1
|
Shu F, Wang D, Sarsaiya S, Jin L, Liu K, Zhao M, Wang X, Yao Z, Chen G, Chen J. Bulbil initiation: a comprehensive review on resources, development, and utilisation, with emphasis on molecular mechanisms, advanced technologies, and future prospects. FRONTIERS IN PLANT SCIENCE 2024; 15:1343222. [PMID: 38650701 PMCID: PMC11033377 DOI: 10.3389/fpls.2024.1343222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/14/2024] [Indexed: 04/25/2024]
Abstract
Bulbil is an important asexual reproductive structure of bulbil plants. It mainly grows in leaf axils, leaf forks, tubers and the upper and near ground ends of flower stems of plants. They play a significant role in the reproduction of numerous herbaceous plant species by serving as agents of plant propagation, energy reserves, and survival mechanisms in adverse environmental conditions. Despite extensive research on bulbil-plants regarding their resources, development mechanisms, and utilisation, a comprehensive review of bulbil is lacking, hindering progress in exploiting bulbil resources. This paper provides a systematic overview of bulbil research, including bulbil-plant resources, identification of development stages and maturity of bulbils, cellular and molecular mechanisms of bulbil development, factors influencing bulbil development, gene research related to bulbil development, multi-bulbil phenomenon and its significance, medicinal value of bulbils, breeding value of bulbils, and the application of plant tissue culture technology in bulbil production. The application value of the Temporary Immersion Bioreactor System (TIBS) and Terahertz (THz) in bulbil breeding is also discussed, offering a comprehensive blueprint for further bulbil resource development. Additionally, additive, seven areas that require attention are proposed: (1) Utilization of modern network technologies, such as plant recognition apps or websites, to collect and identify bulbous plant resources efficiently and extensively; (2) Further research on cell and tissue structures that influence bulb cell development; (3) Investigation of the network regulatory relationship between genes, proteins, metabolites, and epigenetics in bulbil development; (4) Exploration of the potential utilization value of multiple sprouts, including medicinal, ecological, and horticultural applications; (5) Innovation and optimization of the plant tissue culture system for bulbils; (6) Comprehensive application research of TIBS for large-scale expansion of bulbil production; (7) To find out the common share genetics between bulbils and flowers.
Collapse
Affiliation(s)
- Fuxing Shu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Dongdong Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Surendra Sarsaiya
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| | - Leilei Jin
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Kai Liu
- Bozhou Xinghe Agricultural Development Co., Ltd., Bozhou, Anhui, China
- Joint Research Center for Chinese Herbal Medicine of Anhui of Institution of Health and Medicine, Bozhou, Anhui Provence, China
| | - Mengru Zhao
- Bozhou Xinghe Agricultural Development Co., Ltd., Bozhou, Anhui, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Zhaoxu Yao
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guoguang Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Jishuang Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
The Establishment of a Genetic Transformation System and the Acquisition of Transgenic Plants of Oriental Hybrid Lily ( Lilium L.). Int J Mol Sci 2023; 24:ijms24010782. [PMID: 36614225 PMCID: PMC9821642 DOI: 10.3390/ijms24010782] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Lily (Lilium spp.) has elegant flowers and beautiful colors, which makes it popular among people. However, the poor stress resistance and self-propagation ability of lily limit its application in landscaping to a great extent. In addition, transgenic technology is an important means to improve plant characteristics, but the lack of a stable and efficient genetic transformation system is still an important factor restricting the development of lily transgenic technology. Therefore, this study established a good lily regeneration system by screening different explants and plant growth regulators of different concentrations. Then, the genetic transformation system of lily was optimized by screening the critical concentration of antibiotics, the concentration of bacterial solution, and the infection time. Finally, the homologous lily cold resistance gene LlNAC2 and bulblet generation gene LaKNOX1 were successfully transferred to 'Siberia' and 'Sorbonne' to obtain lily transgenic lines. The results showed that when the stem axis was used as explant in 'Siberia', the induction rate was as high as 87%. The induction rate of 'Sorbonne' was as high as 91.7% when the filaments were used as explants. At the same time, in the optimized genetic transformation system, the transformation rate of 'Siberia' and 'Sorbonne' was up to 60%. In conclusion, this study provides the theoretical basis and technical support for improving the resistance and reproductive ability of Oriental lily and the molecular breeding of lily.
Collapse
|
3
|
Transcriptome Analysis Reveals the Molecular Regularity Mechanism Underlying Stem Bulblet Formation in Oriental Lily 'Siberia'; Functional Characterization of the LoLOB18 Gene. Int J Mol Sci 2022; 23:ijms232315246. [PMID: 36499579 PMCID: PMC9738039 DOI: 10.3390/ijms232315246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
The formation of underground stem bulblets in lilies is a complex biological process which is key in their micropropagation. Generally, it involves a stem-to-bulblet transition; however, the underlying mechanism remains elusive. It is important to understand the regulatory mechanism of bulblet formation for the reproductive efficiency of Lilium. In this study, we investigated the regulatory mechanism of underground stem bulblet formation under different conditions regarding the gravity point angle of the stem, i.e., vertical (control), horizontal, and slanting. The horizontal and slanting group displayed better formation of bulblets in terms of quality and quantity compared with the control group. A transcriptome analysis revealed that sucrose and starch were key energy sources for bulblet formation, auxin and cytokinin likely promoted bulblet formation, and gibberellin inhibited bulblet formation. Based on transcriptome analysis, we identified the LoLOB18 gene, a homolog to AtLOB18, which has been proven to be related to embryogenic development. We established the stem bud growth tissue culture system of Lilium and silenced the LoLOb18 gene using the VIGS system. The results showed that the bulblet induction was reduced with down-regulation of LoLOb18, indicating the involvement of LoLOb18 in stem bulblet formation in lilies. Our research lays a solid foundation for further molecular studies on stem bulblet formation of lilies.
Collapse
|
4
|
Li J, Sun M, Li H, Ling Z, Wang D, Zhang J, Shi L. Full-length transcriptome-referenced analysis reveals crucial roles of hormone and wounding during induction of aerial bulbils in lily. BMC PLANT BIOLOGY 2022; 22:415. [PMID: 36030206 PMCID: PMC9419401 DOI: 10.1186/s12870-022-03801-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/08/2022] [Indexed: 06/09/2023]
Abstract
Aerial bulbils are important vegetative reproductive organs in Lilium. They are often perpetually dormant in most Lilium species, and little is known about the induction of these vegetative structures. The world-famous Oriental hybrid lily cultivar 'Sorbonne', which blooms naturally devoid of aerial bulbils, is known for its lovely appearance and sweet fragrance. We found that decapitation stimulated the outgrowth of aerial bulbils at lower stems (LSs) and then application of low and high concentrations of IAA promoted aerial bulbils emergence around the wound at upper stems (USs) of 'Sorbonne'. However, the genetic basis of aerial bulbil induction is still unclear. Herein, 'Sorbonne' transcriptome has been sequenced for the first time using the combination of third-generation long-read and next-generation short-read technology. A total of 46,557 high-quality non-redundant full-length transcripts were generated. Transcriptomic profiling was performed on seven tissues and stems with treatments of decapitation and application of low and high concentrations of IAA, respectively. Functional annotation of 1918 DEGs within stem samples of different treatments showed that hormone signaling, sugar metabolism and wound-induced genes were crucial to bulbils outgrowth. The expression pattern of auxin-, shoot branching hormone-, plant defense hormone- and wound-inducing-related genes indicated their crucial roles in bulbil induction. Then we established five hormone- and wounding-regulated co-expression modules and identified some candidate transcriptional factors, such as MYB, bZIP, and bHLH, that may function in inducing bulbils. High connectivity was observed among hormone signaling genes, wound-induced genes, and some transcriptional factors, suggesting wound- and hormone-invoked signals exhibit extensive cross-talk and regulate bulbil initiation-associated genes via multilayered regulatory cascades. We propose that the induction of aerial bulbils at LSs after decapitation can be explained as the release of apical dominance. In contrast, the induction of aerial bulbils at the cut surface of USs after IAA application occurs via a process similar to callus formation. This study provides abundant candidate genes that will deepen our understanding of the regulation of bulbil outgrowth, paving the way for further molecular breeding of lily.
Collapse
Affiliation(s)
- Jingrui Li
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China
| | - Meiyu Sun
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China
| | - Hui Li
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China
| | - Zhengyi Ling
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China
| | - Di Wang
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China
| | - Jinzheng Zhang
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China
| | - Lei Shi
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China.
| |
Collapse
|