1
|
Trebol-Aizpurua E, Eceiza MV, Jimenez-Martinez C, Marí AI, Royuela M, Zabalza A, Gil-Monreal M. Resistance to Amino Acid Biosynthesis Inhibiting-Herbicides in Amaranthus palmeri Populations from Aragon (Spain). PLANTS (BASEL, SWITZERLAND) 2025; 14:1505. [PMID: 40431070 PMCID: PMC12115111 DOI: 10.3390/plants14101505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025]
Abstract
Amaranthus palmeri is a highly problematic agricultural weed due to its rapid growth, high seed production, and strong tendency to develop herbicide resistance. In Spain, the initial colonization of A. palmeri began in 2007, when populations were detected at various locations in the province of Lleida (Catalonia). Since then, new infestations have been reported in other regions of the country, primarily infesting maize fields. Although resistance to glyphosate or to acetolactate synthase (ALS) inhibitors has been documented in several populations from Catalonia and Extremadura, little is known about the resistance profile of populations from Aragon. The main objective of this study was to characterize the putative resistance of five populations from Aragon to 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) inhibitors (glyphosate) and ALS inhibitors (nicosulfuron and imazamox). Sensitivity to both mechanisms of action was measured by root growth in vertical plates and shikimate accumulation for glyphosate. Target-site resistance was evaluated by analyzing EPSPS and ALS gene copy numbers and ALS gene mutations. The populations showed high variability, with no multiple resistance detected. The Bujaraloz population showed moderate resistance to glyphosate due to EPSPS gene amplification. In three populations, mutations in the ALS gene conferring resistance were detected. The Trp574Leu mutation was detected in approximately half of the individuals from the Albelda, Tamarite de Litera, and Caspe populations. In the latter, the Pro197Thr mutation was also present. This study reveals significant genetic variability within each population and provides evidence for the spread of herbicide resistance across different regions of Spain.
Collapse
Affiliation(s)
- Eneko Trebol-Aizpurua
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadia, 31006 Pamplona, Spain; (E.T.-A.)
| | - Mikel V. Eceiza
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadia, 31006 Pamplona, Spain; (E.T.-A.)
| | - Clara Jimenez-Martinez
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadia, 31006 Pamplona, Spain; (E.T.-A.)
- Department of Forestry and Agricultural Science and Engineering, University of Lleida and AGROTECNIO Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Ana I. Marí
- Department of Plant Protection, Integrated Pest Management Group, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, Spain
| | - Mercedes Royuela
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadia, 31006 Pamplona, Spain; (E.T.-A.)
| | - Ana Zabalza
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadia, 31006 Pamplona, Spain; (E.T.-A.)
| | - Miriam Gil-Monreal
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadia, 31006 Pamplona, Spain; (E.T.-A.)
| |
Collapse
|
2
|
Eceiza MV, Jimenez-Martinez C, Gil-Monreal M, Barco-Antoñanzas M, Font-Farre M, Huybrechts M, van der Hoorn RL, Cuypers A, Royuela M, Zabalza A. Role of glutathione S-transferases in the mode of action of herbicides that inhibit amino acid synthesis in Amaranthus palmeri. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108506. [PMID: 38461753 DOI: 10.1016/j.plaphy.2024.108506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Acetolactate synthase inhibitors (ALS inhibitors) and glyphosate are two classes of herbicides that act by inhibiting an enzyme in the biosynthetic pathway of branched-chain or aromatic amino acids, respectively. Besides amino acid synthesis inhibition, both herbicides trigger similar physiological effects in plants. The main aim of this study was to evaluate the role of glutathione metabolism, with special emphasis on glutathione S-transferases (GSTs), in the mode of action of glyphosate and ALS inhibitors in Amaranthus palmeri. For that purpose, plants belonging to a glyphosate-sensitive (GLS) and a glyphosate-resistant (GLR) population were treated with different doses of glyphosate, and plants belonging to an ALS-inhibitor sensitive (AIS) and an ALS-inhibitor resistant (AIR) population were treated with different doses of the ALS inhibitor nicosulfuron. Glutathione-related contents, GST activity, and related gene expressions (glutamate-cysteine ligase, glutathione reductase, Phi GST and Tau GST) were analysed in leaves. According to the results of the analytical determinations, there were virtually no basal differences between GLS and GLR plants or between AIS and AIR plants. Glutathione synthesis and turnover did not follow a clear pattern in response to herbicides, but GST activity and gene expression (especially Phi GSTs) increased with both herbicides in treated sensitive plants, possibly related to the rocketing H2O2 accumulation. As GSTs offered the clearest results, these were further investigated with a multiple resistant (MR) population, compressing target-site resistance to both glyphosate and the ALS inhibitor pyrithiobac. As in single-resistant plants, measured parameters in the MR population were unaffected by herbicides, meaning that the increase in GST activity and expression occurs due to herbicide interactions with the target enzymes.
Collapse
Affiliation(s)
- Mikel V Eceiza
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadia, Pamplona, Spain
| | - Clara Jimenez-Martinez
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadia, Pamplona, Spain
| | - Miriam Gil-Monreal
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadia, Pamplona, Spain
| | - María Barco-Antoñanzas
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadia, Pamplona, Spain
| | - Maria Font-Farre
- The Plant Chemetics Laboratory, Department of Biology Sciences, University of Oxford, Oxford, UK
| | - Michiel Huybrechts
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - RenierA L van der Hoorn
- The Plant Chemetics Laboratory, Department of Biology Sciences, University of Oxford, Oxford, UK
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Mercedes Royuela
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadia, Pamplona, Spain
| | - Ana Zabalza
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadia, Pamplona, Spain.
| |
Collapse
|
3
|
Traxler C, Gaines TA, Küpper A, Luemmen P, Dayan FE. The nexus between reactive oxygen species and the mechanism of action of herbicides. J Biol Chem 2023; 299:105267. [PMID: 37734554 PMCID: PMC10591016 DOI: 10.1016/j.jbc.2023.105267] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Herbicides are small molecules that act by inhibiting specific molecular target sites within primary plant metabolic pathways resulting in catastrophic and lethal consequences. The stress induced by herbicides generates reactive oxygen species (ROS), but little is known about the nexus between each herbicide mode of action (MoA) and their respective ability to induce ROS formation. Indeed, some herbicides cause dramatic surges in ROS levels as part of their primary MoA, whereas other herbicides may generate some ROS as a secondary effect of the stress they imposed on plants. In this review, we discuss the types of ROS and their respective reactivity and describe their involvement for each known MoA based on the new Herbicide Resistance Action Committee classification.
Collapse
Affiliation(s)
- Catherine Traxler
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Todd A Gaines
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Anita Küpper
- Plant Biotechnology Division, Bayer CropScience, Chesterfield, Missouri, USA
| | - Peter Luemmen
- Research & Development Division, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Franck E Dayan
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
4
|
Eceiza MV, Barco-Antoñanzas M, Gil-Monreal M, Huybrechts M, Zabalza A, Cuypers A, Royuela M. Role of oxidative stress in the physiology of sensitive and resistant Amaranthus palmeri populations treated with herbicides inhibiting acetolactate synthase. FRONTIERS IN PLANT SCIENCE 2023; 13:1040456. [PMID: 36684786 PMCID: PMC9852854 DOI: 10.3389/fpls.2022.1040456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The aim of the present study was to elucidate the role of oxidative stress in the mode of action of acetolactate synthase (ALS) inhibiting herbicides. Two populations of Amaranthus palmeri S. Watson from Spain (sensitive and resistant to nicosulfuron, due to mutated ALS) were grown hydroponically and treated with different rates of the ALS inhibitor nicosulfuron (one time and three times the field recommended rate). Seven days later, various oxidative stress markers were measured in the leaves: H2O2, MDA, ascorbate and glutathione contents, antioxidant enzyme activities and gene expression levels. Under control conditions, most of the analysed parameters were very similar between sensitive and resistant plants, meaning that resistance is not accompanied by a different basal oxidative metabolism. Nicosulfuron-treated sensitive plants died after a few weeks, while the resistant ones survived, independently of the rate. Seven days after herbicide application, the sensitive plants that had received the highest nicosulfuron rate showed an increase in H2O2 content, lipid peroxidation and antioxidant enzymatic activities, while resistant plants did not show these responses, meaning that oxidative stress is linked to ALS inhibition. A supralethal nicosulfuron rate was needed to induce a significant oxidative stress response in the sensitive population, providing evidence that the lethality elicited by ALS inhibitors is not entirely dependent on oxidative stress.
Collapse
Affiliation(s)
- Mikel Vicente Eceiza
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre, Pamplona, Spain
| | - María Barco-Antoñanzas
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre, Pamplona, Spain
| | - Miriam Gil-Monreal
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre, Pamplona, Spain
| | - Michiel Huybrechts
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Ana Zabalza
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre, Pamplona, Spain
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Mercedes Royuela
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre, Pamplona, Spain
| |
Collapse
|
5
|
Antioxidant Enzyme and Cytochrome P450 Activities Are Involved in Horseweed (Conyza Sumatrensis) Resistance to Glyphosate. STRESSES 2022. [DOI: 10.3390/stresses3010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The intensive global use of glyphosate has led to the evolution of glyphosate resistant (GR) weed species, including the economically damaging horseweed (Conyza sumatrensis). We evaluated the glyphosate resistance mechanisms of C. sumatrensis. While 5-enolpyruvylshikimate-3-phosphate synthase activity was similar between the glyphosate resistant (GR) and nonresistant biotypes, plants from the GR population accumulated lower shikimate levels than susceptible ones, suggesting the absence of target-site resistance mechanisms. Decreases over time in glyphosate concentrations in GR leaves were not accompanied by increases in glyphosate concentrations in their stem and roots, indicating lower glyphosate distribution rates in GR plants. The early appearance of aminomethylphosphonic acid (the main glyphosate metabolite) in leaves, as well as its presence only in the stems and roots of GR plants, suggests faster glyphosate metabolism in GR plants than in susceptible ones. GR plants treated with glyphosate also showed greater antioxidant (ascorbate peroxidase [APX] and catalase [CAT]) and cytochrome P450-enzyme activities, indicating their great capacity to avoid glyphosate-induced oxidative stress. Three non-target mechanisms (reduced glyphosate translocation, increased metabolism, and increased antioxidant activity) therefore confer glyphosate resistance in C. sumatrensis plants. This is the first time that APX, CAT and P450-enzyme activities are related to GR in C. sumatrensis.
Collapse
|