1
|
Hu J, Zhu T, Yao C, Hao C, Yan H, Pu Z, Ma W, Gao B, Gao H, Kong L, Zhang H, Wang J. PaMYB11 promotes suberin deposition in Norway spruce embryogenic tissue during cryopreservation: A novel resistance mechanism against osmosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2199-2216. [PMID: 38990506 DOI: 10.1111/tpj.16912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
The osmotic resistance mechanism has been extensively studied in whole plants or plant tissues. However, little is known about it in embryogenic tissue (ET) which is widely used in plant-based biotechnological systems. Suberin, a cell wall aliphatic and aromatic heteropolymer, plays a critical role in plant cells against osmosis stress. The suberin regulatory biosynthesis has rarely been studied in gymnosperms. Here, PaMYB11, a subgroup 11 R2R3-MYB transcription factor, plays a key role in the osmotic resistance of Norway spruce (Picea abies) ETs during cryoprotectant pretreatment. Thus, RNA-seq, histological, and analytical chemical analyses are performed on the stable transformations of PaMYB11-OE and PaMYB11-SRDX in Norway spruce ETs. DAP-seq, Y1H, and LUC are further combined to explore the PaMYB11 targets. Activation of PaMYB11 is necessary and sufficient for suberin lamellae deposition on Norway spruce embryogenic cell walls, which plays a decisive role in ET survival under osmotic stress. Transcriptome analysis shows that PaMYB11 enhances suberin lamellae monomer synthesis by promoting very long-chain fatty acid (VLCFA) synthesis. PaPOP, PaADH1, and PaTET8L, the first two (PaADH1 and PaPOP, included) involved in VLCFA synthesis, are proved to be the direct targets of PaMYB11. Our study identified a novel osmotic response directed by PaMYB11 in Norway spruce ET, which provides a new understanding of the resistance mechanism against osmosis in gymnosperms.
Collapse
Affiliation(s)
- Jiwen Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Tianqing Zhu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Chengcheng Yao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Chunhui Hao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Huiling Yan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Ziyan Pu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Benwang Gao
- Management Office of Three Gorges Botanical Garden, Yichang, Hubei, 443111, China
| | - Han Gao
- Management Office of Three Gorges Botanical Garden, Yichang, Hubei, 443111, China
| | - Lisheng Kong
- Department of Biology, Centre for Forest Biology, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| | - Hanguo Zhang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
2
|
Yang M, Zhou B, Song Z, Tan Z, Liu R, Luo Y, Guo Z, Lu S. A calmodulin-like protein PvCML9 negatively regulates salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108642. [PMID: 38643538 DOI: 10.1016/j.plaphy.2024.108642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Calmodulin-like proteins (CMLs) are unique Ca2+ sensors and play crucial roles in response to abiotic stress in plants. A salt-repressed PvCML9 from halophyte seashore paspalum (Paspalum vaginatum O. Swartz) was identified. PvCML9 was localized in the cytoplasm and nucleus and highly expressed in roots and stems. Overexpression of PvCML9 led to reduced salt tolerance in rice and seashore paspalum, whereas downregulating expression of PvCML9 showed increased salt tolerance in seashore paspalum as compared with the wild type (WT), indicating that PvCML9 regulated salt tolerance negatively. Na+ and K+ homeostasis was altered by PvCML9 expression. Lower level of Na+/K+ ratio in roots and shoots was maintained in PvCML9-RNAi lines compared with WT under salt stress, but higher level in overexpression lines. Moreover, higher levels of SOD and CAT activities and proline accumulation were observed in PvCML9-RNAi lines compared with WT under salt stress, but lower levels in overexpression lines, which altered ROS homeostasis. Based on the above data, mutation of its homolog gene OsCML9 in rice by CRISPR/Cas9 was performed. The mutant had enhanced salt tolerance without affecting rice growth and development, suggesting that OsCML9 gene is an ideal target gene to generate salt tolerant cultivars by genome editing in the future.
Collapse
Affiliation(s)
- Meizhen Yang
- College of Life Sciences, Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, 510642, China
| | - Biyan Zhou
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhigang Song
- College of Life Sciences, Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiyu Tan
- College of Life Sciences, Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, 510642, China
| | - Rui Liu
- College of Life Sciences, Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yurong Luo
- College of Life Sciences, Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shaoyun Lu
- College of Life Sciences, Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Ali Q, Sami A, Haider MZ, Ashfaq M, Javed MA. Antioxidant production promotes defense mechanism and different gene expression level in Zea mays under abiotic stress. Sci Rep 2024; 14:7114. [PMID: 38531994 PMCID: PMC10965962 DOI: 10.1038/s41598-024-57939-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
The growth and productivity of maize are severely affected by soil salinity. The crucial determinants for the future performance of plants are productive for seed germination and seedling establishment; however, both stages are liable to soil salinity. For grain, maize is an economically significant crop sensitive to abiotic stresses. However, little is known about defense responses by the salinity-induced antioxidant and oxidative stress in maize. In our work, the commercially available maize variety Raka-Poshi was grown in pots for 30 days under greenhouse conditions. To evaluate the salt-induced oxidative/antioxidant responses in maize for salt stress 0, 25, 50, 75, 100 and 150 mM concentrations, treatments were provided using sodium chloride (NaCl). All the biochemical indices were calculated under all NaCl concentrations, while drought was induced by up to 50% irrigation water. After 30 days of seed germination, the maize leaves were collected for the measurement of lipid peroxidase or malondialdehyde (MDA), glutathione reductase (GR), guaiacol peroxidase (GPOD), hydrogen peroxide (H2O2), superoxide dismutase (SOD), lipoxygenase (LOX), catalase (CAT), ascorbate peroxidase (APOD) and glutathione-S-transferase (GST). The results revealed a 47% reduction under 150 mM NaCl and 50% drought stress conditions. The results have shown that the successive increase of NaCl concentrations and drought caused an increase in catalase production. With successive increase in NaCl concentration and drought stress, lower levels of H2O2, SOD, and MDA were detected in maize leaves. The results regarding the morphology of maize seedlings indicated a successive reduction in the root length and shoot length under applications of salt and drought stress, while root-to-shoot weights were found to be increased under drought stress and decreased under salt stress conditions During gene expression analysis collectively indicate that, under drought stress conditions, the expression levels of all nine mentioned enzyme-related genes were consistently downregulated.
Collapse
Affiliation(s)
- Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agriculture, University of the Punjab, Lahore, 54590, Pakistan.
| | - Adnan Sami
- Department of Plant Breeding and Genetics, Faculty of Agriculture, University of the Punjab, Lahore, 54590, Pakistan
| | - Muhammad Zeshan Haider
- Department of Plant Breeding and Genetics, Faculty of Agriculture, University of the Punjab, Lahore, 54590, Pakistan
| | - Muhammad Ashfaq
- Department of Plant Breeding and Genetics, Faculty of Agriculture, University of the Punjab, Lahore, 54590, Pakistan
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agriculture, University of the Punjab, Lahore, 54590, Pakistan.
| |
Collapse
|
4
|
Li Y, Jiang F, Niu L, Wang G, Yin J, Song X, Ottosen CO, Rosenqvist E, Mittler R, Wu Z, Zhou R. Synergistic regulation at physiological, transcriptional and metabolic levels in tomato plants subjected to a combination of salt and heat stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1656-1675. [PMID: 38055844 DOI: 10.1111/tpj.16580] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
With global warming and climate change, abiotic stresses often simultaneously occur. Combined salt and heat stress was a common phenomenon that was severe, particularly in arid/semi-arid lands. We aimed to reveal the systematic responsive mechanisms of tomato genotypes with different salt/heat susceptibilities to combined salt and heat stress. Morphological and physiological responses of salt-tolerant/sensitive and heat-tolerant/sensitive tomatoes at control, heat, salt and combined stress were investigated. Based on leaf Fv /Fm and H2 O2 content, samples from tolerant genotype at the four treatments for 36 h were taken for transcriptomics and metabolomics. We found that plant height, dry weight and net photosynthetic rate decreased while leaf Na+ concentration increased in all four genotypes under salt and combined stress than control. Changes in physiological indicators such as photosynthetic parameters and defence enzyme activities in tomato under combined stress were regulated by the expression of relevant genes and the accumulation of key metabolites. We screened five key pathways in tomato responding to a combination of salt and heat stress, such as oxidative phosphorylation (map00190). Synergistic regulation at morphological, physiological, transcriptional and metabolic levels in tomato plants was induced by combined stress. Heat stress was considered as a dominant stressor for tomato plants under the current combined stress. The oxidative phosphorylation pathway played a key role in tomato in response to combined stress, where tapped key genes (e.g. alternative oxidase, Aox1a) need further functional analysis. Our study will provide a valuable resource important for studying stress combination and improving tomato tolerance.
Collapse
Affiliation(s)
- Yankai Li
- Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Fangling Jiang
- Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lifei Niu
- Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ge Wang
- Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jian Yin
- Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Carl-Otto Ottosen
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus, N 8200, Denmark
| | - Eva Rosenqvist
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, 2630, Denmark
| | - Ron Mittler
- Division of Plant Science and Technology, College of Agriculture, Food and Natural Resources, University of Missouri, Bond Life Sciences Center, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Zhen Wu
- Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Rong Zhou
- Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus, N 8200, Denmark
| |
Collapse
|
5
|
Alp-Turgut FN, Ozfidan-Konakci C, Arikan B, Comak G, Yildiztugay E. Graphene oxide-based aerogel stimulates growth, mercury accumulation, photosynthesis-related gene expression, antioxidant efficiency and redox status in wheat under mercury exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123117. [PMID: 38086507 DOI: 10.1016/j.envpol.2023.123117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Mercury (Hg) pollution is a global concern in cropland systems. Hg contamination causes a disruption in the growth, energy metabolism, redox balance, and photosynthetic activity of plants. In the removal of Hg toxicity, a recent critical strategy is the use of aerogels with biodegradability and biocompatibility. However, it is unknown how graphene oxide-based aerogels stimulate the defense systems in wheat plants exposed to Hg toxicity. Therefore, in this study, the photosynthetic, genetic, and biochemical effects of reduced graphene oxide aerogel treatments (gA; 50-100-250 mg L-1) were examined in wheat (Triticum aestivum) under Hg stress (50 μM HgCl2). The relative growth rate (RGR) significantly decreased (84%) in response to Hg stress. However, the reduced RGR and water relations (RWC) of wheat were improved by gA treatments. The impaired gas exchange levels (stomatal conductance, carbon assimilation rate, intercellular CO2 concentrations, and transpiration rate) caused by stress were reversed under Hg plus gAs. Additionally, stress hampered chlorophyll fluorescence (Fv/Fo, Fv/Fm), and under Hg toxicity the expression of psaA genes was reduced (>0.4-fold), but psaB gene was significantly up-regulated (>3-fold) which are the genes involved in PSI. By increasing expression patterns of both genes relating to PSI, gAs reversed the adverse consequences on Fv/Fo and Fv/Fm in the presence of excessive Hg concentration. The activities of glutathione S-transferase (GST), glutathione reductase (GR), catalase (CAT), ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) decreased under Hg toxicity. On the other hand, the activities of superoxide dismutase (SOD), APX, GST, and glutathione peroxidase (GPX) increased following gA treatments against stress, leading to the successful elimination of toxic levels of H2O2 and lipid peroxidation (TBARS content) by decreasing the levels by about 30%, and 40%, respectively. By modulating enzyme/non-enzyme activity/contents including the AsA-GSH cycle, gAs contributed to the protection of the cellular redox state. Most important of all, gA applications were able to reduce Hg intake by approximately 66%. Therefore, these results showed that gAs were effective in highly inhibiting Hg uptake and could significantly increase wheat tolerance to toxicity by eliminating Hg-induced oxidative damage and inhibiting metabolic processes involved in photosynthesis. The findings obtained from the study provide a new perspective on the alleviation roles of reduced graphene oxide aerogels as an effective adsorbent for decreasing damages of mercury toxicity in wheat plants.
Collapse
Affiliation(s)
- Fatma Nur Alp-Turgut
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090, Konya, Turkey.
| | - Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Gurbuz Comak
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Mersin, 33100, Turkey.
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| |
Collapse
|
6
|
Sahu PK, Shafi Z, Singh S, Ojha K, Jayalakshmi K, Tilgam J, Manzar N, Sharma PK, Srivastava AK. Colonization potential of endophytes from halophytic plants growing in the "Runn of Kutch" salt marshes and their contribution to mitigating salt stress in tomato cultivation. Front Microbiol 2023; 14:1226149. [PMID: 37705729 PMCID: PMC10495581 DOI: 10.3389/fmicb.2023.1226149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023] Open
Abstract
Increasing soil salinity depreciates the quantity of the crop produce. Looking at the tremendous potential of plant-associated microorganisms in salinity stress mitigation, it would be very useful in exploring and deciphering salt-tolerant microorganisms from halophytic plants and their utilization in cultivated plants. With this aim, in the present study, four halophytic plants were taken from Rann of Kutch, and bacterial endophytes were isolated from different plant organs. These endophytes were characterized by plant growth and health promotion features. The molecular identification was done based on 16 s rRNA sequence similarity. It was found that the endophytic bacteria isolated from 4 different halophytes found sharing phylogenetic relatedness. Four potential endophytes Alkalihalobacillus gibsonii 2H2, Achromobacter insuavis 2H18, Terribacillus halophilus 2H20, and Bacillus siamensis 4H1 were tested in tomato for salinity stress alleviation. Changes in the levels of antioxidants were analyzed. Total chlorophyll, total phenolics, malondialdehyde, and proline content indicated reduced damage in the plant system due to salinity by the application of endophytes. All the treatments exhibited low levels of electrolyte leakage. The accumulation of enzymatic reactive oxygen species scavengers was assessed from the levels of peroxidase, catalase, superoxide dismutase, phenylalanine ammonia-lyase, ascorbate peroxidase, and guiacol peroxidase. The NBT and DAB staining confirmed the findings. The reduction in the accumulation of Na+ ions in tomato leaves was visualized using Sodium Green probes under CSLM and found to be lowest in Terribacillus halophilus 2H20 and Bacillus siamensis 4H1 inoculated plants. The endophyte Terribacillus halophilus 2H20 was the most promising isolate. The colonization in tomato roots was confirmed using a cell tracker system. Results showed that the endophytes were found to have salinity stress mitigation traits. The efficiency could be further improved with the combination of other endophytes tested earlier.
Collapse
Affiliation(s)
- Pramod K. Sahu
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Zaryab Shafi
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Shailendra Singh
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Khushboo Ojha
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - K. Jayalakshmi
- ICAR-Directorate of Onion and Garlic Research, Pune, Maharashtra, India
| | - Jyotsana Tilgam
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Nazia Manzar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Pawan K. Sharma
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Alok K. Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| |
Collapse
|
7
|
Zhang Y, Li P, Niu Y, Zhang Y, Wen G, Zhao C, Jiang M. Evolution of the WRKY66 Gene Family and Its Mutations Generated by the CRISPR/Cas9 System Increase the Sensitivity to Salt Stress in Arabidopsis. Int J Mol Sci 2023; 24:3071. [PMID: 36834483 PMCID: PMC9959582 DOI: 10.3390/ijms24043071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Group Ⅲ WRKY transcription factors (TFs) play pivotal roles in responding to the diverse abiotic stress and secondary metabolism of plants. However, the evolution and function of WRKY66 remains unclear. Here, WRKY66 homologs were traced back to the origin of terrestrial plants and found to have been subjected to both motifs' gain and loss, and purifying selection. A phylogenetic analysis showed that 145 WRKY66 genes could be divided into three main clades (Clade A-C). The substitution rate tests indicated that the WRKY66 lineage was significantly different from others. A sequence analysis displayed that the WRKY66 homologs had conserved WRKY and C2HC motifs with higher proportions of crucial amino acid residues in the average abundance. The AtWRKY66 is a nuclear protein, salt- and ABA- inducible transcription activator. Simultaneously, under salt stress and ABA treatments, the superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities, as well as the seed germination rates of Atwrky66-knockdown plants generated by the clustered, regularly interspaced, short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) system, were all lower than those of wild type (WT) plants, but the relative electrolyte leakage (REL) was higher, indicating the increased sensitivities of the knockdown plants to the salt stress and ABA treatments. Moreover, RNA-seq and qRT-PCR analyses revealed that several regulatory genes in the ABA-mediated signaling pathway involved in stress response of the knockdown plants were significantly regulated, being evidenced by the more moderate expressions of the genes. Therefore, the AtWRKY66 likely acts as a positive regulator in the salt stress response, which may be involved in an ABA-mediated signaling pathway.
Collapse
Affiliation(s)
- Youze Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Peng Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yuqian Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yuxin Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Guosong Wen
- Research & Development Center for Heath Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Changling Zhao
- Research & Development Center for Heath Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Min Jiang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| |
Collapse
|
8
|
Taher D, Nofal E, Hegazi M, El-Gaied MA, El-Ramady H, Solberg SØ. Response of Warm Season Turf Grasses to Combined Cold and Salinity Stress under Foliar Applying Organic and Inorganic Amendments. HORTICULTURAE 2023; 9:49. [DOI: 10.3390/horticulturae9010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Turfgrasses are considered an important part of the landscape and ecological system of golf courses, sports fields, parks, and home lawns. Turfgrass species are affected by many abiotic stresses (e.g., drought, salinity, cold, heat, waterlogging, and heavy metals) and biotic stresses (mainly diseases and pests). In the current study, seashore paspalum (Paspalum vaginatum Sw.) and Tifway bermudagrass (Cynodon transvaalensis Burtt Davy × C. Dactylon) were selected because they are popular turfgrasses frequently used for outdoor lawns and sport fields. The effect of the combined stress from both soil salinity and cold on these warm season grasses was investigated. Some selected organic and inorganic amendments (i.e., humic acid, ferrous sulphate, and silicon) were applied as foliar sprays five times during the winter season from late October to March. This was repeated over two years in field trials involving salt-affected soils. The physiological and chemical parameters of the plants, including plant height; fresh and dry weight per plot; total chlorophyll content; and nitrogen, phosphorus, iron, and potassium content, were measured. The results showed that all the studied amendments improved the growth of seashore paspalum and Tifway bermudagrass during this period compared to the control, with a greater improvement observed when using ferrous sulphate and humic acid compared to silicon. For seashore paspalum, the highest chlorophyll content in April was recorded after the application of ferrous sulphate at a level of 1000 ppm. The current research indicates that when grown on salt-affected soils, these amendments can be used in warm-season grasses to maintain turf quality during cold periods of the year. Further research is needed to examine any negative long-term effects of these amendments and to explain their mechanisms.
Collapse
|
9
|
Hao JS, Xing JF, Hu X, Wang ZY, Tang MQ, Liao L. Distribution Pattern of N6-Methyladenine DNA Modification in the Seashore Paspalum ( Paspalum vaginatum) Genome. FRONTIERS IN PLANT SCIENCE 2022; 13:922152. [PMID: 35873961 PMCID: PMC9302377 DOI: 10.3389/fpls.2022.922152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
N6-methyladenine (6mA) DNA modification has been detected in several eukaryotic organisms, in some of them, it plays important role in the regulation process of stress-resistance response. However, the genome-wide distribution patterns and potential functions of 6mA DNA modification in halophyte Seashore paspalum (Paspalum vaginatum) remain largely unknown. Here, we examined the 6mA landscape in the P. vaginatum genome by adopting single molecule real-time sequencing technology and found that 6mA modification sites were broadly distributed across the P. vaginatum genome. We demonstrated distinct 6mA methylation levels and 6mA distribution patterns in different types of transcription genes, which hinted at different epigenetic rules. Furthermore, the moderate 6mA density genes in P. vaginatum functionally correlated with stress resistance, which also maintained a higher transcriptional level. On the other hand, a specific 6mA distribution pattern in the gene body and near TSS was observed in gene groups with higher RNA expression, which maybe implied some kind of regularity between 6mA site distribution and the protein coding genes transcription was possible. Our study provides new insights into the association between 6mA methylation and gene expression, which may also contribute to key agronomic traits in P. vaginatum.
Collapse
Affiliation(s)
- Jiang-Shan Hao
- College of Tropical Crops, Hainan University, Haikou, China
- Jinhua Polytechnic, Jinhua, China
| | - Jian-Feng Xing
- College of Tropical Crops, Hainan University, Haikou, China
| | - Xu Hu
- College of Tropical Crops, Hainan University, Haikou, China
| | - Zhi-Yong Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Min-Qiang Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Li Liao
- College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
10
|
Bortolin GS, Galviz YC, Pedroso CES, Souza GM. Root/shoot responses to drought and flooding of bahiagrass at reproductive stage depends on genotype ploidy. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:333-350. [PMID: 35190024 DOI: 10.1071/fp21208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Severe water stress is responsible for reducing plant growth and reproduction. This study aimed to evaluate the physiological and biochemical mechanisms associated with the tolerance of two genotipes of bahiagrass (Paspalum notatum Flügge) with different ploidy level to water deficit and flooding at the reproductive stage. Photosynthetic performance of diploid and tetraploid plants was not affected by flooding. In contrast, the water deficit decreased stomatal conductance, increased leaf temperature, and resulted in a decrease in the assimilation rate of the two genotypes. Despite the greater activities of antioxidant enzymes, flooded roots accumulated hydrogen peroxide and malondialdehyde. Roots of plants exposed to water deficit maintained an accumulation of biomass similar to that of control plants; however, with higher levels of total phenol content, total soluble sugars and proline. Diploid plants subjected to flooding had more inflorescences, however, the drought reduced the total number of filled florets per plant. Less starch degradation allows the maintenance and recovery of biomass in the tetraploid genotype, which allows it to maintain its reproductive performance even under drought conditions. Overall, the synthesis of osmoprotectants and activation of antioxidant machinery are important strategies in the tolerance of bahiagrass to water stress at the reproductive stage.
Collapse
Affiliation(s)
- Gabriel S Bortolin
- Department of Plant Sciences, Federal University of Pelotas, Capão do Leão, RS, Brazil
| | - Yutcelia C Galviz
- Department of Botany, Federal University of Pelotas, Capão do Leão, RS, Brazil
| | - Carlos E S Pedroso
- Department of Plant Sciences, Federal University of Pelotas, Capão do Leão, RS, Brazil
| | - Gustavo M Souza
- Department of Botany, Federal University of Pelotas, Capão do Leão, RS, Brazil
| |
Collapse
|