1
|
Arif M, Ilyas M, Adnan M, Kalsoom R, Ren M, Xu R, Li L. Molecular mechanisms and breeding strategies for enhancing wheat resilience to environmental stresses: The role of heat shock proteins and implications for food security. Int J Biol Macromol 2025; 308:142468. [PMID: 40154715 DOI: 10.1016/j.ijbiomac.2025.142468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/13/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Wheat is a major staple crop that plays a pivotal role in global food security. However, its productivity is increasingly compromised by environmental stresses such as heat, drought, salinity and heavy metal toxicity. The broad understanding of molecular mechanisms responsible for wheat resilience is reviewed, with a particular focus on heat shock proteins (HSPs) as key mediators of stress adjustment. HSPs play the role of molecular chaperones, whereby they stabilize proteins and prevent aggregation and oxidative stress to maintain the homeostatic function of cells in the most extreme conditions. We trained omics technologies such as genomics, transcriptomics, proteomics, and metabolomics to identify genes responsive to stress, thus boosting the breeding approach for better resilience in wheat. Now, genome editing tools such as CRISPR/Cas9 have hastened the development of climate-resilient wheat varieties, complementing traditional breeding strategies. Heavy metal toxicity disturbs the metabolic pathways; however, certain metals are micronutrients, and a balanced approach is essential to improve tolerance. Molecular breeding, precision agriculture, and sustainable soil management should be integrated into future studies to mitigate stress impacts and ensure stable yields. Our interdisciplinary approaches will drive sustainable agri-ecosystems for global food security amid climate change and degradation.
Collapse
Affiliation(s)
- Muhammad Arif
- College of Agriculture, Guizhou University, Guiyang 550025, Guizhou, China; Guizhou Sub-center of National Wheat Improvement Center, Guiyang 550025, China
| | - Muhammad Ilyas
- Department of Botany, Kohsar University Murree, Punjab, Pakistan
| | - Muhammad Adnan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Rabia Kalsoom
- Plant Virology Section, Ayub Agriculture Research Institute, Faisalabad, Pakistan
| | - Mingjian Ren
- College of Agriculture, Guizhou University, Guiyang 550025, Guizhou, China; Guizhou Sub-center of National Wheat Improvement Center, Guiyang 550025, China
| | - Ruhong Xu
- College of Agriculture, Guizhou University, Guiyang 550025, Guizhou, China; Guizhou Sub-center of National Wheat Improvement Center, Guiyang 550025, China
| | - Luhua Li
- College of Agriculture, Guizhou University, Guiyang 550025, Guizhou, China; Guizhou Sub-center of National Wheat Improvement Center, Guiyang 550025, China.
| |
Collapse
|
2
|
Luan H, Song D, Huang K, Li S, Xu H, Kachroo P, Kachroo A, Zhao L. Genome-wide analysis of the soybean eEF gene family and its involvement in virus resistance. FRONTIERS IN PLANT SCIENCE 2024; 15:1421221. [PMID: 39224853 PMCID: PMC11366645 DOI: 10.3389/fpls.2024.1421221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Eukaryotic elongation factors (eEFs) are protein factors that mediate the extension of peptide chain, among which eukaryotic elongation factor 1 alpha (eEF1A) is one of the most abundant protein synthesis factors. Previously we showed that the P3 protein of Soybean mosaic virus (SMV), one of the most destructive and successful viral pathogens of soybean, targets a component of the soybean translation elongation complex to facilitate its pathogenesis. Here, we conducted a systematic analyses of the soybean eEF (GmeEF) gene family in soybean and examinedits role in virus resistance. In this study, GmeEF family members were identified and characterized based on sequence analysis. The 42 members, which were unevenly distributed across the 15 chromosomes, were renamed according to their chromosomal locations. The GmeEF members were further divided into 12 subgroups based on conserved motif, gene structure, and phylogenetic analyses. Analysis of the promoter regions showed conspicuous presence of myelocytomatosis (MYC) and ethylene-responsive (ERE) cis-acting elements, which are typically involved in drought and phytohormone response, respectively, and thereby in plant stress response signaling. Transcriptome data showed that the expression of 15 GmeEF gene family members changed significantly in response to SMV infection. To further examine EF1A function in pathogen response, three different Arabidopsis mutants carrying T-DNA insertions in orthologous genes were analyzed for their response to Turnip crinkle virus (TCV) and Cucumber mosaic virus (CMV). Results showed that there was no difference in viral response between the mutants and the wild type plants. This study provides a systematic analysis of the GmeEF gene family through analysis of expression patterns and predicted protein features. Our results lay a foundation for understanding the role of eEF gene in soybean anti-viral response.
Collapse
Affiliation(s)
- Hexiang Luan
- Institute of Plant Genetic Engineering, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Daiqiao Song
- Institute of Plant Genetic Engineering, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Kai Huang
- Institute of Plant Genetic Engineering, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shuxin Li
- Institute of Plant Genetic Engineering, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hao Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States
| | - Longgang Zhao
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
3
|
Mihailova G, Solti Á, Sárvári É, Hunyadi-Gulyás É, Georgieva K. Protein Changes in Shade and Sun Haberlea rhodopensis Leaves during Dehydration at Optimal and Low Temperatures. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020401. [PMID: 36679114 PMCID: PMC9861795 DOI: 10.3390/plants12020401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 05/27/2023]
Abstract
Haberlea rhodopensis is a unique resurrection plant of high phenotypic plasticity, colonizing both shady habitats and sun-exposed rock clefts. H. rhodopensis also survives freezing winter temperatures in temperate climates. Although survival in conditions of desiccation and survival in conditions of frost share high morphological and physiological similarities, proteomic changes lying behind these mechanisms are hardly studied. Thus, we aimed to reveal ecotype-level and temperature-dependent variations in the protective mechanisms by applying both targeted and untargeted proteomic approaches. Drought-induced desiccation enhanced superoxide dismutase (SOD) activity, but FeSOD and Cu/ZnSOD-III were significantly better triggered in sun plants. Desiccation resulted in the accumulation of enzymes involved in carbohydrate/phenylpropanoid metabolism (enolase, triosephosphate isomerase, UDP-D-apiose/UDP-D-xylose synthase 2, 81E8-like cytochrome P450 monooxygenase) and protective proteins such as vicinal oxygen chelate metalloenzyme superfamily and early light-induced proteins, dehydrins, and small heat shock proteins, the latter two typically being found in the latest phases of dehydration and being more pronounced in sun plants. Although low temperature and drought stress-induced desiccation trigger similar responses, the natural variation of these responses in shade and sun plants calls for attention to the pre-conditioning/priming effects that have high importance both in the desiccation responses and successful stress recovery.
Collapse
Affiliation(s)
- Gergana Mihailova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Eötvös Loránd University, Pázmány P. Sétány 1/C, H-1117 Budapest, Hungary
| | - Éva Sárvári
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Eötvös Loránd University, Pázmány P. Sétány 1/C, H-1117 Budapest, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Loránd Research Network, Temesvári Krt. 62., H-6726 Szeged, Hungary
| | - Katya Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
4
|
Kumar S, Jeevaraj T, Yunus MH, Chakraborty S, Chakraborty N. The plant cytoskeleton takes center stage in abiotic stress responses and resilience. PLANT, CELL & ENVIRONMENT 2023; 46:5-22. [PMID: 36151598 DOI: 10.1111/pce.14450] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Stress resilience behaviours in plants are defensive mechanisms that develop under adverse environmental conditions to promote growth, development and yield. Over the past decades, improving stress resilience, especially in crop species, has been a focus of intense research for global food security and economic growth. Plants have evolved specific mechanisms to sense external stress and transmit information to the cell interior and generate appropriate responses. Plant cytoskeleton, comprising microtubules and actin filaments, takes a center stage in stress-induced signalling pathways, either as a direct target or as a signal transducer. In the past few years, it has become apparent that the function of the plant cytoskeleton and other associated proteins are not merely limited to elementary processes of cell growth and proliferation, but they also function in stress response and resilience. This review summarizes recent advances in the role of plant cytoskeleton and associated proteins in abiotic stress management. We provide a thorough overview of the mechanisms that plant cells employ to withstand different abiotic stimuli such as hypersalinity, dehydration, high temperature and cold, among others. We also discuss the crucial role of the plant cytoskeleton in organellar positioning under the influence of high light intensity.
Collapse
Affiliation(s)
- Sunil Kumar
- Stress Biology, National Institute of Plant Genome Research, New Delhi, India
| | - Theboral Jeevaraj
- Stress Biology, National Institute of Plant Genome Research, New Delhi, India
| | - Mohd H Yunus
- Stress Biology, National Institute of Plant Genome Research, New Delhi, India
| | - Subhra Chakraborty
- Stress Biology, National Institute of Plant Genome Research, New Delhi, India
| | | |
Collapse
|
5
|
Marković SM, Živančev D, Horvat D, Torbica A, Jovankić J, Djukić NH. Correlation of elongation factor 1A accumulation with photosynthetic pigment content and yield in winter wheat varieties under heat stress conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:572-581. [PMID: 34175812 DOI: 10.1016/j.plaphy.2021.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Heat stress is one of the most important environmental factors that influences wheat growth and development, leading to significant losses in grain yield and has become a significant detrimental factor for worldwide wheat production. In recent years, several studies suggested that eukaryotic elongation factor 1A (eEF1A), may contribute to heat tolerance in plants, therefore the aim of this study was: to investigate the accumulation of eEF1A in wheat under conditions of moderate and high air temperatures; to determine the amount of photosynthetic pigments and to determine the yield traits; and to examine whether there is a correlation between eEF1A accumulation, photosynthetic pigments, and yield in different wheat varieties. The results showed that heat stress induced accumulation of eEF1A significantly different among wheat varieties and showed that varieties with a higher accumulation of eEF1A under heat stress are characterized by a smaller decrease in the photosynthetic pigments. A correlation between higher accumulation of eEF1A under heat stress and yield traits was found. Analyzed parameters from two growing seasons, indicated that the higher accumulation of eEF1A and a smaller decrease in photosynthetic pigments distinguishes the varieties more resistant to heat stress. The analysis of the molecular mechanisms by immunoblot, under conditions of high and moderate air temperatures in two growing seasons, aims to develop agricultural strategy and develop wheat varieties tolerant to heat stress.
Collapse
Affiliation(s)
- Stefan M Marković
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000, Kragujevac, Serbia.
| | - Dragan Živančev
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000, Novi Sad, Serbia
| | - Daniela Horvat
- Agricultural Institute Osijek, Agrochemical Laboratory, Južno Predgrađe 17, 31000, Osijek, Croatia
| | - Aleksandra Torbica
- University of Novi Sad, Institute of Food Technology, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia
| | - Jovana Jovankić
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Nevena H Djukić
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| |
Collapse
|
6
|
Zeng C, Jia T, Gu T, Su J, Hu X. Progress in Research on the Mechanisms Underlying Chloroplast-Involved Heat Tolerance in Plants. Genes (Basel) 2021; 12:genes12091343. [PMID: 34573325 PMCID: PMC8471720 DOI: 10.3390/genes12091343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022] Open
Abstract
Global warming is a serious challenge plant production has to face. Heat stress not only affects plant growth and development but also reduces crop yield and quality. Studying the response mechanisms of plants to heat stress will help humans use these mechanisms to improve the heat tolerance of plants, thereby reducing the harm of global warming to plant production. Research on plant heat tolerance has gradually become a hotspot in plant molecular biology research in recent years. In view of the special role of chloroplasts in the response to heat stress in plants, this review is focusing on three perspectives related to chloroplasts and their function in the response of heat stress in plants: the role of chloroplasts in sensing high temperatures, the transmission of heat signals, and the improvement of heat tolerance in plants. We also present our views on the future direction of research on chloroplast related heat tolerance in plants.
Collapse
Affiliation(s)
- Chu Zeng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (C.Z.); (T.G.); (J.S.)
| | - Ting Jia
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Tongyu Gu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (C.Z.); (T.G.); (J.S.)
| | - Jinling Su
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (C.Z.); (T.G.); (J.S.)
| | - Xueyun Hu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (C.Z.); (T.G.); (J.S.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|