1
|
Huang B, Li Y, Jia K, Wang X, Wang H, Li C, Sui X, Zhang Y, Nie J, Yuan Y, Jia D. The MdMYB44-MdTPR1 repressive complex inhibits MdCCD4 and MdCYP97A3 expression through histone deacetylation to regulate carotenoid biosynthesis in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:540-556. [PMID: 38662911 DOI: 10.1111/tpj.16782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 07/01/2024]
Abstract
Carotenoids are photosynthetic pigments and antioxidants that contribute to different plant colors. However, the involvement of TOPLESS (TPL/TPR)-mediated histone deacetylation in the modulation of carotenoid biosynthesis through ethylene-responsive element-binding factor-associated amphiphilic repression (EAR)-containing transcription factors (TFs) in apple (Malus domestica Borkh.) is poorly understood. MdMYB44 is a transcriptional repressor that contains an EAR repression motif. In the present study, we used functional analyses and molecular assays to elucidate the molecular mechanisms through which MdMYB44-MdTPR1-mediated histone deacetylation influences carotenoid biosynthesis in apples. We identified two carotenoid biosynthetic genes, MdCCD4 and MdCYP97A3, that were confirmed to be involved in MdMYB44-mediated carotenoid biosynthesis. MdMYB44 enhanced β-branch carotenoid biosynthesis by repressing MdCCD4 expression, whereas MdMYB44 suppressed lutein level by repressing MdCYP97A3 expression. Moreover, MdMYB44 partially influences carotenoid biosynthesis by interacting with the co-repressor TPR1 through the EAR motif to inhibit MdCCD4 and MdCYP97A3 expression via histone deacetylation. Our findings indicate that the MdTPR1-MdMYB44 repressive cascade regulates carotenoid biosynthesis, providing profound insights into the molecular basis of histone deacetylation-mediated carotenoid biosynthesis in plants. These results also provide evidence that the EAR-harboring TF/TPL repressive complex plays a universal role in histone deacetylation-mediated inhibition of gene expression in various plants.
Collapse
Affiliation(s)
- Benchang Huang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Yuchen Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Kun Jia
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Xinyuan Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Huimin Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Chunyu Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Xiuqi Sui
- Yantai Modern Fruit Development limited company, Yantai, 264003, China
| | - Yugang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Yongbing Yuan
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Dongjie Jia
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| |
Collapse
|
2
|
Segarra-Medina C, Pascual LS, Alseekh S, Fernie AR, Rambla JL, Gómez-Cadenas A, Zandalinas SI. Comparison of metabolomic reconfiguration between Columbia and Landsberg ecotypes subjected to the combination of high salinity and increased irradiance. BMC PLANT BIOLOGY 2023; 23:406. [PMID: 37620776 PMCID: PMC10463500 DOI: 10.1186/s12870-023-04404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Plants growing in the field are subjected to combinations of abiotic stresses. These conditions pose a devastating threat to crops, decreasing their yield and causing a negative economic impact on agricultural production. Metabolic responses play a key role in plant acclimation to stress and natural variation for these metabolic changes could be key for plant adaptation to fluctuating environmental conditions. RESULTS Here we studied the metabolomic response of two Arabidopsis ecotypes (Columbia-0 [Col] and Landsberg erecta-0 [Ler]), widely used as genetic background for Arabidopsis mutant collections, subjected to the combination of high salinity and increased irradiance. Our findings demonstrate that this stress combination results in a specific metabolic response, different than that of the individual stresses. Although both ecotypes displayed reduced growth and quantum yield of photosystem II, as well as increased foliar damage and malondialdehyde accumulation, different mechanisms to tolerate the stress combination were observed. These included a relocation of amino acids and sugars to act as potential osmoprotectants, and the accumulation of different stress-protective compounds such as polyamines or secondary metabolites. CONCLUSIONS Our findings reflect an initial identification of metabolic pathways that differentially change under stress combination that could be considered in studies of stress combination of Arabidopsis mutants that include Col or Ler as genetic backgrounds.
Collapse
Affiliation(s)
- Clara Segarra-Medina
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain
| | - Lidia S Pascual
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - José L Rambla
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain
| | - Aurelio Gómez-Cadenas
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain.
| | - Sara I Zandalinas
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain.
| |
Collapse
|
3
|
UV Radiation Induces Specific Changes in the Carotenoid Profile of Arabidopsis thaliana. Biomolecules 2022; 12:biom12121879. [PMID: 36551307 PMCID: PMC9775031 DOI: 10.3390/biom12121879] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
UV-B and UV-A radiation are natural components of solar radiation that can cause plant stress, as well as induce a range of acclimatory responses mediated by photoreceptors. UV-mediated accumulation of flavonoids and glucosinolates is well documented, but much less is known about UV effects on carotenoid content. Carotenoids are involved in a range of plant physiological processes, including photoprotection of the photosynthetic machinery. UV-induced changes in carotenoid profile were quantified in plants (Arabidopsis thaliana) exposed for up to ten days to supplemental UV radiation under growth chamber conditions. UV induces specific changes in carotenoid profile, including increases in antheraxanthin, neoxanthin, violaxanthin and lutein contents in leaves. The extent of induction was dependent on exposure duration. No individual UV-B (UVR8) or UV-A (Cryptochrome or Phototropin) photoreceptor was found to mediate this induction. Remarkably, UV-induced accumulation of violaxanthin could not be linked to protection of the photosynthetic machinery from UV damage, questioning the functional relevance of this UV response. Here, it is argued that plants exploit UV radiation as a proxy for other stressors. Thus, it is speculated that the function of UV-induced alterations in carotenoid profile is not UV protection, but rather protection against other environmental stressors such as high intensity visible light that will normally accompany UV radiation.
Collapse
|
4
|
Liu H, Cao X, Azam M, Wang C, Liu C, Qiao Y, Zhang B. Metabolism of Carotenoids and β-Ionone Are Mediated by Carotenogenic Genes and PpCCD4 Under Ultraviolet B Irradiation and During Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2022; 13:814677. [PMID: 35646008 PMCID: PMC9136946 DOI: 10.3389/fpls.2022.814677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Carotenoids are essential pigments widely distributed in tissues and organs of higher plants, contributing to color, photosynthesis, photoprotection, nutrition, and flavor in plants. White- or yellow-fleshed colors in peach were determined by expression of carotenoids cleavage dioxygenase (PpCCD) genes, catalyzing the degradation of carotenoids. The cracked volatile apocarotenoids are the main contributors to peach aroma and flavor with low sensory threshold concentration. However, the detailed regulatory roles of carotenoids metabolism genes remained unclear under UV-B irradiation. In our study, metabolic balance between carotenoids and apocarotenoids was regulated by the expression of phytoene synthase (PSY), β-cyclase (LCY-B), ε-cyclase (LCY-E), and PpCCD4 under UV-B irradiation. The transcript levels of PpPSY, PpLCY-B, PpLCY-E, and PpCHY-B were elevated 2- to 10-fold compared with control, corresponding to a nearly 30% increase of carotenoids content after 6 h UV-B irradiation. Interestingly, the total carotenoids content decreased by nearly 60% after 48 h of storage, while UV-B delayed the decline of lutein and β-carotene. The transcript level of PpLCY-E increased 17.83-fold compared to control, partially slowing the decline rate of lutein under UV-B irradiation. In addition, the transcript level of PpCCD4 decreased to 30% of control after 48 h UV-B irradiation, in accordance with the dramatic reduction of apocarotenoid volatiles and the delayed decrease of β-carotene. Besides, β-ionone content was elevated by ethylene treatment, and accumulation dramatically accelerated at full ripeness. Taken together, UV-B radiation mediated the metabolic balance of carotenoid biosynthesis and catabolism by controlling the transcript levels of PpPSY, PpLCY-B, PpLCY-E, and PpCCD4 in peach, and the transcript level of PpCCD4 showed a positive relationship with the accumulation of β-ionone during the ripening process. However, the detailed catalytic activity of PpCCD4 with various carotenoid substrates needs to be studied further, and the key transcript factors involved in the regulation of metabolism between carotenoids and apocarotenoids need to be clarified.
Collapse
Affiliation(s)
- Hongru Liu
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Laboratory of Fruit Quality Biology Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Xiangmei Cao
- Laboratory of Fruit Quality Biology Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Muhammad Azam
- Pomology Laboratory, Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Chunfang Wang
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chenxia Liu
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yongjin Qiao
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Bo Zhang
- Laboratory of Fruit Quality Biology Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Gea-Botella S, Moreno-Chamba B, de la Casa L, Salazar-Bermeo J, Martí N, Martínez-Madrid MC, Valero M, Saura D. Carotenoids from Persimmon ( Diospyros kaki Thunb.) Byproducts Exert Photoprotective, Antioxidative and Microbial Anti-Adhesive Effects on HaCaT. Pharmaceutics 2021; 13:1898. [PMID: 34834313 PMCID: PMC8618857 DOI: 10.3390/pharmaceutics13111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/25/2022] Open
Abstract
Persimmon (Diospyros kaki Thunb.) fruits are a remarkable source of carotenoids, which have shown protective effects against UV radiation in bacteria, fungi, algae, and plants. The aim of this study was to analyze the photoprotection provided by an acetone extract, rich in carotenoids and obtained from byproducts derived from the persimmon juice industry, against UV-induced cell death in the keratinocyte HaCaT cell line. For this purpose, the cytotoxicity and phototoxicity of carotenoid extract, as well as its intracellular reactive oxygen species (ROS) scavenging and anti-adhesive activities towards HaCaT cells, were evaluated. The in vitro permeation test provided information about the permeability of the carotenoid extract. Persimmon extracts, rich in carotenoids (PEC), were absorbed by HaCaT keratinocyte cells, which reduced the UV-induced intracellular ROS production in treated cells. Thus, PEC exerted a photoprotective and regenerative effect on UV-irradiated HaCaT cells, and this protection was UV dose-dependent. No cytotoxic effect was observed in HaCaT cultures at the concentration tested. PEC treatment also stimulated the adhesion capacity of skin microbiome to HaCaT cells, while exhibiting a significant anti-adhesive activity against all tested pathogens. In conclusion, PEC showed potential for use as a functional ingredient in skin-care products.
Collapse
Affiliation(s)
- Sara Gea-Botella
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain; (S.G.-B.); (B.M.-C.); (L.d.l.C.); (J.S.-B.); (N.M.); (D.S.)
| | - Bryan Moreno-Chamba
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain; (S.G.-B.); (B.M.-C.); (L.d.l.C.); (J.S.-B.); (N.M.); (D.S.)
| | - Laura de la Casa
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain; (S.G.-B.); (B.M.-C.); (L.d.l.C.); (J.S.-B.); (N.M.); (D.S.)
| | - Julio Salazar-Bermeo
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain; (S.G.-B.); (B.M.-C.); (L.d.l.C.); (J.S.-B.); (N.M.); (D.S.)
| | - Nuria Martí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain; (S.G.-B.); (B.M.-C.); (L.d.l.C.); (J.S.-B.); (N.M.); (D.S.)
| | | | - Manuel Valero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain; (S.G.-B.); (B.M.-C.); (L.d.l.C.); (J.S.-B.); (N.M.); (D.S.)
| | - Domingo Saura
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain; (S.G.-B.); (B.M.-C.); (L.d.l.C.); (J.S.-B.); (N.M.); (D.S.)
| |
Collapse
|
6
|
Teixeira da Silva JA. Eszett (ẞ; ß)-carotene is an erroneous, non-existent false positive of beta (β)-carotene. Nutrition 2021; 91-92:111398. [PMID: 34399398 DOI: 10.1016/j.nut.2021.111398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/14/2021] [Indexed: 11/29/2022]
Abstract
There are several isomers of carotene, the main ones being alpha and beta carotene (i.e., α-carotene and β-carotene). The latter serves as a precursor for vitamin A, and is thus a well-studied carotenoid in health, food, and nutrition research. A German special character, the Eszett (uppercase or capital ẞ; lowercase ß), has been confused with the Greek, lowercase beta (β) in some papers in the biomedical literature, and when the lowercase Eszett is written in italics, it looks even more similar to the Greek letter beta. Curiously, this linguistic error has given rise to a "new" form of carotene, Eszett (ß)-carotene, which does not exist. A search on PubMed, Elsevier's sciencedirect.com, and Springer Nature's SpringerLink platforms reveals that there are potentially dozens, if not hundreds of cases or more of this false-positive carotene "isomer," which was supposed to represent β-carotene, but has, through a typographic error, represented a "new" and non-existent form of carotene, ß-carotene. This clearly represents erroneous literature that needs correction.
Collapse
|
7
|
Dubey AK, Khatri K, Jha B, Rathore MS. The novel galactosyl transferase-like (SbGalT) gene from Salicornia brachiata maintains photosynthesis and enhances abiotic stress tolerance in transgenic tobacco. Gene 2021; 786:145597. [PMID: 33766708 DOI: 10.1016/j.gene.2021.145597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 11/25/2022]
Abstract
We hereby report in planta function characterization of a novel galactosyl transferase-like (SbGalT) gene from Salicornia brachiata for enhanced abiotic stress tolerance. The SbGalT gene had an open reading frame of 1563 bp. The ectopic expression of SbGalT gene in tobacco improved the seed germination, seedling growth, biomass accumulation and potassium/sodium ratio under salt and osmotic stress. The SbGalT over-expression delayed stress-induced senescence, pigment break-down and ion induced cytotoxicity in tobacco. Higher contents of organic solutes and potassium under stress maintained the osmotic homeostasis and relative water content in tobacco. Higher activity of antioxidant enzymes under stress in transgenic tobacco curtailed the accumulation of reactive oxygen species (ROS) and maintained the membrane integrity. The chlorophyll a fluorescence transient indicated no effects of the imposed strengths of stress on basal state of photosystem (PS) I in transgenic tobacco over-expressing the SbGalT gene. Due to improved membrane integrity, the transgenic tobacco exhibited improved photosynthesis, stomatal conductance, intercellular CO2, transpiration, maximum quantum yield and operating efficiency of PSII, electron transport, photochemical and non-photochemical quenching. In agreement with photosynthesis, physiological health, tolerance index and growth parameters, transgenic tobacco accumulated higher contents of sugar, starch, amino acid, polyphenol and proline under stress conditions. The multivariate data analysis exhibited significant statistical distinctions among osmotic adjustment, physiological health and growth, and photosynthetic responses in control and SbGalT transgenic tobacco under stress conditions. The results strongly indicated novel SbGalT gene as a potential candidate for developing the smart agriculture.
Collapse
Affiliation(s)
- Ashish K Dubey
- Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat 364001, India
| | - Kusum Khatri
- Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat 364001, India
| | - Bhavanath Jha
- Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat 364001, India
| | - Mangal S Rathore
- Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat 364001, India.
| |
Collapse
|