toxics12060431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Excessive cadmium (Cd) in rice is a global environmental problem. Therefore, reducing Cd content in rice is of great significance for ensuring food security and human health. A field experiment was conducted to study the effects of foliar application of citric acid (CA) on Cd absorption and transportation in rice under high Cd-contaminated soils (2.04 mg·kg-1). This study revealed that there was a negative correlation between Cd content in vegetative organs and CA content, and that foliar spraying of CA (1 mM and 5 mM) significantly increased CA content and reduced Cd content in vegetative organs. The Cd reduction effect of 5 mM CA was better than that of 1 mM, and 5 mM CA reduced Cd content in grains and spikes by 52% and 37%, respectively. CA significantly increased Mn content in vegetative organs and increased Ca/Mn ratios in spikes, flag leaves, and roots. CA significantly reduced soluble Cd content in vegetative organs and promoted the transformation of Cd into insoluble Cd, thus inhibiting the transport of Cd from vegetative organs to grains. The foliar field application of 1 mM and 5 mM CA could inhibit Cd absorption and transportation by reducing Cd bioactivity and increasing the antagonistic of essential elements in rice vegetative organs. These results provide technical support and a theoretical basis for solving the problem of excessive Cd in rice.
Collapse
Affiliation(s)
- Kexin Chen
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Bozhen Yu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Xusheng Gao
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Xiaojia Zhou
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Yun Deng
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China;
| | - Jiarun Yang
- College of Water Conservancy Engineering, Tianjin Agricultural University, Tianjin 300392, China; (J.Y.); (B.Z.)
| | - Boqian Zhang
- College of Water Conservancy Engineering, Tianjin Agricultural University, Tianjin 300392, China; (J.Y.); (B.Z.)
| |
Collapse
|
3
|
Zenzen I, Cassol D, Westhoff P, Kopriva S, Ristova D. Transcriptional and metabolic profiling of sulfur starvation response in two monocots. BMC PLANT BIOLOGY 2024; 24:257. [PMID: 38594609 PMCID: PMC11003109 DOI: 10.1186/s12870-024-04948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Sulfur (S) is a mineral nutrient essential for plant growth and development, which is incorporated into diverse molecules fundamental for primary and secondary metabolism, plant defense, signaling, and maintaining cellular homeostasis. Although, S starvation response is well documented in the dicot model Arabidopsis thaliana, it is not clear if the same transcriptional networks control the response also in the monocots. RESULTS We performed series of physiological, expression, and metabolite analyses in two model monocot species, one representing the C3 plants, Oryza sativa cv. kitaake, and second representing the C4 plants, Setaria viridis. Our comprehensive transcriptomic analysis revealed twice as many differentially expressed genes (DEGs) in S. viridis than in O. sativa under S-deficiency, consistent with a greater loss of sulfur and S-containing metabolites under these conditions. Surprisingly, most of the DEGs and enriched gene ontology terms were species-specific, with an intersect of only 58 common DEGs. The transcriptional networks were different in roots and shoots of both species, in particular no genes were down-regulated by S-deficiency in the roots of both species. CONCLUSIONS Our analysis shows that S-deficiency seems to have different physiological consequences in the two monocot species and their nutrient homeostasis might be under distinct control mechanisms.
Collapse
Affiliation(s)
- Ivan Zenzen
- Institute for Plant Sciences, Cluster of Excellence On Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| | - Daniela Cassol
- Institute for Integrative Genome Biology, University of California, Riverside, 92521, CA, USA
| | - Philipp Westhoff
- Plant Metabolism and Metabolomics Facility, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence On Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany.
| | - Daniela Ristova
- Institute for Plant Sciences, Cluster of Excellence On Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany.
| |
Collapse
|
4
|
Coppa E, Vigani G, Aref R, Savatin D, Bigini V, Hell R, Astolfi S. Differential modulation of Target of Rapamycin activity under single and combined iron and sulfur deficiency in tomato plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36976541 DOI: 10.1111/tpj.16213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
Over the past few decades, a close relationship between sulfur (S) and iron (Fe) in terms of functionality and nutrition was demonstrated in the tomato. However, very little is known about the regulatory mechanisms underlying S/Fe interactions. Recently, the potential role of citrate in plant adaptation to Fe deficiency and combined S and Fe deficiency has been described. It is known that an impaired organic acid metabolism may stimulate a retrograde signal, which has been proven to be linked to the Target of Rapamycin (TOR) signaling in yeast and animal cells. Recent reports provided evidence of TOR involvement in S nutrient sensing in plants. This suggestion prompted us to investigate whether TOR may play a role in the cross-talk of signaling pathway occurring during plant adaptation to combined nutrient deficiency of Fe and S. Our results revealed that Fe deficiency elicited an increase of TOR activity associated with enhanced accumulation of citrate. In contrast, S deficiency resulted in decreased TOR activity and citrate accumulation. Interestingly, citrate accumulated in shoots of plants exposed to combined S/Fe deficiency to values between those found in Fe- and S-deficient plants, again correlated with TOR activity level. Our results suggest that citrate might be involved in establishing a link between plant response to combined S/Fe deficiency and the TOR network.
Collapse
Affiliation(s)
- Eleonora Coppa
- Department of Agriculture and Forest Sciences, University of Tuscia, via S.C. de Lellis, Viterbo, 01100, Italy
| | - Gianpiero Vigani
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Via G. Quarello 15/A, Torino, 10135, Italy
| | - Rasha Aref
- Department of Genetics, Faculty of Agriculture, Ain Shams University, 11241, Cairo, Egypt
| | - Daniel Savatin
- Department of Agriculture and Forest Sciences, University of Tuscia, via S.C. de Lellis, Viterbo, 01100, Italy
| | - Valentina Bigini
- Department of Agriculture and Forest Sciences, University of Tuscia, via S.C. de Lellis, Viterbo, 01100, Italy
| | - Ruediger Hell
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, Heidelberg, 69120, Germany
| | - Stefania Astolfi
- Department of Agriculture and Forest Sciences, University of Tuscia, via S.C. de Lellis, Viterbo, 01100, Italy
| |
Collapse
|
5
|
Almira Casellas MJ, Pérez‐Martín L, Busoms S, Boesten R, Llugany M, Aarts MGM, Poschenrieder C. A genome-wide association study identifies novel players in Na and Fe homeostasis in Arabidopsis thaliana under alkaline-salinity stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:225-245. [PMID: 36433704 PMCID: PMC10108281 DOI: 10.1111/tpj.16042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
In nature, multiple stress factors occur simultaneously. The screening of natural diversity panels and subsequent Genome-Wide Association Studies (GWAS) is a powerful approach to identify genetic components of various stress responses. Here, the nutritional status variation of a set of 270 natural accessions of Arabidopsis thaliana grown on a natural saline-carbonated soil is evaluated. We report significant natural variation on leaf Na (LNa) and Fe (LFe) concentrations in the studied accessions. Allelic variation in the NINJA and YUC8 genes is associated with LNa diversity, and variation in the ALA3 is associated with LFe diversity. The allelic variation detected in these three genes leads to changes in their mRNA expression and correlates with plant differential growth performance when plants are exposed to alkaline salinity treatment under hydroponic conditions. We propose that YUC8 and NINJA expression patters regulate auxin and jasmonic signaling pathways affecting plant tolerance to alkaline salinity. Finally, we describe an impairment in growth and leaf Fe acquisition associated with differences in root expression of ALA3, encoding a phospholipid translocase active in plasma membrane and the trans Golgi network which directly interacts with proteins essential for the trafficking of PIN auxin transporters, reinforcing the role of phytohormonal processes in regulating ion homeostasis under alkaline salinity.
Collapse
Affiliation(s)
- Maria Jose Almira Casellas
- Plant Physiology Laboratory, Bioscience FacultyUniversitat Autònoma de BarcelonaC/de la Vall Moronta s/nE‐08193BellaterraSpain
| | - Laura Pérez‐Martín
- Plant Physiology Laboratory, Bioscience FacultyUniversitat Autònoma de BarcelonaC/de la Vall Moronta s/nE‐08193BellaterraSpain
- Department of Botany and Plant BiologyUniversity of Geneva1211GenevaSwitzerland
| | - Silvia Busoms
- Plant Physiology Laboratory, Bioscience FacultyUniversitat Autònoma de BarcelonaC/de la Vall Moronta s/nE‐08193BellaterraSpain
| | - René Boesten
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Mercè Llugany
- Plant Physiology Laboratory, Bioscience FacultyUniversitat Autònoma de BarcelonaC/de la Vall Moronta s/nE‐08193BellaterraSpain
| | - Mark G. M. Aarts
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Charlotte Poschenrieder
- Plant Physiology Laboratory, Bioscience FacultyUniversitat Autònoma de BarcelonaC/de la Vall Moronta s/nE‐08193BellaterraSpain
| |
Collapse
|
6
|
Jiang W, Jin R, Wang D, Yang Y, Zhao P, Liu M, Zhang A, Tang Z. A Novel High-Affinity Potassium Transporter IbHKT-like Gene Enhances Low-Potassium Tolerance in Transgenic Roots of Sweet Potato ( Ipomoea batatas (L.) Lam.). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111389. [PMID: 35684162 PMCID: PMC9182616 DOI: 10.3390/plants11111389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 05/27/2023]
Abstract
The high-affinity potassium transporters (HKT) mediate K+-Na+ homeostasis in plants. However, the function of enhancing low-potassium tolerance in sweet potato [Ipomoea batatas (L.) Lam.] remains unrevealed. In this study, a novel HKT transporter homolog IbHKT-like gene was cloned from sweet potato, which was significantly induced by potassium deficiency stress. IbHKT-like overexpressing transgenic roots were obtained from a sweet potato cultivar Xuzishu8 using an Agrobacterium rhizogenes-mediated root transgenic system in vivo. Compared with the CK, whose root cells did not overexpress the IbHKT-like gene, overexpression of the IbHKT-like gene protected cell ultrastructure from damage, and transgenic root meristem cells had intact mitochondria, endoplasmic reticulum, and Golgi dictyosomes. The steady-state K+ influx increased by 2.2 times in transgenic root meristem cells. Overexpression of the IbHKT-like gene also improved potassium content in the whole plant, which increased by 63.8% compared with the CK plants. These results could imply that the IbHKT-like gene, as a high-affinity potassium transporter gene, may play an important role in potassium deficiency stress responses.
Collapse
Affiliation(s)
- Wei Jiang
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou 221121, China; (W.J.); (R.J.); (D.W.); (P.Z.); (M.L.); (A.Z.)
| | - Rong Jin
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou 221121, China; (W.J.); (R.J.); (D.W.); (P.Z.); (M.L.); (A.Z.)
| | - Danfeng Wang
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou 221121, China; (W.J.); (R.J.); (D.W.); (P.Z.); (M.L.); (A.Z.)
| | - Yufeng Yang
- Cereal Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China;
| | - Peng Zhao
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou 221121, China; (W.J.); (R.J.); (D.W.); (P.Z.); (M.L.); (A.Z.)
| | - Ming Liu
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou 221121, China; (W.J.); (R.J.); (D.W.); (P.Z.); (M.L.); (A.Z.)
| | - Aijun Zhang
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou 221121, China; (W.J.); (R.J.); (D.W.); (P.Z.); (M.L.); (A.Z.)
| | - Zhonghou Tang
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou 221121, China; (W.J.); (R.J.); (D.W.); (P.Z.); (M.L.); (A.Z.)
| |
Collapse
|
7
|
Sulfur Induces Resistance against Canker Caused by Pseudomonas syringae pv. actinidae via Phenolic Components Increase and Morphological Structure Modification in the Kiwifruit Stems. Int J Mol Sci 2021; 22:ijms222212185. [PMID: 34830066 PMCID: PMC8625120 DOI: 10.3390/ijms222212185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/17/2022] Open
Abstract
Bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) has led to considerable losses in all major kiwifruit-growing areas. There are no commercial products in the market to effectively control this disease. Therefore, the defense resistance of host plants is a prospective option. In our previous study, sulfur could improve the resistance of kiwifruit to Psa infection. However, the mechanisms of inducing resistance remain largely unclear. In this study, disease severity and protection efficiency were tested after applying sulfur, with different concentrations in the field. The results indicated that sulfur could reduce the disease index by 30.26 and 31.6 and recorded high protection efficiency of 76.67% and 77.00% after one and two years, respectively, when the concentration of induction treatments was 2.0 kg/m3. Ultrastructural changes in kiwifruit stems after induction were demonstrated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the activities of phenylalanine ammonia-lyase (PAL), peroxidase (POD) and polyphenol oxidase (PPO), and the accumulation of lignin were determined by biochemical analyses. Our results showed that the morphological characteristics of trichomes and lenticels of kiwifruit stem were in the best defensive state respectively when the sulfur concentration was 3.0 kg/m3 and 1.5 kg/m3. Meanwhile, in the range of 0.5 to 2.0 kg/m3, the sulfur could promote the chloroplast and mitochondria of kiwifruit stems infected with Psa to gradually return to health status, increasing the thickness of the cell wall. In addition, sulfur increased the activities of PAL, POD and PPO, and promoted the accumulation of lignin in kiwifruit stems. Moreover, the sulfur protection efficiency was positively correlated with PPO activity (p < 0.05) and lignin content (p < 0.01), which revealed that the synergistic effect of protective enzyme activity and the phenolic metabolism pathway was the physiological effect of sulfur-induced kiwifruit resistance to Psa. This evidence highlights the importance of lignin content in kiwifruit stems as a defense mechanism in sulfur-induced resistance. These results suggest that sulfur enhances kiwifruit canker resistance via an increase in phenolic components and morphology structure modification in the kiwifruit stems. Therefore, this study could provide insights into sulfur to control kiwifruit canker caused by Psa.
Collapse
|
8
|
Amna S, Qamar S, Turab Naqvi AA, Al-Huqail AA, Qureshi MI. Role of sulfur in combating arsenic stress through upregulation of important proteins, and in-silico analysis to study the interaction between phosphate transporter (PHO1), arsenic and phosphate in spinach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:348-358. [PMID: 33189055 DOI: 10.1016/j.plaphy.2020.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
An adequate amount of Sulfur (S) is essential for proper plant growth and defence against abiotic stresses including metals and metalloids. Arsenic (As) contamination is increasing in agricultural soils rapidly due to anthropogenic activities. Sulfur deficiency and arsenic stress could be more harmful than these individual stresses alone. To understand the impact of S-deficiency and arsenic (31 ppm Na3AsO4 of soil) on ecophysiology, growth, inorganic phosphate level, and proteomic profile of spinach, the present study was conducted. Interaction of arsenic with phosphate transporters, phytochelatins, and glutathione was also analyzed in silico. Comparative 2D MS/MS proteomics helped in the identification of important proteins which might be the key players under S-deficiency and As stress. Upregulation and downregulation of 36 and 21 proteins under As stress; 19 and 36 proteins under S-deficiency; 38 and 31 proteins under combined stress, respectively was observed. A total, 87 proteins subjected to identification via MS/MS ion search were found to be associated with important plant functions. PHO1 abundance was highly influenced by As stress; hence an in-silico homology modeling based molecular docking was performed which indicated high interaction between PHO1 and As/phosphate. Varied proximity of arsenic with phosphate transporters, phytochelatin, and glutathione revealed these components as a potential target of As toxicity/detoxification in Spinach, reflecting sulfur as an important criterion for arsenic tolerance.
Collapse
Affiliation(s)
- Syeda Amna
- Proteomics and Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia, Delhi, India.
| | - Sadia Qamar
- Proteomics and Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia, Delhi, India.
| | - Ahmad Abu Turab Naqvi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Delhi, India.
| | - Asma A Al-Huqail
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia.
| | - M Irfan Qureshi
- Proteomics and Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia, Delhi, India.
| |
Collapse
|
9
|
Coppa E, Celletti S, Pii Y, Mimmo T, Cesco S, Astolfi S. Revisiting Fe/S interplay in tomato: A split-root approach to study the systemic and local responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:134-142. [PMID: 30348310 DOI: 10.1016/j.plantsci.2018.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 05/24/2023]
Abstract
Based on our previous studies demonstrating an intriguing interplay between sulfur (S) and iron (Fe), a split-root experiment was performed to determine whether plant S status and/or S external concentration could modify plant capability to take up and accumulate Fe. This split-root system allowed the roots of each tomato plant to grow in two different compartments, both Fe-deficient, but one S-sufficient, and the other one S-free. Although S was freely available to half root system and thus plant S status was preserved, S-deficient part of root apparatus exhibited a decrease of total S, thiols and protein content, an enhanced activity of both ATPsulfurylase and O-acetylserine(thiol)lyase, and a higher expression of SlST1.1, as occurring under S deficiency. The side of the root apparatus exposed to combined S and Fe deficiency, showed an over induction of the FeIII-reducing capacity (+40%) and of the expression levels of the gene codifying for this protein (SlFRO1), with respect to the Fe-deficient part of the root system. Interestingly, the regulation pattern of the bHLH transcription factor SlFER, controlling the expression of both SlFRO1 and SlIRT1 genes, was very close to that of SlFRO1. SlIRT1 expression levels appeared unaffected by S supply, suggesting distinct regulatory processes targeting SlFRO1 and SlIRT1.
Collapse
Affiliation(s)
- Eleonora Coppa
- DAFNE, University of Tuscia, Via S.C. de Lellis, 01100, Viterbo, Italy
| | - Silvia Celletti
- DAFNE, University of Tuscia, Via S.C. de Lellis, 01100, Viterbo, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100, Bolzano, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100, Bolzano, Italy
| | - Stefania Astolfi
- DAFNE, University of Tuscia, Via S.C. de Lellis, 01100, Viterbo, Italy.
| |
Collapse
|
10
|
Vigani G, Pii Y, Celletti S, Maver M, Mimmo T, Cesco S, Astolfi S. Mitochondria dysfunctions under Fe and S deficiency: is citric acid involved in the regulation of adaptive responses? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 126:86-96. [PMID: 29514113 DOI: 10.1016/j.plaphy.2018.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/13/2018] [Accepted: 02/22/2018] [Indexed: 05/24/2023]
Abstract
Within the last years, extensive information has been accumulated on the reciprocal influence between S and Fe nutrition at both physiological and molecular level in several plant species, but the mechanisms regulating S and Fe sensing and signaling are not fully understood. Fe and S interact for the building of Fe-S clusters, and mitochondria is one of the cellular compartments where Fe-S cluster assembly takes place. Therefore, it would be expected that mitochondria might play a central role in the regulation of Fe and S interaction. The Fe deficiency-induced alteration in the synthesis of mitochondria-derived carboxylic acids, such as citric acid, and the evidence that such molecules have already been identified as important players of metabolite signaling in several organisms, further support this hypothesis. Tomato plants were grown under single or combined Fe and S deficiency with the aim of verifying whether mitochondria activities played a role in Fe/S interaction. Both Fe and S deficiencies determined similar alteration of respiratory chain activity: a general decrease of Fe-S containing complexes as well as an increase of alternative NAD(P)H activities was observed in both Fe and S deficient-plants. However, the content of Krebs cycle-related organic acids in roots was substantially different in response to treatments, being the accumulation of citric acid always increased, while the others (i.e. succinic, malic, fumaric acids) always decreased. Interestingly, citric acid levels significantly correlated with the expression of some Fe and S deficiency induced genes. Our results contribute to existing knowledge on the complexity of the S/Fe interaction, suggesting a model in which endogenous alteration of citric acid content in plant tissues might act as signal molecule for the regulation of some nuclear-encoded and nutrient-responsive genes and also provide a basis for further study of the mechanism underlying S and Fe sensing and signalling.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Dept Agricultural and Environmental Sciences, University of Milano, via Celoria 2, 20133, Milano, Italy.
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy.
| | | | - Mauro Maver
- Dept Agricultural and Environmental Sciences, University of Milano, via Celoria 2, 20133, Milano, Italy.
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy.
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy.
| | | |
Collapse
|
11
|
Borysiuk K, Ostaszewska-Bugajska M, Vaultier MN, Hasenfratz-Sauder MP, Szal B. Enhanced Formation of Methylglyoxal-Derived Advanced Glycation End Products in Arabidopsis Under Ammonium Nutrition. FRONTIERS IN PLANT SCIENCE 2018; 9:667. [PMID: 29881392 PMCID: PMC5976750 DOI: 10.3389/fpls.2018.00667] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/30/2018] [Indexed: 05/22/2023]
Abstract
Nitrate (NO3-) and ammonium (NH4+) are prevalent nitrogen (N) sources for plants. Although NH4+ should be the preferred form of N from the energetic point of view, ammonium nutrition often exhibits adverse effects on plant physiological functions and induces an important growth-limiting stress referred as ammonium syndrome. The effective incorporation of NH4+ into amino acid structures requires high activity of the mitochondrial tricarboxylic acid cycle and the glycolytic pathway. An unavoidable consequence of glycolytic metabolism is the production of methylglyoxal (MG), which is very toxic and inhibits cell growth in all types of organisms. Here, we aimed to investigate MG metabolism in Arabidopsis thaliana plants grown on NH4+ as a sole N source. We found that changes in activities of glycolytic enzymes enhanced MG production and that markedly elevated MG levels superseded the detoxification capability of the glyoxalase pathway. Consequently, the excessive accumulation of MG was directly involved in the induction of dicarbonyl stress by introducing MG-derived advanced glycation end products (MAGEs) to proteins. The severe damage to proteins was not within the repair capacity of proteolytic enzymes. Collectively, our results suggest the impact of MG (mediated by MAGEs formation in proteins) in the contribution to NH4+ toxicity symptoms in Arabidopsis.
Collapse
Affiliation(s)
- Klaudia Borysiuk
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Monika Ostaszewska-Bugajska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- *Correspondence: Monika Ostaszewska-Bugajska, Bożena Szal,
| | - Marie-Noëlle Vaultier
- UMR 1137, INRA, Ecologie et Ecophysiologie Forestières, Université de Lorraine, Nancy, France
| | | | - Bożena Szal
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- *Correspondence: Monika Ostaszewska-Bugajska, Bożena Szal,
| |
Collapse
|
12
|
Restriction of Aerobic Metabolism by Acquired or Innate Arylsulfatase B Deficiency: A New Approach to the Warburg Effect. Sci Rep 2016; 6:32885. [PMID: 27605497 PMCID: PMC5015117 DOI: 10.1038/srep32885] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/16/2016] [Indexed: 11/09/2022] Open
Abstract
Aerobic respiration is required for optimal efficiency of metabolism in mammalian cells. Under circumstances when oxygen utilization is impaired, cells survive by anerobic metabolism. The malignant cell has cultivated the use of anerobic metabolism in an aerobic environment, the Warburg effect, but the explanation for this preference is not clear. This paper presents evidence that deficiency of the enzyme arylsulfatase B (ARSB; N-acetylgalactosamine 4-sulfatase), either innate or acquired, helps to explain the Warburg phenomenon. ARSB is the enzyme that removes 4-sulfate groups from the non-reducing end of chondroitin 4-sulfate and dermatan sulfate. Previous reports indicated reduced ARSB activity in malignancy and replication of the effects of hypoxia by decline in ARSB. Hypoxia reduced ARSB activity, since molecular oxygen is needed for post-translational modification of ARSB. In this report, studies were performed in human HepG2 cells and in hepatocytes from ARSB-deficient and normal C57BL/6J control mice. Decline of ARSB, in the presence of oxygen, profoundly reduced the oxygen consumption rate and increased the extracellular acidification rate, indicating preference for aerobic glycolysis. Specific study findings indicate that decline in ARSB activity enhanced aerobic glycolysis and impaired normal redox processes, consistent with a critical role of ARSB and sulfate reduction in mammalian metabolism.
Collapse
|
13
|
Nath M, Tuteja N. NPKS uptake, sensing, and signaling and miRNAs in plant nutrient stress. PROTOPLASMA 2016; 253:767-786. [PMID: 26085375 DOI: 10.1007/s00709-015-0845-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 06/08/2015] [Indexed: 05/24/2023]
Abstract
Sessile nature of higher plants consequently makes it highly adaptable for nutrient absorption and acquisition from soil. Plants require 17 essential elements for their growth and development which include 14 minerals (macronutrients: N, P, K, Mg, Ca, S; micronutrients: Cl, Fe, B, Mn, Zn, Cu, Ni, Mo) and 3 non-mineral (C, H, O) elements. The roots of higher plants must acquire these macronutrients and micronutrients from rhizosphere and further allocate to other plant parts for completing their life cycle. Plants evolved an intricate series of signaling and sensing cascades to maintain nutrient homeostasis and to cope with nutrient stress/availability. The specific receptors for nutrients in root, root system architecture, and internal signaling pathways help to develop plasticity in response to the nutrient starvation. Nitrogen (N), phosphorus (P), potassium (K), and sulfur (S) are essential for various metabolic processes, and their deficiency negatively effects the plant growth and yield. Genes coding for transporters and receptors for nutrients as well as some small non-coding RNAs have been implicated in nutrient uptake and signaling. This review summarizes the N, P, K, and S uptake, sensing and signaling events in nutrient stress condition especially in model plant Arabidopsis thaliana and involvement of microRNAs in nutrient deficiency. This article also provides a framework of uptake, sensing, signaling and to highlight the microRNA as an emerging major players in nutrient stress condition. Nutrient-plant-miRNA cross talk may help plant to cope up nutrient stress, and understanding their precise mechanism(s) will be necessary to develop high yielding smart crop with low nutrient input.
Collapse
Affiliation(s)
- Manoj Nath
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067, New Delhi, India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067, New Delhi, India.
| |
Collapse
|
14
|
Vigani G, Briat JF. Impairment of Respiratory Chain under Nutrient Deficiency in Plants: Does it Play a Role in the Regulation of Iron and Sulfur Responsive Genes? FRONTIERS IN PLANT SCIENCE 2016; 6:1185. [PMID: 26779219 PMCID: PMC4700279 DOI: 10.3389/fpls.2015.01185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/10/2015] [Indexed: 05/23/2023]
Abstract
Plant production and plant product quality strongly depend on the availability of mineral nutrients. Among them, sulfur (S) and iron (Fe) play a central role, as they are needed for many proteins of the respiratory chain. Plant mitochondria play essential bioenergetic and biosynthetic functions as well as they have an important role in signaling processes into the cell. Here, by comparing several transcriptomic data sets from plants impaired in their respiratory function with the genes regulated under Fe or S deficiencies obtained from other data sets, nutrient-responsive genes potentially regulated by hypothetical mitochondrial retrograde signaling pathway are evidenced. It leads us to hypothesize that plant mitochondria could be, therefore, required for regulating the expression of key genes involved both in Fe and S metabolisms.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio Agroenergia, Università degli Studi di MilanoMilan, Italy
| | - Jean-François Briat
- Biochimie and Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/SupAgro/UM2Montpellier, France
| |
Collapse
|
15
|
Ostaszewska-Bugajska M, Rychter AM, Juszczuk IM. Antioxidative and proteolytic systems protect mitochondria from oxidative damage in S-deficient Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2015; 186-187:25-38. [PMID: 26339750 DOI: 10.1016/j.jplph.2015.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 06/05/2023]
Abstract
We examined the functioning of the antioxidative defense system in Arabidopsis thaliana under sulphur (S) deficiency with an emphasis on the role of mitochondria. In tissue extracts and in isolated mitochondria from S-deficient plants, the concentration of non-protein thiols declined but protein thiols did not change. Superoxide anion and hydrogen peroxide were accumulated in leaf blades and the generation of superoxide anion by isolated mitochondria was higher. Lower abundance of reduced (GSH) plus oxidized (GSSG) glutathione in the leaf and root tissues, and leaf mitochondria from S-deficient plants was accompanied by a decrease in the level of GSH and the changes in the GSH/GSSG ratios. In the chloroplasts, the total level of glutathione decreased. Lower levels of reduced (AsA) and oxidized (DHA) ascorbate were reflected in much higher ratios of AsA/DHA. Sulphur deficiency led to an increase in the activity of cytosolic, mitochondrial and chloroplastic antioxidative enzymes, peroxidases, catalases and superoxide dismutases. The protein carbonyl level was higher in the leaves of S-deficient plants and in the chloroplasts, while in the roots, leaf and root mitochondria it remained unchanged. Protease activity in leaf extracts of S-deficient plants was higher, but in root extracts it did not differ. The proteolytic system reflected subcellular specificity. In leaf and root mitochondria the protease activity was higher, whereas in the chloroplasts it did not change. We propose that the preferential incorporation of S to protein thiols and activation of antioxidative and proteolytic systems are likely important for the survival of S-deficient plants and that the mitochondria maintain redox homeostasis.
Collapse
Affiliation(s)
- Monika Ostaszewska-Bugajska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Poland.
| | - Anna M Rychter
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Poland.
| | - Izabela M Juszczuk
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Poland.
| |
Collapse
|