1
|
Ni B, Klein M, Hossbach B, Feussner K, Hornung E, Herrfurth C, Hamberg M, Feussner I. Arabidopsis GH3.10 conjugates jasmonates. PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 40095511 DOI: 10.1111/plb.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/21/2025] [Indexed: 03/19/2025]
Abstract
Jasmonates regulate plant development and defence. In angiosperms, the canonical bioactive jasmonate is jasmonoyl-isoleucine (JA-Ile), which is formed in Arabidopsis thaliana by JAR1 and GH3.10. In contrast to other jasmonate biosynthesis or perception mutants, however, gh3.10 jar1 knockout lines are still fertile. Therefore we investigated whether further jasmonates and GH3 enzymes contribute to regulation of fertility. Jasmonate levels were analysed by liquid chromatography-mass spectrometry. The substrate range of recombinant GH3.10 and related GH3 enzymes was studied using non-targeted ex vivo metabolomics with flower and leaf extracts of A. thaliana and in vitro enzyme assays. Jasmonate application experiments were performed to study their potential bioactivity. In flowers and wounded leaves of gh3.10 jar1 knockout lines JA-Ile was below the detection limit. While 12-hydroxy-JA was identified as the preferred substrate of GH3.10, no other recombinant GH3 enzymes tested were capable of JA-Ile formation. Additional JA conjugates found in wounded leaves (JA-Gln) or formed in flowers upon MeJA treatment in the absence of JA-Ile (JA-Gln, JA-Asn, JA-Glu) were identified. The aos gh3.10 jar1 was introduced as a novel tool to test for the bioactivity of JA-Gln to regulate fertility. This study found JAR1 and GH3.10 are the only contributors to JA-Ile biosynthesis in Arabidopsis and identified a number of JA conjugates as potential bioactive jasmonates acting in the absence of JA-Ile. However, their contribution in regulating fertility is yet to be conclusively determined.
Collapse
Affiliation(s)
- B Ni
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
| | - M Klein
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
| | - B Hossbach
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
| | - K Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
| | - E Hornung
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
| | - C Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - M Hamberg
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - I Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| |
Collapse
|
2
|
Zhang J, Chen R, Dai F, Tian Y, Shi Y, He Y, Hu Y, Zhang T. Spatial transcriptome and single-cell RNA sequencing reveal the molecular basis of cotton fiber initiation development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70064. [PMID: 40084712 DOI: 10.1111/tpj.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/22/2025] [Accepted: 02/10/2025] [Indexed: 03/16/2025]
Abstract
Recent advances in single-cell transcriptomics have greatly expanded our knowledge of plant development and cellular responses. However, analyzing fiber cell differentiation in plants, particularly in cotton, remains a complex challenge. A spatial transcriptomic map of ovule from -1 DPA, 0 DPA, and 1 DPA in cotton was successfully constructed, which helps to explain the important role of sucrose synthesis and lipid metabolism during early fiber development. Additionally, single-cell RNA sequencing (scRNA-seq) further highlighted the cellular heterogeneity and identified clusters of fiber developmental marker genes. Integration of spatial and scRNA-seq data unveiled key genes SVB and SVBL involved in fiber initiation, suggesting functional redundancy between them. These findings provide a detailed molecular landscape of cotton fiber development, offering valuable insights for enhancing lint yield.
Collapse
Affiliation(s)
- Jun Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Rui Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fan Dai
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yue Tian
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yue Shi
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ying He
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Dziewit K, Amakorová P, Novák O, Szal B, Podgórska A. Systemic strategies for cytokinin biosynthesis and catabolism in Arabidopsis roots and leaves under prolonged ammonium nutrition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108858. [PMID: 38924907 DOI: 10.1016/j.plaphy.2024.108858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Cytokinins are growth-regulating plant hormones that are considered to adjust plant development under environmental stresses. During sole ammonium nutrition, a condition known to induce growth retardation of plants, altered cytokinin content can contribute to the characteristic ammonium toxicity syndrome. To understand the metabolic changes in cytokinin pools, cytokinin biosynthesis and degradation were analyzed in the leaves and roots of mature Arabidopsis plants. We found that in leaves of ammonium-grown plants, despite induction of biosynthesis on the expression level, there was no active cytokinin build-up because they were effectively routed toward their downstream catabolites. In roots, cytokinin conjugation was also induced, together with low expression of major synthetic enzymes, resulting in a decreased content of the trans-zeatin form under ammonium conditions. Based on these results, we hypothesized that in leaves and roots, cytokinin turnover is the major regulator of the cytokinin pool and does not allow active cytokinins to accumulate. A potent negative-regulator of root development is trans-zeatin, therefore its low level in mature root tissues of ammonium-grown plants may be responsible for occurrence of a wide root system. Additionally, specific cytokinin enhancement in apical root tips may evoke a short root phenotype in plants under ammonium conditions. The ability to flexibly regulate cytokinin metabolism and distribution in root and shoot tissues can contribute to adjusting plant development in response to ammonium stress.
Collapse
Affiliation(s)
- Kacper Dziewit
- Department of Plant Bioenergetics, Faculty of Biology, University of Warsaw, I. Miecznikowa 01, 02-096, Warsaw, Poland.
| | - Petra Amakorová
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic.
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic.
| | - Bożena Szal
- Department of Plant Bioenergetics, Faculty of Biology, University of Warsaw, I. Miecznikowa 01, 02-096, Warsaw, Poland.
| | - Anna Podgórska
- Department of Plant Bioenergetics, Faculty of Biology, University of Warsaw, I. Miecznikowa 01, 02-096, Warsaw, Poland.
| |
Collapse
|
4
|
Luo P, Li TT, Shi WM, Ma Q, Di DW. The Roles of GRETCHEN HAGEN3 (GH3)-Dependent Auxin Conjugation in the Regulation of Plant Development and Stress Adaptation. PLANTS (BASEL, SWITZERLAND) 2023; 12:4111. [PMID: 38140438 PMCID: PMC10747189 DOI: 10.3390/plants12244111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
The precise control of free auxin (indole-3-acetic acid, IAA) gradient, which is orchestrated by biosynthesis, conjugation, degradation, hydrolyzation, and transport, is critical for all aspects of plant growth and development. Of these, the GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetase family, pivotal in conjugating IAA with amino acids, has garnered significant interest. Recent advances in understanding GH3-dependent IAA conjugation have positioned GH3 functional elucidation as a hot topic of research. This review aims to consolidate and discuss recent findings on (i) the enzymatic mechanisms driving GH3 activity, (ii) the influence of chemical inhibitor on GH3 function, and (iii) the transcriptional regulation of GH3 and its impact on plant development and stress response. Additionally, we explore the distinct biological functions attributed to IAA-amino acid conjugates.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Ting-Ting Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Ming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Guo X, Chen Y, Hu Y, Feng F, Zhu X, Sun H, Li J, Zhao Q, Sun H. OsMADS5 interacts with OsSPL14/17 to inhibit rice root elongation by restricting cell proliferation of root meristem under ammonium supply. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:87-99. [PMID: 37340958 DOI: 10.1111/tpj.16361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/28/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Nitrogen (N) is a vital major nutrient for rice (Oryza sativa). Rice responds to different applications of N by altering its root morphology, including root elongation. Although ammonium (NH 4 + ) is the primary source of N for rice,NH 4 + is toxic to rice roots and inhibits root elongation. However, the precise molecular mechanism thatNH 4 + -inhibited root elongation of rice is not well understood. Here, we identified a rice T-DNA insert mutant of OsMADS5 with a longer seminal root (SR) under sufficient N conditions. Reverse-transcription quantitative PCR analysis revealed that the expression level of OsMADS5 was increased underNH 4 + compared withNO 3 - supply. UnderNH 4 + conditions, knocking out OsMADS5 (cas9) produced a longer SR, phenocopying osmads5, while there was no significant difference in SR length between wild-type and cas9 underNO 3 - supply. Moreover, OsMADS5-overexpression plants displayed the opposite SR phenotype. Further study demonstrated that enhancement of OsMADS5 byNH 4 + supply inhibited rice SR elongation, likely by reducing root meristem activity of root tip, with the involvement of OsCYCB1;1. We also found that OsMADS5 interacted with OsSPL14 and OsSPL17 (OsSPL14/17) to repress their transcriptional activation by attenuating DNA binding ability. Moreover, loss of OsSPL14/17 function in osmads5 eliminated its stimulative effect on SR elongation underNH 4 + conditions, implying OsSPL14/17 may function downstream of OsMADS5 to mediate rice SR elongation underNH 4 + supply. Overall, our results indicate the existence of a novel modulatory pathway in which enhancement of OsMADS5 byNH 4 + supply represses the transcriptional activities of OsSPL14/17 to restrict SR elongation of rice.
Collapse
Affiliation(s)
- Xiaoli Guo
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yake Chen
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yibo Hu
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fan Feng
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiuli Zhu
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hongzheng Sun
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junzhou Li
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Quanzhi Zhao
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Huwei Sun
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
6
|
Kong J, Yin K, Zhang C, Liu X, Yang N. PLDδ, auxin, and H 2O 2 mediated the allelopathic effect of cycloastragenol on root growth in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 282:153929. [PMID: 36724592 DOI: 10.1016/j.jplph.2023.153929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/06/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Cycloastragenol (CAG) is a tetra-cyclic triterpenoid allelochemical. It has been widely studied in animals but rarely in plants. Here, we reported that a model allelochemical CAG inhibited primary root elongation of Arabidopsis by reducing the sizes of both the meristem and elongation zones. Phospholipase Dδ(PLDδ), hydrogen peroxide (H2O2), and auxin affected this process. After treatment with CAG, the expression of PLDδ and the activity of the Phospholipase D(PLD) enzyme increased in WT. Mutants analysis demonstrated that PLDδ negatively regulated the primary root elongation by CAG treatment. CAG treatment stimulated the accumulation of H2O2 in roots. The production of H2O2 was derived from cell wall peroxidase. Mutants analysis showed that PLDδ positively regulated the production of H2O2 by CAG treatment. CAG also decreased auxin content in the root tip by affecting the expression of auxin synthesis-related genes. PLDδ was involved in the auxin reduction mediated by CAG, but H2O2 did not participate in this process. In conclusion, PLDδ, auxin, and H2O2 mediated the inhibition of primary root growth by CAG in Arabidopsis.
Collapse
Affiliation(s)
- Juantao Kong
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Kai Yin
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Cuixia Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Xuan Liu
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Ning Yang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
7
|
Agorsor IDK, Kagel BT, Danna CH. The Arabidopsis LHT1 Amino Acid Transporter Contributes to Pseudomonas simiae-Mediated Plant Growth Promotion by Modulating Bacterial Metabolism in the Rhizosphere. PLANTS (BASEL, SWITZERLAND) 2023; 12:371. [PMID: 36679084 PMCID: PMC9867026 DOI: 10.3390/plants12020371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
The root microbiome structure ensures optimal plant host health and fitness, and it is, at least in part, defined by the plant genotype. It is well documented that root-secreted amino acids promote microbial chemotaxis and growth in the rhizosphere. However, whether the plant-mediated re-uptake of amino acids contributes to maintaining optimal levels of amino acids in the root exudates, and, in turn, microbial growth and metabolism, remains to be established. Here, we show that Lysine-Histidine Transporter-1 (LHT1), an amino acid inward transporter expressed in Arabidopsis thaliana roots, limits the growth of the plant-growth-promoting bacteria Pseudomonas simiae WCS417r (Ps WCS417r). The amino acid profiling of the lht1 mutant root exudates showed increased levels of glutamine, among other amino acids. Interestingly, lht1 exudates or Gln-supplemented wild-type exudates enhance Ps WCS417r growth. However, despite promoting bacterial growth and robust root colonization, lht1 exudates and Gln-supplemented wild-type exudates inhibited plant growth in a Ps WCS417r-dependent manner. The transcriptional analysis of defense and growth marker genes revealed that plant growth inhibition was not linked to the elicitation of plant defense but likely to the impact of Ps WCS417r amino acids metabolism on auxin signaling. These data suggest that an excess of amino acids in the rhizosphere impacts Ps WCS417r metabolism, which, in turn, inhibits plant growth. Together, these results show that LHT1 regulates the amino-acid-mediated interaction between plants and Ps WCS417r and suggest a complex relationship between root-exuded amino acids, root colonization by beneficial bacteria, bacterial metabolism, and plant growth promotion.
Collapse
Affiliation(s)
- Israel D. K. Agorsor
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Department of Molecular Biology & Biotechnology, School of Biological Sciences, College of Agriculture & Natural Sciences, University of Cape Coast, UC, Cape Coast P.O. Box 5007, Ghana
| | - Brian T. Kagel
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Cristian H. Danna
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
8
|
Ma M, Lu Y, Di D, Kronzucker HJ, Dong G, Shi W. The nitrification inhibitor 1,9-decanediol from rice roots promotes root growth in Arabidopsis through involvement of ABA and PIN2-mediated auxin signaling. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153891. [PMID: 36495813 DOI: 10.1016/j.jplph.2022.153891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/03/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
1,9-decanediol (1,9-D) is a biological nitrification inhibitor secreted in roots, which effectively inhibits soil nitrifier activity and reduces nitrogen loss from agricultural fields. However, the effects of 1,9-D on plant root growth and the involvement of signaling pathways in the plant response to 1,9-D have not been investigated. Here, we report that 1,9-D, in the 100-400 μM concentration range, promotes primary root length in Arabidopsis seedlings at 3d and 5d, by 10.1%-33.3% and 6.9%-32.6%, and, in a range of 50-200 μM, leads to an increase in the number of lateral roots. 150 μM 1,9-D was found optimum for the positive regulation of root growth. qRT-PCR analysis reveals that 1,9-D can significantly increase AtABA3 gene expression and that a mutation in ABA3 results in insensitivity of root growth to 1,9-D. Moreover, through pharmacological experiments, we show that exogenous addition of ABA (abscisic acid) with 1,9-D enhances primary root length by 23.5%-63.3%, and an exogenous supply of 1,9-D with the ABA inhibitor Flu reduces primary root length by 1.0%-14.3%. Primary root length of the pin2/eir1-1 is shown to be insensitive to both exogenous addition of 1,9-D and ABA, indicating that the auxin carrier PIN2/EIR1 is involved in promotion of root growth by 1,9-D. These results suggest a novel for 1,9-D in regulating plant root growth through ABA and auxin signaling.
Collapse
Affiliation(s)
- Mingkun Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufang Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Herbert J Kronzucker
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Xing J, Cao X, Zhang M, Wei X, Zhang J, Wan X. Plant nitrogen availability and crosstalk with phytohormones signallings and their biotechnology breeding application in crops. PLANT BIOTECHNOLOGY JOURNAL 2022. [PMID: 36435985 DOI: 10.1111/pbi.13971] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/27/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen (N), one of the most important nutrients, limits plant growth and crop yields in sustainable agriculture system, in which phytohormones are known to play essential roles in N availability. Hence, it is not surprising that massive studies about the crosstalk between N and phytohormones have been constantly emerging. In this review, with the intellectual landscape of N and phytohormones crosstalk provided by the bibliometric analysis, we trace the research story of best-known crosstalk between N and various phytohormones over the last 20 years. Then, we discuss how N regulates various phytohormones biosynthesis and transport in plants. In reverse, we also summarize how phytohormones signallings modulate root system architecture (RSA) in response to N availability. Besides, we expand to outline how phytohormones signallings regulate uptake, transport, and assimilation of N in plants. Further, we conclude advanced biotechnology strategies, explain their application, and provide potential phytohormones-regulated N use efficiency (NUE) targets in crops. Collectively, this review provides not only a better understanding on the recent progress of crosstalk between N and phytohormones, but also targeted strategies for improvement of NUE to increase crop yields in future biotechnology breeding of crops.
Collapse
Affiliation(s)
- Jiapeng Xing
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing, China
| | - Xiaocong Cao
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xun Wei
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing, China
| | - Juan Zhang
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing, China
| | - Xiangyuan Wan
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing, China
| |
Collapse
|
10
|
Li L, Zang X, Liu J, Ren J, Wang Z, Yang D. Integrated physiological and weighted gene co-expression network analysis reveals the hub genes engaged in nitrate-regulated alleviation of ammonium toxicity at the seedling stage in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1012966. [PMID: 36466221 PMCID: PMC9713819 DOI: 10.3389/fpls.2022.1012966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Wheat has a specific preference for NO3 - and shows toxicity symptoms under high NH4 + concentrations. Increasing the nitrate supply may alleviate ammonium stress. Nevertheless, the mechanisms underlying the nitrate regulation of wheat root growth to alleviate ammonium toxicity remain unclear. In this study, we integrated physiological and weighted gene co-expression network analysis (WGCNA) to identify the hub genes involved in nitrate alleviation of ammonium toxicity at the wheat seedling stage. Five NH4 +/NO3 - ratio treatments, including 100/0 (Na), 75/25 (Nr1), 50/50 (Nr2), 25/75 (Nr3), and 0/100 (Nn) were tested in this study. The results showed that sole ammonium treatment (Na) increased the lateral root number but reduced root biomass. Increasing the nitrate supply significantly increased the root biomass. Increasing nitrate levels decreased abscisic acid (ABA) content and increased auxin (IAA) content. Furthermore, we identified two modules (blue and turquoise) using transcriptome data that were significantly related to root physiological growth indicators. TraesCS6A02G178000 and TraesCS2B02G056300 were identified as hub genes in the two modules which coded for plastidic ATP/ADP-transporter and WRKY62 transcription factors, respectively. Additionally, network analysis showed that in the blue module, TraesCS6A02G178000 interacts with downregulated genes that coded for indolin-2-one monooxygenase, SRG1, DETOXIFICATION, and wall-associated receptor kinase. In the turquoise module, TraesCS2B02G056300 was highly related to the genes that encoded ERD4, ERF109, CIGR2, and WD40 proteins, and transcription factors including WRKY24, WRKY22, MYB30, and JAMYB, which were all upregulated by increasing nitrate supply. These studies suggest that increasing the nitrate supply could improve root growth and alleviate ammonium toxicity through physiological and molecular regulation networks, including ROS, hormonal crosstalk, and transcription factors.
Collapse
|
11
|
Fischer S, Flis P, Zhao FJ, Salt DE. Transcriptional network underpinning ploidy-related elevated leaf potassium in neo-tetraploids. PLANT PHYSIOLOGY 2022; 190:1715-1730. [PMID: 35929797 PMCID: PMC9614460 DOI: 10.1093/plphys/kiac360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Whole-genome duplication generates a tetraploid from a diploid. Newly created tetraploids (neo-tetraploids) of Arabidopsis (Arabidopsis thaliana) have elevated leaf potassium (K), compared to their diploid progenitor. Micro-grafting has previously established that this elevated leaf K is driven by processes within the root. Here, mutational analysis revealed that the K+-uptake transporters K+ TRANSPORTER 1 (AKT1) and HIGH AFFINITY K+ TRANSPORTER 5 (HAK5) are not necessary for the difference in leaf K caused by whole-genome duplication. However, the endodermis and salt overly sensitive and abscisic acid-related signaling were necessary for the elevated leaf K in neo-tetraploids. Contrasting the root transcriptomes of neo-tetraploid and diploid wild-type and mutants that suppress the neo-tetraploid elevated leaf K phenotype allowed us to identify a core set of 92 differentially expressed genes associated with the difference in leaf K between neo-tetraploids and their diploid progenitor. This core set of genes connected whole-genome duplication with the difference in leaf K between neo-tetraploids and their diploid progenitors. The set of genes is enriched in functions such as cell wall and Casparian strip development and ion transport in the endodermis, root hairs, and procambium. This gene set provides tools to test the intriguing idea of recreating the physiological effects of whole-genome duplication within a diploid genome.
Collapse
Affiliation(s)
- Sina Fischer
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Paulina Flis
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | | |
Collapse
|
12
|
Yadav S, Yugandhar P, Alavilli H, Raliya R, Singh A, Sahi SV, Sarkar AK, Jain A. Potassium Chloroaurate-Mediated In Vitro Synthesis of Gold Nanoparticles Improved Root Growth by Crosstalk with Sucrose and Nutrient-Dependent Auxin Homeostasis in Arabidopsis thaliana. NANOMATERIALS 2022; 12:nano12122099. [PMID: 35745438 PMCID: PMC9230854 DOI: 10.3390/nano12122099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/07/2022]
Abstract
In a hydroponic system, potassium chloroaurate (KAuCl4) triggers the in vitro sucrose (Suc)-dependent formation of gold nanoparticles (AuNPs). AuNPs stimulate the growth of the root system, but their molecular mechanism has not been deciphered. The root system of Arabidopsis (Arabidopsis thaliana) exhibits developmental plasticity in response to the availability of various nutrients, Suc, and auxin. Here, we showed the roles of Suc, phosphorus (P), and nitrogen (N) in facilitating a AuNPs-mediated increase in root growth. Furthermore, the recuperating effects of KAuCl4 on the natural (IAA) auxin-mediated perturbation of the root system were demonstrated. Arabidopsis seedlings harboring the cell division marker CycB1;1::CDB-GUS provided evidence of the restoration efficacy of KAuCl4 on the IAA-mediated inhibitory effect on meristematic cell proliferation of the primary and lateral roots. Arabidopsis harboring synthetic auxin DR5rev::GFP exhibited a reinstating effect of KAuCl4 on IAA-mediated aberration in auxin subcellular localization in the root. KAuCl4 also exerted significant and differential recuperating effects on the IAA-mediated altered expression of the genes involved in auxin signaling and biosynthetic pathways in roots. Our results highlight the crosstalk between KAuCl4-mediated improved root growth and Suc and nutrient-dependent auxin homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Sandeep Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (S.Y.); (A.S.)
| | - Poli Yugandhar
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India;
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea;
| | - Ramesh Raliya
- Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA;
| | - Archita Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (S.Y.); (A.S.)
| | - Shivendra V. Sahi
- Department of Biology, University City Campus, Saint Joseph's University, 600 S. 43rd St., Philadelphia, PA 19104, USA;
| | - Ananda K. Sarkar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
- Correspondence:
| |
Collapse
|
13
|
Ortigosa F, Lobato-Fernández C, Shikano H, Ávila C, Taira S, Cánovas FM, Cañas RA. Ammonium regulates the development of pine roots through hormonal crosstalk and differential expression of transcription factors in the apex. PLANT, CELL & ENVIRONMENT 2022; 45:915-935. [PMID: 34724238 DOI: 10.1111/pce.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Ammonium is a prominent source of inorganic nitrogen for plant nutrition, but excessive amounts can be toxic for many species. However, most conifers are tolerant to ammonium, a relevant physiological feature of this ancient evolutionary lineage. For a better understanding of the molecular basis of this trait, ammonium-induced changes in the transcriptome of maritime pine (Pinus pinaster Ait.) root apex have been determined by laser capture microdissection and RNA sequencing. Ammonium promoted changes in the transcriptional profiles of multiple transcription factors, such as SHORT-ROOT, and phytohormone-related transcripts, such as ACO, involved in the development of the root meristem. Nano-PALDI-MSI and transcriptomic analyses showed that the distributions of IAA and CKs were altered in the root apex in response to ammonium nutrition. Taken together, the data suggest that this early response is involved in the increased lateral root branching and principal root growth, which characterize the long-term response to ammonium supply in pine. All these results suggest that ammonium induces changes in the root system architecture through the IAA-CK-ET phytohormone crosstalk and transcriptional regulation.
Collapse
Affiliation(s)
- Francisco Ortigosa
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - César Lobato-Fernández
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Hitomi Shikano
- Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima, Japan
| | - Concepción Ávila
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Shu Taira
- Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima, Japan
| | - Francisco M Cánovas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Rafael A Cañas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
- Integrative Molecular Biology Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| |
Collapse
|
14
|
Jia Z, Giehl RFH, von Wirén N. Nutrient-hormone relations: Driving root plasticity in plants. MOLECULAR PLANT 2022; 15:86-103. [PMID: 34920172 DOI: 10.1016/j.molp.2021.12.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 05/25/2023]
Abstract
Optimal plant development requires root uptake of 14 essential mineral elements from the soil. Since the bioavailability of these nutrients underlies large variation in space and time, plants must dynamically adjust their root architecture to optimize nutrient access and acquisition. The information on external nutrient availability and whole-plant demand is translated into cellular signals that often involve phytohormones as intermediates to trigger a systemic or locally restricted developmental response. Timing and extent of such local root responses depend on the overall nutritional status of the plant that is transmitted from shoots to roots in the form of phytohormones or other systemic long-distance signals. The integration of these systemic and local signals then determines cell division or elongation rates in primary and lateral roots, the initiation, emergence, or elongation of lateral roots, as well as the formation of root hairs. Here, we review the cascades of nutrient-related sensing and signaling events that involve hormones and highlight nutrient-hormone relations that coordinate root developmental plasticity in plants.
Collapse
Affiliation(s)
- Zhongtao Jia
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Ricardo F H Giehl
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany.
| |
Collapse
|
15
|
Luo P, Di D, Wu L, Yang J, Lu Y, Shi W. MicroRNAs Are Involved in Regulating Plant Development and Stress Response through Fine-Tuning of TIR1/AFB-Dependent Auxin Signaling. Int J Mol Sci 2022; 23:ijms23010510. [PMID: 35008937 PMCID: PMC8745101 DOI: 10.3390/ijms23010510] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 11/30/2022] Open
Abstract
Auxin, primarily indole-3-acetic acid (IAA), is a versatile signal molecule that regulates many aspects of plant growth, development, and stress response. Recently, microRNAs (miRNAs), a type of short non-coding RNA, have emerged as master regulators of the auxin response pathways by affecting auxin homeostasis and perception in plants. The combination of these miRNAs and the autoregulation of the auxin signaling pathways, as well as the interaction with other hormones, creates a regulatory network that controls the level of auxin perception and signal transduction to maintain signaling homeostasis. In this review, we will detail the miRNAs involved in auxin signaling to illustrate its in planta complex regulation.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
- Correspondence: (P.L.); (D.D.)
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.L.); (W.S.)
- Correspondence: (P.L.); (D.D.)
| | - Lei Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Jiangwei Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yufang Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.L.); (W.S.)
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.L.); (W.S.)
| |
Collapse
|
16
|
Wu J, Lu Y, Di D, Cai Y, Zhang C, Kronzucker HJ, Shi W, Gu K. OsGF14b is involved in regulating coarse root and fine root biomass partitioning in response to elevated [CO 2] in rice. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153586. [PMID: 34906796 DOI: 10.1016/j.jplph.2021.153586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Elevated [CO2] can increase rice biomass and yield, but the degree of this increase varies substantially among cultivars. Little is known about the gene loci involved in the acclimation and adaptation to elevated [CO2] in rice. Here, we report on a T-DNA insertion mutant in japonica rice exhibiting a significantly enhanced response to elevated [CO2] compared with the wild type (WT). The root biomass response of the mutant was higher than that of the WT, and this manifested in the number of adventitious roots, the average diameter of roots, and total root length. Furthermore, coarse roots (>0.6 mm) and thin lateral roots (<0.2 mm) were more responsive to elevated [CO2] in the mutant. When exposed to lower light intensity, however, the response of the mutant to elevated [CO2] was not superior to that of the WT, indicating that the high response of the mutant under elevated [CO2] was dependent on light intensity. The T-DNA insertion site was located in the promoter region of the OsGF14b gene, and insertion resulted in a significant decrease in OsGF14b expression. Our results indicate that knockout of OsGF14b may improve the response to elevated [CO2] in rice by enhancing carbon allocation to coarse roots and to fine lateral roots.
Collapse
Affiliation(s)
- Jingjing Wu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.
| | - Yufang Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Yue Cai
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225007, China.
| | - Chuanhui Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.
| | - Herbert J Kronzucker
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Kejun Gu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.
| |
Collapse
|
17
|
Dziewit K, Pěnčík A, Dobrzyńska K, Novák O, Szal B, Podgórska A. Spatiotemporal auxin distribution in Arabidopsis tissues is regulated by anabolic and catabolic reactions under long-term ammonium stress. BMC PLANT BIOLOGY 2021; 21:602. [PMID: 34922457 PMCID: PMC8684078 DOI: 10.1186/s12870-021-03385-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 12/01/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND The plant hormone auxin is a major coordinator of plant growth and development in response to diverse environmental signals, including nutritional conditions. Sole ammonium (NH4+) nutrition is one of the unique growth-suppressing conditions for plants. Therefore, the quest to understand NH4+-mediated developmental defects led us to analyze auxin metabolism. RESULTS Indole-3-acetic acid (IAA), the most predominant natural auxin, accumulates in the leaves and roots of mature Arabidopsis thaliana plants grown on NH4+, but not in the root tips. We found changes at the expressional level in reactions leading to IAA biosynthesis and deactivation in different tissues. Finally, NH4+ nutrition would facilitate the formation of inactive oxidized IAA as the final product. CONCLUSIONS NH4+-mediated accelerated auxin turnover rates implicate transient and local IAA peaks. A noticeable auxin pattern in tissues correlates with the developmental adaptations of the short and highly branched root system of NH4+-grown plants. Therefore, the spatiotemporal distribution of auxin might be a root-shaping signal specific to adjust to NH4+-stress conditions.
Collapse
Affiliation(s)
- Kacper Dziewit
- Institute of Plant Bioenergetics, Faculty of Biology, University of Warsaw, I. Miecznikowa 01, 02-096, Warsaw, Poland
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Katarzyna Dobrzyńska
- Institute of Plant Bioenergetics, Faculty of Biology, University of Warsaw, I. Miecznikowa 01, 02-096, Warsaw, Poland
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Bożena Szal
- Institute of Plant Bioenergetics, Faculty of Biology, University of Warsaw, I. Miecznikowa 01, 02-096, Warsaw, Poland
| | - Anna Podgórska
- Institute of Plant Bioenergetics, Faculty of Biology, University of Warsaw, I. Miecznikowa 01, 02-096, Warsaw, Poland.
| |
Collapse
|
18
|
Di DW, Sun L, Wang M, Wu J, Kronzucker HJ, Fang S, Chu J, Shi W, Li G. WRKY46 promotes ammonium tolerance in Arabidopsis by repressing NUDX9 and indole-3-acetic acid-conjugating genes and by inhibiting ammonium efflux in the root elongation zone. THE NEW PHYTOLOGIST 2021; 232:190-207. [PMID: 34128546 DOI: 10.1111/nph.17554] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/08/2021] [Indexed: 05/11/2023]
Abstract
Ammonium (NH4+ ) is toxic to root growth in most plants, even at moderate concentrations. Transcriptional regulation is one of the most important mechanisms in the response of plants to NH4+ toxicity, but the nature of the involvement of transcription factors (TFs) in this regulation remains unclear. Here, RNA-seq analysis was performed on Arabidopsis roots to screen for ammonium-responsive TFs. WRKY46, the member of the WRKY transcription factor family most responsive to NH4+ , was selected. We defined the role of WRKY46 using mutation and overexpression assays, and characterized the regulation of NUDX9 and indole-3-acetic acid (IAA)-conjugating genes by WRKY46 via yeast one-hybrid and electrophoretic mobility shift assays and chromatin immunoprecipitation-quantitative real-time polymerase chain reaction (ChIP-qPCR). Knockout of WRKY46 increased, while overexpression of WRKY46 decreased, NH4+ -suppression of the primary root. WRKY46 is shown to directly bind to the promoters of the NUDX9 and IAA-conjugating genes (GH3.1, GH3.6, UGT75D1, UGT84B2) and to inhibit their transcription, thus positively regulating free IAA content and stabilizing protein N-glycosylation, leading to an inhibition of NH4+ efflux in the root elongation zone (EZ). We identify TF involvement in the regulation of NH4+ efflux in the EZ, and show that WRKY46 inhibits NH4+ efflux by negative regulation of NUDX9 and IAA-conjugating genes.
Collapse
Affiliation(s)
- Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Li Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jingjing Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Herbert J Kronzucker
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Shuang Fang
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|