1
|
Nabaei M, Amooaghaie R, Ghorbanpour M, Ahadi A. Crosstalk between melatonin and nitric oxide restrains Cadmium-induced oxidative stress and enhances vinblastine biosynthesis in Catharanthus roseus (L) G Don. PLANT CELL REPORTS 2024; 43:139. [PMID: 38735908 DOI: 10.1007/s00299-024-03229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
KEY MESSAGE Nitric oxide functions downstream of the melatonin in adjusting Cd-induced osmotic and oxidative stresses, upregulating the transcription of D4H and DAT genes, and increasing total alkaloid and vincristine contents. A few studies have investigated the relationship between melatonin (MT) and nitric oxide (NO) in regulating defensive responses. However, it is still unclear how MT and NO interact to regulate the biosynthesis of alkaloids and vincristine in leaves of Catharanthus roseus (L.) G. Don under Cd stress. Therefore, this context was explored in the present study. Results showed that Cd toxicity (200 µM) induced oxidative stress, decreased biomass, Chl a, and Chl b content, and increased the content of total alkaloid and vinblastine in the leaves. Application of both MT (100 µM) and sodium nitroprusside (200 µM SNP, as NO donor) enhanced endogenous NO content and accordingly increased metal tolerance index, the content of total alkaloid and vinblastine. It also upregulated the transcription of two respective genes (D4H and DAT) under non-stress and Cd stress conditions. Moreover, the MT and SNP treatments reduced the content of H2O2 and malondialdehyde, increased the activities of superoxide dismutase and ascorbate peroxidase, enhanced proline accumulation, and improved relative water content in leaves of Cd-exposed plants. The scavenging NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy l-3-oxide (cPTIO) averted the effects of MT on the content of total alkaloid and vinblastine and antioxidative responses. Still, the effects conferred by NO on attributes mentioned above were not significantly impaired by p-chlorophenylalanine (p-CPA as an inhibitor of MT biosynthesis). These findings and multivariate analyses indicate that MT motivated terpenoid indole alkaloid biosynthesis and mitigated Cd-induced oxidative stress in the leaves of periwinkle in a NO-dependent manner.
Collapse
Affiliation(s)
- Masoomeh Nabaei
- Plant Science Department, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Rayhaneh Amooaghaie
- Plant Science Department, Faculty of Science, Shahrekord University, Shahrekord, Iran.
- Biotechnology Research Institute, Shahrekord University, Shahrekord, Iran.
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | - Alimohammad Ahadi
- Genetic Department, Science Faculty, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
2
|
Zboińska M, Janeczko A, Kabała K. Involvement of NO in V-ATPase Regulation in Cucumber Roots under Control and Cadmium Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:2884. [PMID: 37571036 PMCID: PMC10420687 DOI: 10.3390/plants12152884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Nitric oxide (NO) is a signaling molecule that participates in plant adaptation to adverse environmental factors. This study aimed to clarify the role of NO in the regulation of vacuolar H+-ATPase (V-ATPase) in the roots of cucumber seedlings grown under control and Cd stress conditions. In addition, the relationship between NO and salicylic acid (SA), as well as their interrelations with hydrogen sulfide (H2S) and hydrogen peroxide (H2O2), have been verified. The effect of NO on V-ATPase was studied by analyzing two enzyme activities, the expression level of selected VHA genes and the protein level of selected VHA subunits in plants treated with a NO donor (sodium nitroprusside, SNP) and NO biosynthesis inhibitors (tungstate, WO42- and N-nitro-L-arginine methyl ester, L-NAME). Our results indicate that NO functions as a positive regulator of V-ATPase and that this regulation depends on NO generated by nitrate reductase and NOS-like activity. It was found that the mechanism of NO action is not related to changes in the gene expression or protein level of the V-ATPase subunits. The results suggest that in cucumber roots, NO signaling interacts with the SA pathway and, to a lesser extent, with two other known V-ATPase regulators, H2O2 and H2S.
Collapse
Affiliation(s)
- Magdalena Zboińska
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland;
| | - Anna Janeczko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland;
| | - Katarzyna Kabała
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland;
| |
Collapse
|
3
|
Jiao G, Huang Y, Dai H, Gou H, Li Z, Shi H, Yang J, Ni S. Responses of rhizosphere microbial community structure and metabolic function to heavy metal coinhibition. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6177-6198. [PMID: 37269417 DOI: 10.1007/s10653-023-01626-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/18/2023] [Indexed: 06/05/2023]
Abstract
Metal mineral mining results in releases of large amounts of heavy metals into the environment, and it is necessary to better understand the response of rhizosphere microbial communities to simultaneous stress from multiple heavy metals (HMs), which directly impacts plant growth and human health. In this study, by adding different concentrations of cadmium (Cd) to a soil with high background concentrations of vanadium (V) and chromium (Cr), the growth of maize during the jointing stage was explored under limiting conditions. High-throughput sequencing was used to explore the response and survival strategies of rhizosphere soil microbial communities to complex HM stress. The results showed that complex HMs inhibited the growth of maize at the jointing stage, and the diversity and abundance of maize rhizosphere soil microorganisms were significantly different at different metal enrichment levels. In addition, according to the different stress levels, the maize rhizosphere attracted many tolerant colonizing bacteria, and cooccurrence network analysis showed that these bacteria interacted very closely. The effects of residual heavy metals on beneficial microorganisms (such as Xanthomonas, Sphingomonas, and lysozyme) were significantly stronger than those of bioavailable metals and soil physical and chemical properties. PICRUSt analysis revealed that the different forms of V and Cd had significantly greater effects on microbial metabolic pathways than all forms of Cr. Cr mainly affected the two major metabolic pathways: microbial cell growth and division and environmental information transmission. In addition, significant differences in rhizosphere microbial metabolism under different concentrations were found, and this can serve as a reference for subsequent metagenomic analysis. This study is helpful for exploring the threshold for the growth of crops in toxic HM soils in mining areas and achieving further biological remediation.
Collapse
Affiliation(s)
- Ganghui Jiao
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Yi Huang
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China.
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China.
| | - Hao Dai
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Hang Gou
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Zijing Li
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Huibin Shi
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Jinyan Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China
| | - Shijun Ni
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China
| |
Collapse
|
4
|
Allagulova CR, Lubyanova AR, Avalbaev AM. Multiple Ways of Nitric Oxide Production in Plants and Its Functional Activity under Abiotic Stress Conditions. Int J Mol Sci 2023; 24:11637. [PMID: 37511393 PMCID: PMC10380521 DOI: 10.3390/ijms241411637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Nitric oxide (NO) is an endogenous signaling molecule that plays an important role in plant ontogenesis and responses to different stresses. The most widespread abiotic stress factors limiting significantly plant growth and crop yield are drought, salinity, hypo-, hyperthermia, and an excess of heavy metal (HM) ions. Data on the accumulation of endogenous NO under stress factors and on the alleviation of their negative effects under exogenous NO treatments indicate the perspectives of its practical application to improve stress resistance and plant productivity. This requires fundamental knowledge of the NO metabolism and the mechanisms of its biological action in plants. NO generation occurs in plants by two main alternative mechanisms: oxidative or reductive, in spontaneous or enzymatic reactions. NO participates in plant development by controlling the processes of seed germination, vegetative growth, morphogenesis, flower transition, fruit ripening, and senescence. Under stressful conditions, NO contributes to antioxidant protection, osmotic adjustment, normalization of water balance, regulation of cellular ion homeostasis, maintenance of photosynthetic reactions, and growth processes of plants. NO can exert regulative action by inducing posttranslational modifications (PTMs) of proteins changing the activity of different enzymes or transcriptional factors, modulating the expression of huge amounts of genes, including those related to stress tolerance. This review summarizes the current data concerning molecular mechanisms of NO production and its activity in plants during regulation of their life cycle and adaptation to drought, salinity, temperature stress, and HM ions.
Collapse
Affiliation(s)
- Chulpan R Allagulova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| | - Alsu R Lubyanova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| | - Azamat M Avalbaev
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| |
Collapse
|
5
|
Kapoor RT, Ahmad A, Shakoor A, Paray BA, Ahmad P. Nitric Oxide and Strigolactone Alleviate Mercury-Induced Oxidative Stress in Lens culinaris L. by Modulating Glyoxalase and Antioxidant Defense System. PLANTS (BASEL, SWITZERLAND) 2023; 12:1894. [PMID: 37176951 PMCID: PMC10181142 DOI: 10.3390/plants12091894] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 05/15/2023]
Abstract
Developmental activities have escalated mercury (Hg) content in the environment and caused food security problems. The present investigation describes mercury-incited stress in Lens culinaris (lentil) and its mitigation by supplementation of sodium nitroprusside (SNP) and strigolactone (GR24). Lentil exposure to Hg decreased root and shoot length, relative water content and biochemical variables. Exogenous application of SNP and GR24 alone or in combination enhanced all of the aforementioned growth parameters. Hg treatment increased electrolyte leakage and malondialdehyde content, but this significantly decreased with combined application (Hg + SNP + GR24). SNP and GR24 boosted mineral uptake and reduced Hg accumulation, thus minimizing the adverse impacts of Hg. An increase in mineral accretion was recorded in lentil roots and shoots in the presence of SNP and GR24, which might support the growth of lentil plants under Hg stress. Hg accumulation was decreased in lentil roots and shoots by supplementation of SNP and GR24. The methylglyoxal level was reduced in lentil plants with increase in glyoxalase enzymes. Antioxidant and glyoxylase enzyme activities were increased by the presence of SNP and GR24. Therefore, synergistic application of nitric oxide and strigolactone protected lentil plants against Hg-incited oxidative pressure by boosting antioxidant defense and the glyoxalase system, which assisted in biochemical processes regulation.
Collapse
Affiliation(s)
- Riti Thapar Kapoor
- Plant Physiology Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, Uttar Pradesh, India
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, 25198 Lleida, Spain
| | - Bilal Ahamad Paray
- Zoology Department, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Parvaiz Ahmad
- Department of Botany, Govt. Degree College, Pulwama 192301, Jammu and Kashmir, India
| |
Collapse
|
6
|
Valentovičová K, Demecsová L, Liptáková Ľ, Zelinová V, Tamás L. Inhibition of peroxidases and oxidoreductases is crucial for avoiding false-positive reactions in the localization of reactive oxygen species in intact barley root tips. PLANTA 2022; 255:69. [PMID: 35174422 DOI: 10.1007/s00425-022-03850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
NBT and HE may be efficiently used for the detection of superoxide, while DCDHF-DA and DHR123 for the detection of peroxynitrite in intact barley root tips, only if PRXs and oxidoreductases are inhibited to avoid false-positive reactions. Strong peroxidase (PRX) and oxidoreductase activities were observed in the barley root tips that were markedly inhibited by NaN3. Rapid and strong nitro-blue tetrazolium chloride (NBT) reduction is associated mainly with the vital functions of root cells but not with superoxide formation. In turn, the inhibition of root surface redox activity by NaN3 strongly reduced the formation of formazan, but its slight accumulation, observed in the root elongation zone, was a result of NADPH oxidase-mediated apoplastic superoxide formation. A longer staining time period with NBT was required for the detection of antimycin A-mediated superoxide formation inside the cells. This antimycin A-induced superoxide was clearly detectable by hydroethidine (HE) after the inhibition of PRXs by NaN3, and it was restricted into the root transition zone. TEMPOL, a superoxide scavenger, strongly inhibited both NBT reduction and HE oxidation in the presence of NaN3. Similarly, the DCDHF-DA and DHR123 oxidation was markedly reduced after the inhibition of apoplastic PRXs by NaN3 and was detectable mainly in the root transition zone. This fluorescence signal was not influenced by the application of pyruvate but was strongly reduced by urea, a peroxynitrite scavenger. The presented results suggest that if the root PRXs and oxidoreductases are inhibited, both NBT and HE detect mainly superoxide, whereas both DCDHF-DA and DHR123 may be efficiently used for the detection of peroxynitrite in intact barley root tips. The inhibition of PRXs and oxidoreductases is crucial for avoiding false-positive reactions in the localization of reactive oxygen species in the intact barley root tip.
Collapse
Affiliation(s)
- Katarína Valentovičová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic
| | - Loriana Demecsová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic
| | - Ľubica Liptáková
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic
| | - Veronika Zelinová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic
| | - Ladislav Tamás
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic.
| |
Collapse
|
7
|
Mišúthová A, Slováková Ľ, Kollárová K, Vaculík M. Effect of silicon on root growth, ionomics and antioxidant performance of maize roots exposed to As toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:155-166. [PMID: 34628176 DOI: 10.1016/j.plaphy.2021.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 05/28/2023]
Abstract
Nowadays, one of the biggest challenges of plant physiology is to find out the ways how to mitigate negative impacts of abiotic stress on plants. It is the pollution of groundwater or soil by various metals and metalloids that significantly affects the quality of life. Both arsenic (As) and silicon (Si) are metalloids - while the first one is toxic in general, the latter one is considered as beneficial for plants suffering from various kinds of stresses. The aim of our work was to elucidate the growth and development of young maize (Zea mays L.) plants exposed to both of these metalloids simultaneously. Experiments were focused on the comparison of root growth and biomass allocation, changes in uptake of macro- and micronutrients, visualisation of free radicals along with monitoring of the dynamics of main antioxidant enzymes activity in roots. The results showed that increasing concentration of As (75 and 150 μM As) severely inhibited root length and the amount of biomass, and addition of Si (2.5 mM) to the medium containing As did not have a significant effect on root growth. Similarly, the application of Si did not influence the uptake of macro- and microelements into the roots (mainly Ca, P, K, Mo, Cu, Zn and Ni) which was mostly decreased due to As. On the other hand, Si significantly decreased the presence of both superoxide and hydrogen peroxide in roots that suffered from As toxicity. Although the overall growth of maize plants was not improved by Si amendment, we assume that Si might affect the functionality of key antioxidant enzymes in time, and in this way at least partially help to overcome negative effects of As on maize roots.
Collapse
Affiliation(s)
- Adriana Mišúthová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska Dolina B2, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Ľudmila Slováková
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska Dolina B2, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Karin Kollárová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska Dolina B2, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska Dolina B2, Ilkovicova 6, 842 15, Bratislava, Slovakia; Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dubravska Cesta 9, 845 23, Bratislava, Slovakia.
| |
Collapse
|
8
|
Silicon and cadmium interaction of maize (Zea mays L.) plants cultivated in vitro. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00799-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Demecsová L, Zelinová V, Liptáková Ľ, Valentovičová K, Tamás L. Indole-3-butyric acid priming reduced cadmium toxicity in barley root tip via NO generation and enhanced glutathione peroxidase activity. PLANTA 2020; 252:46. [PMID: 32885283 DOI: 10.1007/s00425-020-03451-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/27/2020] [Indexed: 05/13/2023]
Abstract
Activation of GPX and enhanced NO level play a key role in IBA-mediated enhanced Cd tolerance in young barley roots. Application of exogenous indole-3-acetic acid (IAA) or an IAA precursor improves the tolerance of plants to heavy metals. However, the physiology of these tolerance mechanisms remains largely unknown. Therefore, we studied the priming effect of indole-3-butyric acid (IBA), an IAA precursor, on mild and severe cadmium (Cd) stress-induced responses in roots of young barley seedlings. IBA, similarly to mild Cd stress, significantly increased the glutathione peroxidase (GPX) activity in the apexes of barley roots, which remained elevated after the IBA pretreatment as well. IBA pretreatment-evoked high nitric oxide generation in roots effectively reduced the high superoxide level under the severe Cd stress, leading to less toxic peroxynitrite accumulation accompanied by markedly reduced Cd-induced cell death. On the other hand, the IBA-evoked changes in IAA homeostasis resulted in root growth reorientation from longitudinal elongation to radial swelling. However, the application of an IAA signaling inhibitor, following the activation of defense responses by IBA, was able to promote root growth even at high concentrations of Cd. Based on the results, it can be concluded that the application of IBA, as an effective activator of Cd tolerance mechanisms in young barley roots, and the subsequent use of an IAA signaling inhibitor for the inhibition of root morphogenic responses induced by altered auxin metabolism, results in a high degree of root Cd tolerance, helping it to withstand even the transient exposure to lethal Cd concentration without the absolute inhibition of root growth.
Collapse
Affiliation(s)
- Loriana Demecsová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic
| | - Veronika Zelinová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic
| | - Ľubica Liptáková
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic
| | - Katarína Valentovičová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic
| | - Ladislav Tamás
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic.
| |
Collapse
|
10
|
Kaya C, Ashraf M, Alyemeni MN, Ahmad P. The role of nitrate reductase in brassinosteroid-induced endogenous nitric oxide generation to improve cadmium stress tolerance of pepper plants by upregulating the ascorbate-glutathione cycle. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110483. [PMID: 32247238 DOI: 10.1016/j.ecoenv.2020.110483] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/29/2020] [Accepted: 03/13/2020] [Indexed: 05/03/2023]
Abstract
A study was performed to assess if nitrate reductase (NR) participated in brassinosteroid (BR)-induced cadmium (Cd) stress tolerance primarily by accelerating the ascorbate-glutathione (AsA-GSH) cycle. Prior to initiating Cd stress (CdS), the pepper plants were sprayed with 0.5 μM 24-epibrassinolide (EBR) every other day for 10 days. Thereafter the seedlings were subjected to control or CdS (0.1 mM CdCl2) for four weeks. Cadmium stress decreased the plant growth related attributes, water relations as well as the activities of monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), but enhanced proline content, leaf Cd2+ content, oxidative stress-related traits, activities of ascorbate peroxidase (APX) and glutathione reductase (GR), and the activities of antioxidant defence system-related enzymes as well as NR activity and endogenous nitric oxide content. EBR reduced leaf Cd2+ content and oxidative stress-related parameters, enhanced plant growth, regulated water relations, and led to further increases in proline content, AsA-GSH cycle-related enzymes' activities, antioxidant defence system-related enzymes as well as NR activity and endogenous nitric oxide content. The EBR and the inhibitor of NR (tungstate) reversed the positive effects of EBR by reducing NO content, showing that NR could be a potential contributor of EBR-induced generation of NO which plays an effective role in tolerance to CdS in pepper plants by accelerating the AsA-GSH cycle and antioxidant enzymes.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| | | | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
11
|
Demecsová L, Tamás L. Reactive oxygen species, auxin and nitric oxide in metal-stressed roots: toxicity or defence. Biometals 2019; 32:717-744. [PMID: 31541378 DOI: 10.1007/s10534-019-00214-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/29/2019] [Indexed: 10/25/2022]
Abstract
The presented review is a summary on the current knowledge about metal induced stress response in plants, focusing on the roles of reactive oxygen species, auxin and nitric oxide in roots. The article focuses mainly on the difference between defence and toxicity symptoms of roots during metal-induced stress. Nowadays, pollution of soils by heavy metals is a rapidly growing issue, which affects agriculture and human health. In order to deal with these problems, we must first understand the basic mechanisms and responses to environmental conditions in plants growing under such conditions. Studies so far show somewhat conflicting data, interpreting the same stress responses as both symptoms of defence and toxicity. Therefore, the aim of this review is to give a report about current knowledge of heavy metal-induced stress research, and also to differentiate between toxicity and defence, and outline the challenges of research, focusing on reactive oxygen and nitrogen species, auxin, and the interplay among them. There are still remaining questions on how reactive oxygen and nitrogen species, as well as auxin, can activate either symptoms of toxicity or defence, and adaptation responses.
Collapse
Affiliation(s)
- Loriana Demecsová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic
| | - Ladislav Tamás
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic.
| |
Collapse
|