1
|
Malik JA, Alqarawi AA, Alotaibi F, Habib MM, Sorrori SN, Almutairi MBR, Dar BA. Alleviation of NaCl Stress on Growth and Biochemical Traits of Cenchrus ciliaris L. via Arbuscular Mycorrhizal Fungi Symbiosis. Life (Basel) 2024; 14:1276. [PMID: 39459576 PMCID: PMC11509602 DOI: 10.3390/life14101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Soil salinization, especially in arid and semi-arid regions, is one of the major abiotic stresses that affect plant growth. To mediate and boost plant tolerance against this abiotic stress, arbuscular mycorrhizal fungi (AMF) symbiosis is commonly thought to be an effective tool. So, the main purpose of this study was to estimate the role of AMF (applied as a consortium of Claroideoglomus etunicatum, Funneliformis mosseae, Rhizophagus fasciculatum, and R. intraradices species) symbiosis in mitigating deleterious salt stress effects on the growth parameters (shoot length (SL), root length (RL), shoot dry weight (SDW), root dry weight (RDW), root surface area (RSA), total root length (TRL), root volume (RV), root diameter (RD), number of nodes and leaves) of Cenchrus ciliaris L. plants through improved accumulations of photosynthetic pigments (chlorophyll a, chlorophyll b, total chlorophyll), proline and phenolic compounds. The results of this experiment revealed that the roots of C. ciliaris plants were colonized by AMF under all the applied salinity levels (0, 75, 150, 225, and 300 mM NaCl). However, the rate of colonization was negatively affected by increasing salinity as depicted by the varied colonization structures (mycelium, vesicles, arbuscules and spores) which were highest under non-saline conditions. This association of AMF induced an increase in the growth parameters of the plant which were reduced by salinity stress. The improved shoot/root indices are likely due to enhanced photosynthetic activities as the AMF-treated plants showed increased accumulation of pigments (chlorophyll a, chlorophyll b and total chlorophyll), under saline as well as non-saline conditions, compared to non-AMF (N-AMF) plants. Furthermore, the AMF-treated plants also exhibited enhanced accumulation of proline and phenolic compounds. These accumulated metabolites act as protective measures under salinity stress, hence explaining the improved photosynthetic and growth parameters of the plants. These results suggest that AMF could be a good tool for the restoration of salt-affected habitats. However, more research is needed to check the true efficacy of different AMF inoculants under field conditions.
Collapse
Affiliation(s)
- Jahangir A. Malik
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (J.A.M.); (A.A.A.); (M.M.H.); (S.N.S.)
| | - Abdulaziz A. Alqarawi
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (J.A.M.); (A.A.A.); (M.M.H.); (S.N.S.)
| | - Fahad Alotaibi
- Department of Soil Science, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (F.A.); (M.B.R.A.)
| | - Muhammad M. Habib
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (J.A.M.); (A.A.A.); (M.M.H.); (S.N.S.)
| | - Salah N. Sorrori
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (J.A.M.); (A.A.A.); (M.M.H.); (S.N.S.)
| | - Majed B. R. Almutairi
- Department of Soil Science, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (F.A.); (M.B.R.A.)
| | - Basharat A. Dar
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (J.A.M.); (A.A.A.); (M.M.H.); (S.N.S.)
| |
Collapse
|
2
|
da Sousa LDS, Correia TS, Dos Farias FDS, Santana MDF, Lara TS. Influence of arbuscular mycorrhizal fungi density on growth and metabolism of Handroanthus serratifolius (Vahl) S.O. Grose seedlings. PHYSIOLOGIA PLANTARUM 2023; 175:e14067. [PMID: 38148251 DOI: 10.1111/ppl.14067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/02/2023] [Accepted: 10/15/2023] [Indexed: 12/28/2023]
Abstract
Studies on the relationship between Handroanthus serratifolius and arbuscular mycorrhizal fungi (AMF) are limited in the literature. The influence of AMF spore density on plant development is fundamental information to determining the degree of benefits in this relationship. Therefore, the objective of this study was to investigate the effects of different AMF spore densities on thirty-day-old H. serratifolius seedlings, focusing on growth and biochemical parameters using a completely randomized experimental design with three different spore densities and control. The spore densities were classified as low, medium, and high, with 1.54, 3.08, and 12.35 spores g-1 , respectively. Plant growth analysis, mycorrhizal colonization, nitrogen compound concentration, and carbohydrate analysis were performed. The medium spore density treatment showed the greatest increases in biomass, height, leaf area, and root volume. Furthermore, greater absorption of phosphorus and better dynamics in nitrogen metabolism were observed in mycorrhizal plants compared to the control since the ammonium and nitrate compounds were rapidly incorporated into protein and chlorophyll compounds. The carbohydrate analysis revealed the influence of source-sink dynamics on sugar concentration in different plant parts. These findings support the importance of determining the appropriate spore density for assessing the symbiotic relationship between forest species and AMF.
Collapse
Affiliation(s)
- Ludyanne da Silva da Sousa
- Laboratory of Plant Physiology and Plant Growth, Federal University of Western Pará, Santarém, Pará, Brazil
| | - Tatiane Santos Correia
- Laboratory of Plant Physiology and Plant Growth, Federal University of Western Pará, Santarém, Pará, Brazil
| | | | | | - Túlio Silva Lara
- Laboratory of Plant Physiology and Plant Growth, Federal University of Western Pará, Santarém, Pará, Brazil
| |
Collapse
|
3
|
Correia TS, Lara TS, dos Santos JA, Sousa LDS, Santana MDF. Arbuscular Mycorrhizal Fungi Promote Physiological and Biochemical Advantages in Handroanthus serratifolius Seedlings Submitted to Different Water Deficits. PLANTS (BASEL, SWITZERLAND) 2022; 11:2731. [PMID: 36297755 PMCID: PMC9609855 DOI: 10.3390/plants11202731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Climate change causes increasingly longer periods of drought, often causing the death of plants, especially when they are in the early stages of development. Studying the benefits provided by arbuscular mycorrhizal (AM) fungi to plants in different water regimes is an efficient and sustainable strategy to face climate change. Thus, this study investigated the influence of AM fungi on Handroanthus serratifolius seedlings under different water regimes, based on biochemical, and nutritional growth parameters. The experiment was carried out in H. serratifolius seedlings cultivated with mycorrhizas (+AMF) and without mycorrhizas (-AMF) in three water regimes; a severe water deficit (SD), a moderate water deficit (MD), and a well-watered (WW) condition. AM fungi provided greater osmoregulation under water deficit conditions through the accumulation of soluble sugars, total free amino acids, and proline, as well as by reducing sugar. The increase in the absorption of phosphorus and nitrate was observed only in the presence of fungi in the well-watered regimen. A higher percentage of colonization was found in plants submitted to the well-watered regimen. Ultimately, AM fungi promoted biochemical, nutritional, and growth benefits for H. serratifolius seedlings under the water deficit and well-hydrated conditions, proving that AMF can be used to increase the tolerance of H. serratifolius plants, and help them to survive climate change.
Collapse
|
4
|
Arbuscular mycorrhizal fungi modulate physiological and morphological adaptations in para rubber tree (Hevea brasiliensis) under water deficit stress. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01016-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Frosi G, Ferreira-Neto JRC, Bezerra-Neto JP, Pandolfi V, da Silva MD, de Lima Morais DA, Benko-Iseppon AM, Santos MG. Transcriptome of Cenostigma pyramidale roots, a woody legume, under different salt stress times. PHYSIOLOGIA PLANTARUM 2021; 173:1463-1480. [PMID: 33973275 DOI: 10.1111/ppl.13456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 05/20/2023]
Abstract
Salinity stress has a significant impact on the gain of plant biomass. Our study provides the first root transcriptome of Cenostigma pyramidale, a tolerant woody legume from a tropical dry forest, under three different salt stress times (30 min, 2 h, and 11 days). The transcriptome was assembled using the RNA sequencing (RNA-Seq) de novo pipeline from GenPipes. We observed 932, 804, and 3157 upregulated differentially expressed genes (DEGs) and 164, 273, and 1332 downregulated DEGs for salt over 30 min, 2 h, and 11 days, respectively. For DEGs annotated with the Viridiplantae clade in the early stress periods, the response to salt stress was mainly achieved by stabilizing homeostasis of such ions like Na+ and K+ , signaling by Ca2+ , transcription factor modulation, water transport, and oxidative stress. For salt stress at 11 days, we observed a higher modulation of transcription factors including the WRKY, MYB, bHLH, NAC, HSF, and AP2-EREBP families, as well as DEGs involved in hormonal responses, water transport, sugar metabolism, proline, and reactive oxygen scavenging mechanisms. Five selected DEGs (K+ transporter, aquaporin, glutathione S-transferase, cyclic nucleotide-gated channel, and superoxide dismutase) were validated by qPCR. Our results indicated that C. pyramidale had an early perception of salt stress modulating ionic channels and transporters, and as the stress progressed, the focus turned to the antioxidant system, aquaporins, and complex hormone responses. The results of this first root transcriptome provide clues on how this native species modulate gene expression to achieve salt stress tolerance.
Collapse
Affiliation(s)
- Gabriella Frosi
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
- Faculté des Sciences, Départament de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | - Valesca Pandolfi
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | | | - Mauro Guida Santos
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
6
|
Frosi G, Ferreira-Neto JRC, Bezerra-Neto JP, Lima LLD, Morais DADL, Pandolfi V, Kido EA, Maia LC, Santos MG, Benko-Iseppon AM. Reference genes for quantitative real-time PCR normalization of Cenostigma pyramidale roots under salt stress and mycorrhizal association. Genet Mol Biol 2021; 44:e20200424. [PMID: 34061138 PMCID: PMC8167929 DOI: 10.1590/1678-4685-gmb-2020-0424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/14/2021] [Indexed: 01/10/2023] Open
Abstract
Cenostigma pyramidale is a native legume of the Brazilian semiarid region which performs symbiotic association with arbuscular mycorrhizal fungi (AMF), being an excellent model for studying genes associated with tolerance against abiotic and biotic stresses. In RT-qPCR approach, the use of reference genes is mandatory to avoid incorrect interpretation of the relative expression. This study evaluated the stability of ten candidate reference genes (CRGs) from C. pyramidale root tissues under salt stress (three collection times) and associated with AMF (three different times of salinity). The de novo transcriptome was obtained via RNA-Seq sequencing. Three algorithms were used to calculate the stability of CRGs under different conditions: (i) global (Salt, Salt+AMF, AMF and Control, and collection times), (ii) only non-inoculated plants, and (iii) AMF (only inoculated plants). HAG2, SAC1, aRP3 were the most stable CRGs for global and AMF assays, whereas HAG2, SAC1, RHS1 were the best for salt stress assay. This CRGs were used to validate the relative expression of two up-regulated transcripts in Salt2h (RAP2-3 and PIN8). Our study provides the first set of reference genes for C. pyramidale under salinity and AMF, supporting future researches on gene expression with this species.
Collapse
Affiliation(s)
- Gabriella Frosi
- Universidade Federal de Pernambuco, Departamento de Botânica, Recife, PE, Brazil.,Université de Sherbrooke, Départament de Biologie, Faculté des Sciences, Sherbrooke, QC, Canada
| | | | | | - Laís Luana de Lima
- Universidade Federal de Pernambuco, Departamento de Botânica, Recife, PE, Brazil
| | | | - Valesca Pandolfi
- Universidade Federal de Pernambuco, Departamento de Genética, Recife, PE, Brazil
| | - Ederson Akio Kido
- Universidade Federal de Pernambuco, Departamento de Genética, Recife, PE, Brazil
| | - Leonor Costa Maia
- Universidade Federal de Pernambuco, Departamento de Micologia, Recife, PE, Brazil
| | - Mauro Guida Santos
- Universidade Federal de Pernambuco, Departamento de Botânica, Recife, PE, Brazil
| | | |
Collapse
|
7
|
Dastogeer KMG, Zahan MI, Tahjib-Ul-Arif M, Akter MA, Okazaki S. Plant Salinity Tolerance Conferred by Arbuscular Mycorrhizal Fungi and Associated Mechanisms: A Meta-Analysis. FRONTIERS IN PLANT SCIENCE 2020; 11:588550. [PMID: 33362816 PMCID: PMC7755987 DOI: 10.3389/fpls.2020.588550] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/12/2020] [Indexed: 05/08/2023]
Abstract
Soil salinity often hinders plant productivity in both natural and agricultural settings. Arbuscular mycorrhizal fungal (AMF) symbionts can mediate plant stress responses by enhancing salinity tolerance, but less attention has been devoted to measuring these effects across plant-AMF studies. We performed a meta-analysis of published studies to determine how AMF symbionts influence plant responses under non-stressed vs. salt-stressed conditions. Compared to non-AMF plants, AMF plants had significantly higher shoot and root biomass (p < 0.0001) both under non-stressed conditions and in the presence of varying levels of NaCl salinity in soil, and the differences became more prominent as the salinity stress increased. Categorical analyses revealed that the accumulation of plant shoot and root biomass was influenced by various factors, such as the host life cycle and lifestyle, the fungal group, and the duration of the AMF and salinity treatments. More specifically, the effect of Funneliformis on plant shoot biomass was more prominent as the salinity level increased. Additionally, under stress, AMF increased shoot biomass more on plants that are dicots, plants that have nodulation capacity and plants that use the C3 plant photosynthetic pathway. When plants experienced short-term stress (<2 weeks), the effect of AMF was not apparent, but under longer-term stress (>4 weeks), AMF had a distinct effect on the plant response. For the first time, we observed significant phylogenetic signals in plants and mycorrhizal species in terms of their shoot biomass response to moderate levels of salinity stress, i.e., closely related plants had more similar responses, and closely related mycorrhizal species had similar effects than distantly related species. In contrast, the root biomass accumulation trait was related to fungal phylogeny only under non-stressed conditions and not under stressed conditions. Additionally, the influence of AMF on plant biomass was found to be unrelated to plant phylogeny. In line with the greater biomass accumulation in AMF plants, AMF improved the water status, photosynthetic efficiency and uptake of Ca and K in plants irrespective of salinity stress. The uptake of N and P was higher in AMF plants, and as the salinity increased, the trend showed a decline but had a clear upturn as the salinity stress increased to a high level. The activities of malondialdehyde (MDA), peroxidase (POD), and superoxide dismutase (SOD) as well as the proline content changed due to AMF treatment under salinity stress. The accumulation of proline and catalase (CAT) was observed only when plants experienced moderate salinity stress, but peroxidase (POD) and superoxide dismutase (SOD) were significantly increased in AMF plants irrespective of salinity stress. Taken together, arbuscular mycorrhizal fungi influenced plant growth and physiology, and their effects were more notable when their host plants experienced salinity stress and were influenced by plant and fungal traits.
Collapse
Affiliation(s)
- Khondoker M. G. Dastogeer
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | - Md. Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mst Arjina Akter
- Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Shin Okazaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
8
|
Anli M, Baslam M, Tahiri A, Raklami A, Symanczik S, Boutasknit A, Ait-El-Mokhtar M, Ben-Laouane R, Toubali S, Ait Rahou Y, Ait Chitt M, Oufdou K, Mitsui T, Hafidi M, Meddich A. Biofertilizers as Strategies to Improve Photosynthetic Apparatus, Growth, and Drought Stress Tolerance in the Date Palm. FRONTIERS IN PLANT SCIENCE 2020; 11:516818. [PMID: 33193464 PMCID: PMC7649861 DOI: 10.3389/fpls.2020.516818] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 09/22/2020] [Indexed: 05/24/2023]
Abstract
Rainfall regimes are expected to shift on a regional scale as the water cycle intensifies in a warmer climate, resulting in greater extremes in dry versus wet conditions. Such changes are having a strong impact on the agro-physiological functioning of plants that scale up to influence interactions between plants and microorganisms and hence ecosystems. In (semi)-arid ecosystems, the date palm (Phoenix dactylifera L.) -an irreplaceable tree- plays important socio-economic roles. In the current study, we implemeted an adapted management program to improve date palm development and its tolerance to water deficit by using single or multiple combinations of exotic and native arbuscular mycorrhizal fungi (AMF1 and AMF2 respectively), and/or selected consortia of plant growth-promoting rhizobacteria (PGPR: B1 and B2), and/or composts from grasses and green waste (C1 and C2, respectively). We analyzed the potential for physiological functioning (photosynthesis, water status, osmolytes, mineral nutrition) to evolve in response to drought since this will be a key indicator of plant resilience in future environments. As result, under water deficit, the selected biofertilizers enhanced plant growth, leaf water potential, and electrical conductivity parameters. Further, the dual-inoculation of AMF/PGPR amended with composts alone or in combination boosted the biomass under water deficit conditions to a greater extent than in non-inoculated and/or non-amended plants. Both single and dual biofertilizers improved physiological parameters by elevating stomatal conductance, photosynthetic pigments (chlorophyll and carotenoids content), and photosynthetic efficiency. The dual inoculation and compost significantly enhanced, especially under drought stress, the concentrations of sugar and protein content, and antioxidant enzymes (polyphenoloxidase and peroxidase) activities as a defense strategy as compared with controls. Under water stress, we demonstrated that phosphorus was improved in the inoculated and amended plants alone or in combination in leaves (AMF2: 807%, AMF1+B2: 657%, AMF2+C1+B2: 500%, AMF2+C2: 478%, AMF1: 423%) and soil (AMF2: 397%, AMF1+B2: 322%, AMF2+C1+B2: 303%, AMF1: 190%, C1: 188%) in comparison with controls under severe water stress conditions. We summarize the extent to which the dual and multiple combinations of microorganisms can overcome challenges related to drought by enhancing plant physiological responses.
Collapse
Affiliation(s)
- Mohamed Anli
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment (BioMAgE), Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Abdelilah Tahiri
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment (BioMAgE), Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| | - Anas Raklami
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment (BioMAgE), Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| | - Sarah Symanczik
- Department of Soil Sciences, Research Institute of Organic Agriculture Frick (FiBL), Frick, Switzerland
| | - Abderrahim Boutasknit
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| | - Mohamed Ait-El-Mokhtar
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| | - Raja Ben-Laouane
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| | - Salma Toubali
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| | - Youssef Ait Rahou
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| | - Mustapha Ait Chitt
- Domaines Agricoles, Laboratoire El Bassatine, Domaine El Bassatine, Meknès, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment (BioMAgE), Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Mohamed Hafidi
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment (BioMAgE), Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
- Mohammed VI Polytechnic University (UM6P), Agrobiosciences program (AgBs), Benguerir, Morocco
| | - Abdelilah Meddich
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| |
Collapse
|
9
|
Barros V, Melo A, Santos M, Nogueira L, Frosi G, Santos MG. Different resource-use strategies of invasive and native woody species from a seasonally dry tropical forest under drought stress and recovery. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:181-190. [PMID: 31865164 DOI: 10.1016/j.plaphy.2019.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Exotic plants in semiarid region have developed strategies for efficient use or capture of resources. They have become invasive and outperform native species. To understand which factors could explain the success of invasive woody species in a semiarid region, several physiological traits were analyzed in young plants of two invasive and two native species exposed to different water availability. Invasive plants showed low leaf construction cost, high phosphorus and nitrogen contents, reduced loss of instantaneous energy use efficiency, and smaller specific leaf area when compared to native species. This strategy led to a higher biomass gain and a high root/shoot ratio in both water treatments. After rehydration, invasive plants showed faster recovery and higher rates of CO2 assimilation. This resilience is fundamental for species in semiarid regions, and also increase uptake of nutrients. Maintaining a high photosynthetic rate, whenever there is water availability is a strategy that increases the performance of the species in relation to biomass gain. The low leaf construction cost and the fast recovery of the photosynthetic metabolism of invasive plants after limiting water resources explains the success of these species, and suggests that their potential may increase under prolonged and severe drought seasons.
Collapse
Affiliation(s)
- Vanessa Barros
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Adglecianne Melo
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Mariana Santos
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Lairton Nogueira
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Gabriella Frosi
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Mauro Guida Santos
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil.
| |
Collapse
|
10
|
Marinho F, Oehl F, da Silva IR, Coyne D, Veras JSDN, Maia LC. High diversity of arbuscular mycorrhizal fungi in natural and anthropized sites of a Brazilian tropical dry forest (Caatinga). FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Tisarum R, Theerawitaya C, Samphumphuang T, Phisalaphong M, Singh HP, Cha-um S. Promoting water deficit tolerance and anthocyanin fortification in pigmented rice cultivar ( Oryza sativa L. subsp. indica) using arbuscular mycorrhizal fungi inoculation. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:821-835. [PMID: 31402812 PMCID: PMC6656829 DOI: 10.1007/s12298-019-00658-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/12/2019] [Accepted: 03/18/2019] [Indexed: 05/08/2023]
Abstract
Drought or water deficit is a major abiotic stress that can reduce growth and productivity in the rice crop especially in the rain-fed areas, which face long-term water shortage. The objective of this investigation was to promote the drought tolerant abilities in pigmented rice cv. 'Hom Nil' at booting stage using arbuscular mycorrhizal fungi (AMF)-inoculation, mixed spores of Glomus geosporum, G. etunicatum and G. mosseae in the soil before rice seedling transplantation. At booting stage, the AMF-inoculated (+AMF) and AMF-uninoculated plants (-AMF) were subjected to control (well-watering; 46.6% SWC) and water deficit condition (14 days water withholding; 13.8% SWC). Colonization percentage in the AMF-inoculated root tissues were evidently proved in both with and without water deficit conditions, leading to elevate total phosphorus in root and leaf tissues. Interestingly, sucrose and total soluble sugar concentration in the flag leaf were increased by 5.0 folds and 1.5 folds, respectively in the plants under water deficit (WD). Free proline was accumulated in flag leaf when exposure to water deficit, subsequently regulated by AMF-inoculation. Total soluble sugar and free proline enrichment in 'Hom Nil' was a major mode of osmotic adjustment to control osmotic potential in the cellular level when exposed to water deficit, leading to maintained photosynthetic abilities and growth performances. Concentration of chlorophyll b in AMF-inoculated plants under water deficit stress was retained, causing to improve chlorophyll fluorescence and net photosynthetic rate. Shoot height and number of tillers were significantly declined by 12.5% and 11.6%, respectively, when subjected to WD. At the harvest, grain yield, panicle dry weight and fertility percentage of AMF-inoculated rice from WD were greater than those without AMF by 1.5, 3.9 and 2.4 folds, respectively. Cyanidin-3-glucoside and peonidin-3-glucoside concentrations in pericarp were enriched in the grain derived from AMF-inoculation with water deficit stress. Overall growth characters and physiological adaptations in 'Hom Nil' grown under water deficit condition were retained by AMF inoculation, resulting in enhanced yield attributes and anthocyanin fortification in rice grain.
Collapse
Affiliation(s)
- Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120 Thailand
| | - Cattarin Theerawitaya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120 Thailand
| | - Thapanee Samphumphuang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120 Thailand
| | - Muenduen Phisalaphong
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Harminder Pal Singh
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh, 160014 India
| | - Suriyan Cha-um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120 Thailand
| |
Collapse
|
12
|
Evelin H, Devi TS, Gupta S, Kapoor R. Mitigation of Salinity Stress in Plants by Arbuscular Mycorrhizal Symbiosis: Current Understanding and New Challenges. FRONTIERS IN PLANT SCIENCE 2019; 10:470. [PMID: 31031793 PMCID: PMC6473083 DOI: 10.3389/fpls.2019.00470] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/28/2019] [Indexed: 05/02/2023]
Abstract
Modern agriculture is facing twin challenge of ensuring global food security and executing it in a sustainable manner. However, the rapidly expanding salinity stress in cultivable areas poses a major peril to crop yield. Among various biotechnological techniques being used to reduce the negative effects of salinity, the use of arbuscular mycorrhizal fungi (AMF) is considered to be an efficient approach for bio-amelioration of salinity stress. AMF deploy an array of biochemical and physiological mechanisms that act in a concerted manner to provide more salinity tolerance to the host plant. Some of the well-known mechanisms include improved nutrient uptake and maintenance of ionic homeostasis, superior water use efficiency and osmoprotection, enhanced photosynthetic efficiency, preservation of cell ultrastructure, and reinforced antioxidant metabolism. Molecular studies in past one decade have further elucidated the processes involved in amelioration of salt stress in mycorrhizal plants. The participating AMF induce expression of genes involved in Na+ extrusion to the soil solution, K+ acquisition (by phloem loading and unloading) and release into the xylem, therefore maintaining favorable Na+:K+ ratio. Colonization by AMF differentially affects expression of plasma membrane and tonoplast aquaporins (PIPs and TIPs), which consequently improves water status of the plant. Formation of AM (arbuscular mycorrhiza) surges the capacity of plant to mend photosystem-II (PSII) and boosts quantum efficiency of PSII under salt stress conditions by mounting the transcript levels of chloroplast genes encoding antenna proteins involved in transfer of excitation energy. Furthermore, AM-induced interplay of phytohormones, including strigolactones, abscisic acid, gibberellic acid, salicylic acid, and jasmonic acid have also been associated with the salt tolerance mechanism. This review comprehensively covers major research advances on physiological, biochemical, and molecular mechanisms implicated in AM-induced salt stress tolerance in plants. The review identifies the challenges involved in the application of AM in alleviation of salt stress in plants in order to improve crop productivity.
Collapse
Affiliation(s)
- Heikham Evelin
- Department of Botany, Rajiv Gandhi University, Itanagar, India
| | | | - Samta Gupta
- Department of Botany, University of Delhi, New Delhi, India
| | - Rupam Kapoor
- Department of Botany, University of Delhi, New Delhi, India
| |
Collapse
|
13
|
Evelin H, Devi TS, Gupta S, Kapoor R. Mitigation of Salinity Stress in Plants by Arbuscular Mycorrhizal Symbiosis: Current Understanding and New Challenges. FRONTIERS IN PLANT SCIENCE 2019; 10:470. [PMID: 31031793 DOI: 10.3389/fpls2019.00470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/28/2019] [Indexed: 05/21/2023]
Abstract
Modern agriculture is facing twin challenge of ensuring global food security and executing it in a sustainable manner. However, the rapidly expanding salinity stress in cultivable areas poses a major peril to crop yield. Among various biotechnological techniques being used to reduce the negative effects of salinity, the use of arbuscular mycorrhizal fungi (AMF) is considered to be an efficient approach for bio-amelioration of salinity stress. AMF deploy an array of biochemical and physiological mechanisms that act in a concerted manner to provide more salinity tolerance to the host plant. Some of the well-known mechanisms include improved nutrient uptake and maintenance of ionic homeostasis, superior water use efficiency and osmoprotection, enhanced photosynthetic efficiency, preservation of cell ultrastructure, and reinforced antioxidant metabolism. Molecular studies in past one decade have further elucidated the processes involved in amelioration of salt stress in mycorrhizal plants. The participating AMF induce expression of genes involved in Na+ extrusion to the soil solution, K+ acquisition (by phloem loading and unloading) and release into the xylem, therefore maintaining favorable Na+:K+ ratio. Colonization by AMF differentially affects expression of plasma membrane and tonoplast aquaporins (PIPs and TIPs), which consequently improves water status of the plant. Formation of AM (arbuscular mycorrhiza) surges the capacity of plant to mend photosystem-II (PSII) and boosts quantum efficiency of PSII under salt stress conditions by mounting the transcript levels of chloroplast genes encoding antenna proteins involved in transfer of excitation energy. Furthermore, AM-induced interplay of phytohormones, including strigolactones, abscisic acid, gibberellic acid, salicylic acid, and jasmonic acid have also been associated with the salt tolerance mechanism. This review comprehensively covers major research advances on physiological, biochemical, and molecular mechanisms implicated in AM-induced salt stress tolerance in plants. The review identifies the challenges involved in the application of AM in alleviation of salt stress in plants in order to improve crop productivity.
Collapse
Affiliation(s)
- Heikham Evelin
- Department of Botany, Rajiv Gandhi University, Itanagar, India
| | | | - Samta Gupta
- Department of Botany, University of Delhi, New Delhi, India
| | - Rupam Kapoor
- Department of Botany, University of Delhi, New Delhi, India
| |
Collapse
|
14
|
Barros V, Frosi G, Santos M, Ramos DG, Falcão HM, Santos MG. Arbuscular mycorrhizal fungi improve photosynthetic energy use efficiency and decrease foliar construction cost under recurrent water deficit in woody evergreen species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:469-477. [PMID: 29689510 DOI: 10.1016/j.plaphy.2018.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 05/27/2023]
Abstract
Plants suffer recurrent cycles of water deficit in semiarid regions and have several mechanisms to tolerate low water availability. Thus, arbuscular mycorrhizal fungi (AMF) can alleviate deleterious effects of stress. In this study, Cynophalla flexuosa plants, a woody evergreen species from semiarid, when associated with AMF were exposed to two consecutive cycles of water deficit. Leaf primary metabolism, specific leaf area (SLA), leaf construction cost (CC) and photosynthetic energy use efficiency (PEUE) were measured. The maximum stress occurred on seven days (cycle 1) and ten days (cycle 2) after suspending irrigation (photosynthesis close to zero). The rehydration was performed for three days after each maximum stress. In both cycles, plants submitted to water deficit showed reduced gas exchange and leaf relative water content. However, Drought + AMF plants had significantly larger leaf relative water content in cycle 2. At cycle 1, the SLA was larger in non-inoculated plants, while CC was higher in inoculated plants. At cycle 2, Drought + AMF treatment had lower CC and large SLA compared to control, and high PEUE compared to Drought plants. These responses suggest AMFs increase tolerance of C. flexuosa to recurrent water deficit, mainly in cycle 2, reducing the CC, promoting the improvement of SLA and PEUE, leading to higher photosynthetic area. Thus, our result emphasizes the importance of studies on recurrence of water deficit, a common condition in semiarid environments.
Collapse
Affiliation(s)
- Vanessa Barros
- Departamento de Botânica, Laboratório de Fisiologia Vegetal, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Gabriella Frosi
- Departamento de Botânica, Laboratório de Fisiologia Vegetal, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Mariana Santos
- Departamento de Botânica, Laboratório de Fisiologia Vegetal, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Diego Gomes Ramos
- Departamento de Botânica, Laboratório de Fisiologia Vegetal, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Hiram Marinho Falcão
- Departamento de Botânica, Laboratório de Fisiologia Vegetal, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Mauro Guida Santos
- Departamento de Botânica, Laboratório de Fisiologia Vegetal, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil.
| |
Collapse
|
15
|
Frosi G, Barros VA, Oliveira MT, Santos M, Ramos DG, Maia LC, Santos MG. Arbuscular mycorrhizal fungi and foliar phosphorus inorganic supply alleviate salt stress effects in physiological attributes, but only arbuscular mycorrhizal fungi increase biomass in woody species of a semiarid environment. TREE PHYSIOLOGY 2018; 38:25-36. [PMID: 28981870 DOI: 10.1093/treephys/tpx105] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/08/2017] [Indexed: 05/05/2023]
Abstract
Salinity may limit plant growth especially in arid and semiarid regions. Arbuscular mycorrhizal fungi (AMF) and the supply of inorganic phosphorus (Pi) could alleviate the negative effects of such stress by improvement in stomatal conductance, photosynthesis and biomass. The aim of this study is to evaluate the ecophysiological performance of Cenostigma pyramidale (Tul.) E. Gagnon & G. P. Lewis (Fabaceae) in a greenhouse under salinity conditions in combination with the supply of AMF and leaf Pi. The experiment was conducted in a factorial design considering two levels of salinity (+NaCl and -NaCl), two levels of AMF (+AMF and -AMF) and two levels of leaf Pi supply (+Pi and -Pi). The variables gas exchange, leaf primary metabolism, dry biomass and nutrients were measured. Plants with AMF under non-saline conditions presented a high photosynthesis and biomass. In saline conditions, AMF promoted lower decrease in photosynthesis, high shoot dry matter and low content of leaf and root Na+ and Cl-. Plants treated with leaf Pi increased biomass and photosynthetic pigments under both conditions and accumulated more Cl- in shoots under salinity conditions. When combined, AMF * Pi increased photosynthesis only in non-saline conditions. Plants under salinity conditions without AMF and Pi had higher decreases in gas exchange and high content of Cl- in roots. Therefore, C. pyramidale plants improved their metabolism under both growth conditions in the presence of AMF, Pi or a combination of both. However, the greatest increases in growth and tolerance to salinity occurred in the isolated presence of AMF.
Collapse
Affiliation(s)
- Gabriella Frosi
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Vanessa Andrade Barros
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | | | - Mariana Santos
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Diego Gomes Ramos
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Leonor Costa Maia
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Mauro Guida Santos
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| |
Collapse
|
16
|
Wu HH, Zou YN, Rahman MM, Ni QD, Wu QS. Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. Sci Rep 2017; 7:42389. [PMID: 28181575 PMCID: PMC5299426 DOI: 10.1038/srep42389] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 01/09/2017] [Indexed: 11/19/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) can enhance drought tolerance in plants, whereas little is known regarding AMF contribution to sucrose and proline metabolisms under drought stress (DS). In this study, Funneliformis mosseae and Paraglomus occultum were inoculated into trifoliate orange (Poncirus trifoliata) under well watered and DS. Although the 71-days DS notably (P < 0.05) inhibited mycorrhizal colonization, AMF seedlings showed significantly (P < 0.05) higher plant growth performance and leaf relative water content, regardless of soil water status. AMF inoculation significantly (P < 0.05) increased leaf sucrose, glucose and fructose concentration under DS, accompanied with a significant increase of leaf sucrose phosphate synthase, neutral invertase, and net activity of sucrose-metabolized enzymes and a decrease in leaf acid invertase and sucrose synthase activity. AMF inoculation produced no change in leaf ornithine-δ-aminotransferase activity, but significantly (P < 0.05) increased leaf proline dehydrogenase activity and significantly (P < 0.05) decreased leaf both Δ1-pyrroline-5-carboxylate reductase and Δ1-pyrroline-5-carboxylate synthetase activity, resulting in lower proline accumulation in AMF plants under DS. Our results therefore suggest that AMF strongly altered leaf sucrose and proline metabolism through regulating sucrose- and proline-metabolized enzyme activities, which is important for osmotic adjustment of the host plant.
Collapse
Affiliation(s)
- Hui-Hui Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
- Institute of Root Biology, Yangtze University, Jingzhou, Hubei 434025, China
| | - Ying-Ning Zou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
- Institute of Root Biology, Yangtze University, Jingzhou, Hubei 434025, China
| | | | - Qiu-Dan Ni
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
- Institute of Root Biology, Yangtze University, Jingzhou, Hubei 434025, China
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
- Institute of Root Biology, Yangtze University, Jingzhou, Hubei 434025, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| |
Collapse
|